Action recognition in videos III

Cordelia Schmid INRIA Grenoble

Action recognition - goal

Short actions, i.e. answer phone, shake hands

answer phone

hand shake

Action recognition - goal

Activities/events, i.e. making a sandwich, doing homework

Making sandwich

Doing homework

TrecVid Multi-media event detection dataset

Action recognition - goal

Activities/events, i.e. birthday party, parade

Birthday party

Parade

TrecVid Multi-media event detection dataset

Action recognition - tasks

Action classification: assigning an action label to a video clip

Making sandwich: present

Feeding animal: not present

• • •

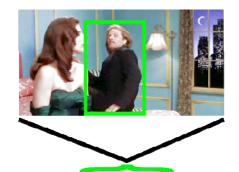
Action recognition - tasks

Action classification: assigning an action label to a video clip

Making sandwich: present Feeding animal: not present

• • •

Action localization: search locations of an action in a video



Outline

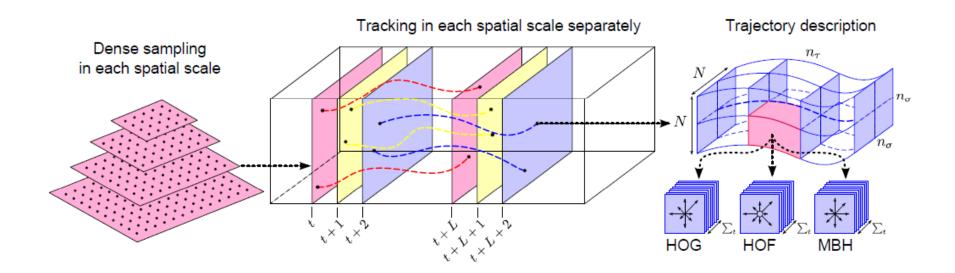
- Improved video description
 - Dense trajectories and motion-boundary descriptors
- Adding temporal information to the bag of features
 - Actom sequence model for efficient action detection
- Modeling human-object interaction

Dense trajectories - motivation

- Dense sampling improves results over sparse interest points for image classification [Fei-Fei'05, Nowak'06]
- Recent progress by using feature trajectories for action recognition [Messing'09, Sun'09]
- The 2D space domain and 1D time domain in videos have very different characteristics
- → Dense trajectories: a combination of dense sampling with feature trajectories [Wang, Klaeser, Schmid & Lui, CVPR'11]

Approach

- Dense multi-scale sampling
- Feature tracking over L frames with optical flow
- Trajectory-aligned descriptors with a spatio-temporal grid



Approach

Dense sampling

- remove untrackable points
- based on the eigenvalues of the auto-correlation matrix

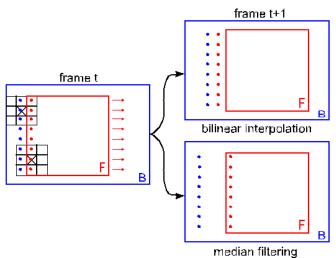


Feature tracking

by median filtering in dense optical flow field

$$P_{t+1} = (x_{t+1}, y_{t+1}) = (x_t, y_t) + (M * \omega_t)|_{(\bar{x}_t, \bar{y}_t)}$$

length is limited to avoid drifting



Feature tracking

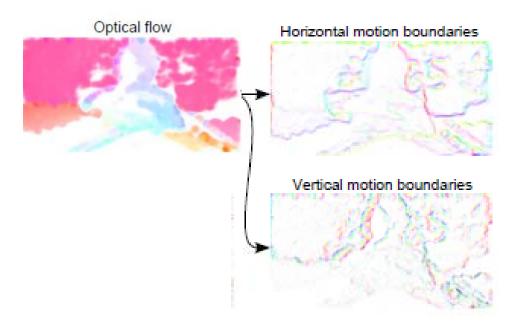
KLT tracks

SIFT tracks

Dense tracks

Trajectory descriptors

- Motion boundary descriptor
 - spatial derivatives are calculated separately for optical flow in x and y , quantized into a histogram
 - relative dynamics of different regions
 - suppresses constant motions as appears for example due to background camera motion

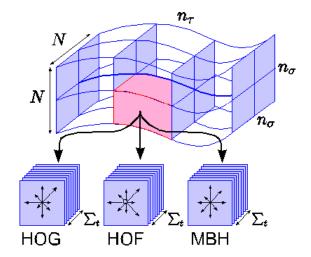


Trajectory descriptors

Trajectory shape described by normalized relative point coordinates

$$S = \frac{(\Delta P_t, \dots, \Delta P_{t+L-1})}{\sum_{j=t}^{t+L-1} ||\Delta P_j||}$$

HOG, HOF and MBH are encoded along each trajectory



Experimental setup

- Bag-of-features with 4000 clusters obtained by k-means, classification by non-linear SVM with RBF + chi-square kernel
 - confirmed by recent results with Fisher vector + linear SVM
- Descriptors are combined by addition of distances
- Evaluation on two datasets: UCFSport (classification accuracy) and Hollywood2 (mean average precision)
- Two baseline trajectories: KLT and SIFT

Comparison of descriptors

	Hollywood2	UCFSports
Trajectory	47.8%	75.4%
HOG	41.2%	84.3%
HOF	50.3%	76.8%
MBH	55.1%	84.2%
Combined	58.2%	88.0%

- Trajectory descriptor performs well
- HOF >> HOG for Hollywood2, dynamic information is relevant
- HOG >> HOF for sports datasets, spatial context is relevant
- MBH consistently outperforms HOF, robust to camera motion

Comparison of trajectories

	Hollywood2	UCFSports
Dense trajectory + MBH	55.1%	84.2%
KLT trajectory + MBH	48.6%	78.4%
SIFT trajectory + MBH	40.6%	72.1%

Dense >> KLT >> SIFT trajectories

Comparison to state of the art

	Hollywood2 (SPM)	UCFSports (SPM)
Our approach (comb.)	58.2% (59.9%)	88.0% (89.1%)
[Le'2011]	53.3%	86.5%
other	53.2% [Ullah'10]	87.3% [Kov'10]

• Improves over the state of the art with a simple BOF model

Excellent results in TrecVid MED'12

- Combination of MBH SIFT, audio and text recognition
- Second in the know event challenge, first in the adhoc event challenge

Making sandwich – results

Rank 1 (pos)

Rank 20 (pos)

Rank 21 (neg)

Excellent results in TrecVid MED'12

FlashMob gathering – results

Rank 1 (pos)

Rank 18 (pos)

Rank 19 (neg)

Conclusion

- Dense trajectory representation for action recognition outperforms existing approaches
- Motion boundary histogram descriptors perform very well, they are robust to camera motion
- Efficient algorithm, on-line available at https://lear.inrialpes.fr/people/wang/dense_trajectories
- Recent excellent results in the TrecVID MED 2012 challenge

Outline

- Improved video description
 - Dense trajectories and motion-boundary descriptors
- Adding temporal information to the bag of features
 - Actom sequence model for efficient action detection
- Modeling human-object interaction

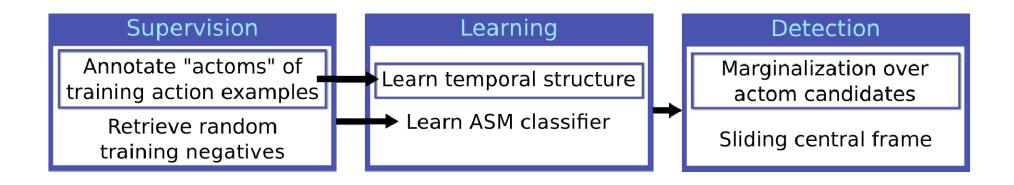
Approach for action modeling

- Model of the temporal structure of an action with a sequence of "action atoms" (actoms)
- Action atoms are action specific short key events, whose sequence is characteristic of the action

Related work

- Temporal structuring of video data
 - Bag-of-features with spatio-temporal pyramids [Laptev'08]
 - Loose hierarchical structure of latent motion parts [Niebles'10]
 - Facial action recognition with action unit detection and structured learning of temporal segments [Simon'10]

Approach for action modeling



 Actom Sequence Model (ASM): histogram of time-anchored visual features

Actom annotation

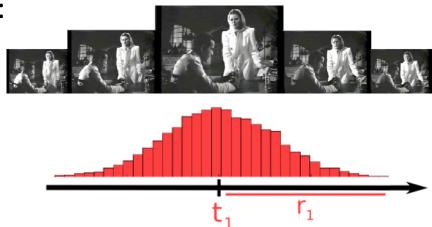
 Actoms for training actions are obtained manually (3 actoms per action here)

 Alternative supervision to clips annotation (beginning and end frames) with similar cost and smaller annotation variability

Automatic detection of actoms at test time

Actom descriptor

- An actom is parameterized by:
 - central frame location
 - time-span
 - temporally weighted feature assignment mechanism

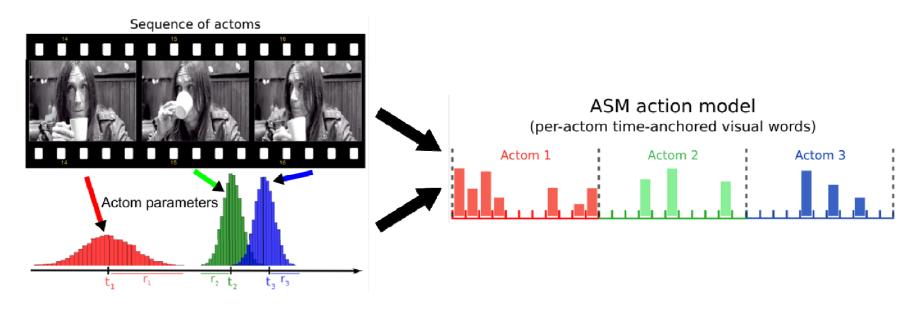


Actom descriptor:

- histogram of quantized visual words in the actom's range
- contribution depends on temporal distance to actom center (using temporal Gaussian weighting)

Actom sequence model (ASM)

ASM: concatenation of actom histograms

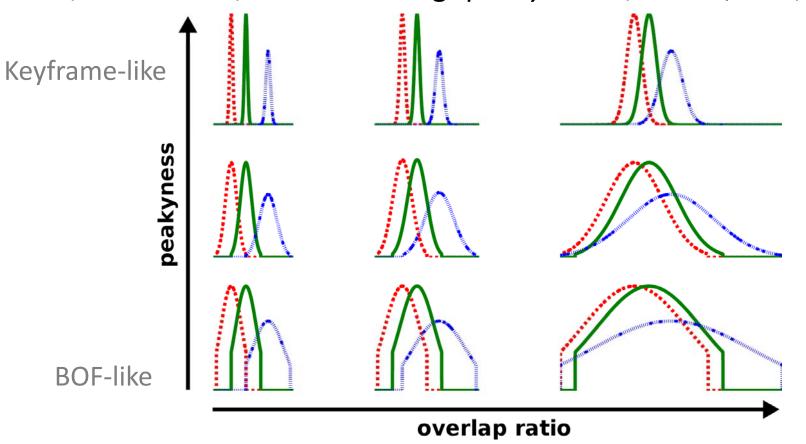


- Temporally structured extension of BOF
- Action represented by a single sparse sequential model

Actom Sequence Model (ASM)

Parameters

 ASM model has two parameters: overlap between actoms (controls radius) and soft-voting "peakyness" (controls profile)



Automatic temporal detection - training

ASM classifier:

- non-linear SVM on ASM representations with intersection kernel, random training negatives, probability outputs
- estimates posterior probability of an action knowing the temporal location of its actoms

Actoms unknown at test time:

 use training examples to learn prior on temporal structure of actom candidates

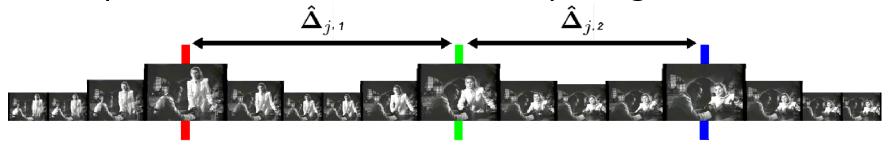
Training

Action classifier

- ASM classifier: non-linear SVM on ASM representations
 - intersection kernel: $K(x, x') = \sum_{j=1}^{N} \min(x_j, x'_j)$
 - random training negatives
 - class-balancing
 - probability outputs
 - → estimates posterior probability of an action knowing the temporal location of its actoms
- Actoms unknown at test time:
 use training examples to learn actom candidates

Prior on temporal structure

Temporal structure: inter-actom spacings



- Non-parametric model of the temporal structure
 - kernel density estimation over inter-actom spacings from training action examples
 - discretize it to $\hat{\mathcal{D}} = \{(\hat{\Delta}_j, \hat{p}_j), j = 1 \cdots K\}, \hat{p}_j = \mathbf{P}(\hat{\Delta}_j)$ (small support in practice: $K\approx 10$)
 - use as prior on temporal structure during detection

Training

Example of learned candidates

• Actom models corresponding to the $\hat{\mathcal{D}}$ learned for "smoking" (with the ASM parameters used in our experiments)

Smoking temporal structure ($\rho = 25\%$, p = 70%) $p_1 = 21.3\%$ $p_2 = 19.3\%$ $p_3 = 14.0\%$ $p_4 = 10.7\%$ $p_5 = 7.1\%$ $p_6 = 7.0\%$ $p_7 = 6.8\%$ $p_8 = 6.1\%$ $p_9 = 4.0\%$ $p_{10} = 3.8\%$ 0 158

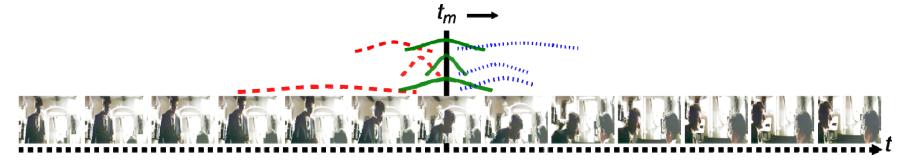
Frames

Automatic Temporal Detection

• Probability of action at frame t_m by marginalizing over all learned candidate actom sequences:

$$\mathbf{P}(\text{action at } t_m) = \sum_{j=1}^K \mathbf{P}(\text{action at } t_m | \hat{\boldsymbol{\Delta}}_j) \mathbf{P}(\hat{\boldsymbol{\Delta}}_j)$$

 Sliding central frame: detection in a long video stream by evaluating the probability every N frames (N=5)



Non-maxima suppression post-processing step

Experiments - Datasets

Coffee & Cigarettes: localize drinking, smoking in 36k frames [Laptev'07]

• DLSBP: localize opening a door, sitting down in 443k frames [Duchenne'09]

• Evaluation: average precision (AP) computed wrt 20% overlap with ground truth test actions

Quantitative Results

Coffee & Cigarettes

Method	"Drinking"	"Smoking"	
matching criterion: OV20			
DLSBP [9]	40	NA	
LP-T [12]	49	NA	
KMSZ-T [78]	59	33	
BOF	36 (±1)	17 (±2)	
BOF T3	44 (±2)	20 (±3)	
ASM	63 (±3)	40 (±4)	

DLSBP

Method	"Open Door"	"Sit Down"	
matching criterion: OV20			
DLSBP [9]	14	14	
BOF	8 (±3)	14 (±3)	
BOF T3	8 (±1)	17 (±3)	
ASM	14 (±3)	$22 \ (\pm 2)$	

- ASM method outperforms BOF
- ASM improves over rigid temporal structure, BOF T3 (BOF T3: concatenation of 3 BOF: beginning, middle and end of the action)
- More accurate detections with ASM compared to the state of the art

Qualitative Results

Central frames

Frames of the top 5 actions detected with ASM for drinking and opening a door

(only #2 of opening a door is a false positive)

Qualitative Results

Actoms

Frames of automatically detected actom sequences for 4 actions

Open Door

Drinking

Smoking

Sitting Down

Localization results for action drinking

Localization results for action smoking

Conclusion

 ASM: efficient model of actions with a flexible sequence of key semantic sub-actions (actoms)

 Principled multi-scale action detection using a learned prior on temporal structure

 ASM outperforms bag-of-features, rigid temporal structures and state of the art

Outline

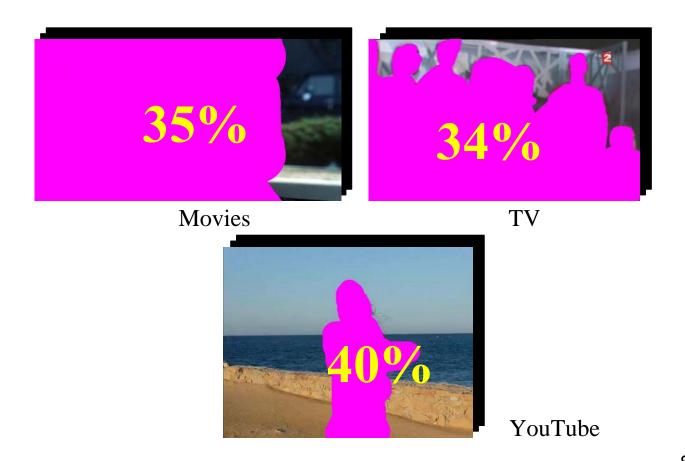
- Improved video description
 - Dense trajectories and motion-boundary descriptors
- Adding temporal information to the bag of features
 - Actom sequence model for efficient action detection
- Modeling human-object interaction

Action recognition

• Action recognition is person-centric

Action recognition

Action recognition is person-centric



Action recognition

- Description of the human pose
 - Silhouette description [Sullivan & Carlsson, 2002]
 - Histogram of gradients (HOG) [Dalal & Triggs 2005]

Human body part estimation [Felzenzswalb & Huttenlocher 2005]

Importance of action objects

- Human pose often not sufficient by itself
- Objects define the actions

Action recognition from still images

- Supervised modeling interaction between human & object [Gupta et al. 2009, Yao & Fei-Fei 2009]
- Weakly-supervised learning of objects [Prest, Schmid & Ferrari 2011]

Results on PASCAL VOC 2010 Human action classification dataset

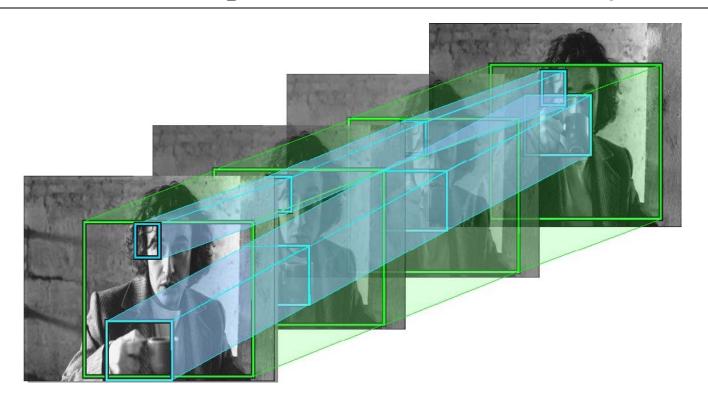
Importance of temporal information

- Video/temporal information necessary to disambiguate actions
- Temporal context describes the action/activity
- Key frames provide significant less information

Modeling temporal human-object interactions

Describing human and object tracks and their relative motion

Tracking humans and objects



Fully automatic human tracks: state of the art detector + Brox tracks

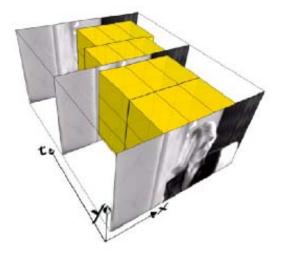
Object tracks: detector learnt from annotated training examples + Brox tracks

Extraction of a large number of human-object track pairs

Action descriptors

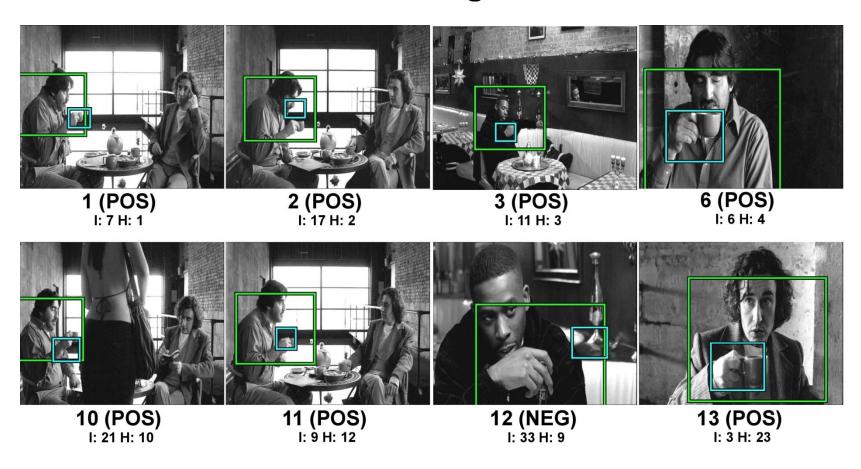
 Interaction descriptor: relative location, area and motion between human and object tracks

• Human track descriptor: 3DHOG-track [Klaeser et al.'10]



Experimental results on C&C

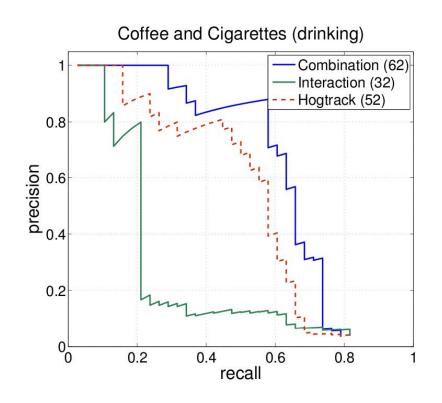
Drinking

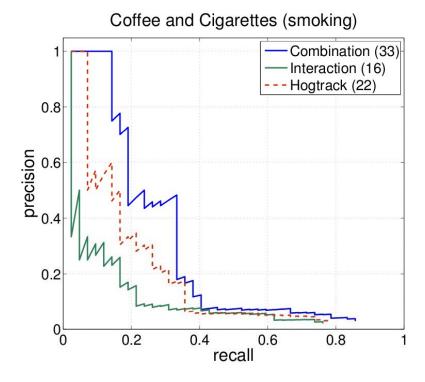


Experimental results on C&C

Smoking

Experimental results on C&C





Comparison to the state of the art

	Drinking	Smoking
Interaction classifier	31.60	16.20
Object classifier	4.30	5.50
3DHOG-track classifier	52.20	21.50
Combination	62.10	32.80
Laptev et al. [22]	43.40	-
Willems et al. [35]	45.20	_
Klaeser et al. [20]	54.10	24.50

Experimental results on Gupta dataset

Answering the phone

Making a phone call

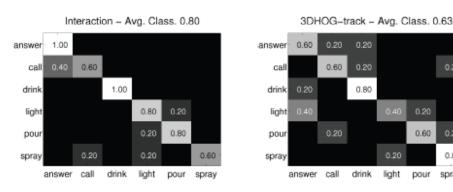
Drinking

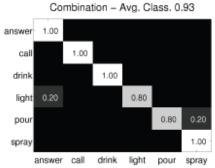
Using a light torch

Pouring water from a cup

Using a spray bottle

Experimental results on Gupta dataset





	Gupta video
Interaction classifier	80.00
Object classifier	36.60
3DHOG-track classifier	63.30
Combination	93.30
Gupta et al. [17]	93.00

- Interactions achieve the best performance alone
- Combination improves results further: only 2 misclassified samples
- -Comp. state of the art: Gupta use significantly more training information

Experimental results on Rochester dataset

- Rochester daily activities dataset
 - 150 videos of 5 persons
 - leave-one-person-out test scenario



Experimental results on Rochester dataset

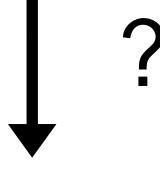
	Rochester Daily Activities
Interaction classifier	74
Combination (our full method)	92
Messing et al. (full method) [29]	89
Messing et al. (point tracks) [29]	67
Matikainen et al. (point tracks) [28]	70

Experimental results on Rochester dataset

Conclusion

- Human-object interaction descriptor obtains state-of-theart performance
- Complementary to 3DHOG-track descriptor
- Combination obtains excellent performance
- Automatic extraction of objects

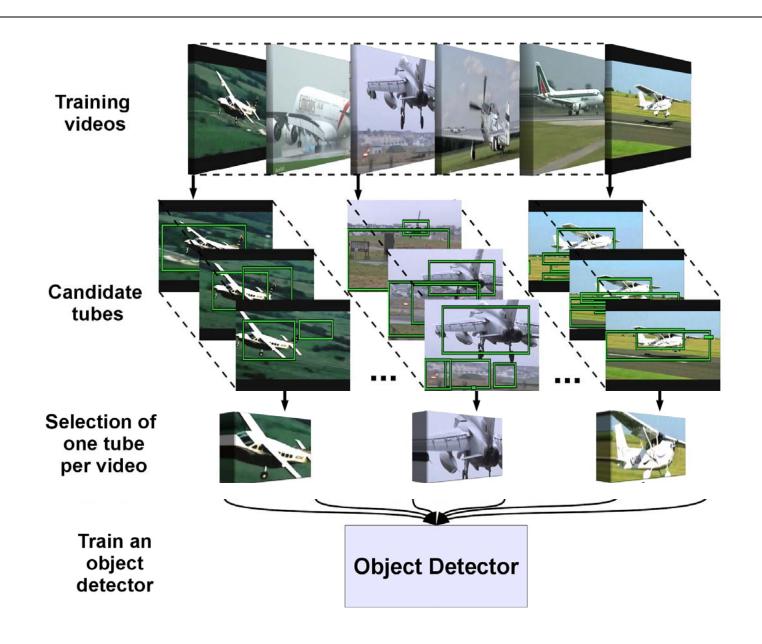
Automatic extraction of objects



Object Detector

Prest, Leistner, Civera, Schmid, Ferrari CVPR 2012, Learning object detectors from weakly annotated video

Automatic extraction of objects



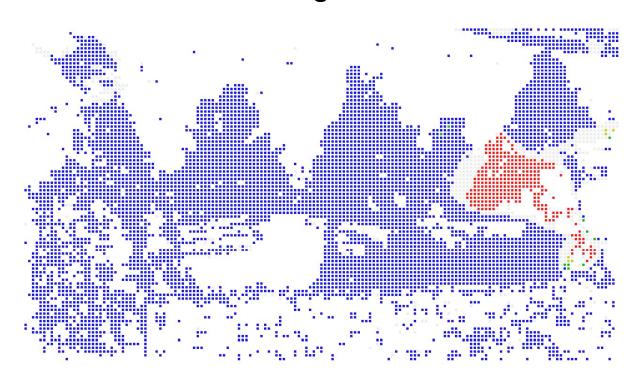
Candidate tubes

dense point tracks

N. Sundaram et al., Dense point trajectories by GPU-accelerated large displacement optical flow, ECCV 2010

Candidate tubes

motion segmentation

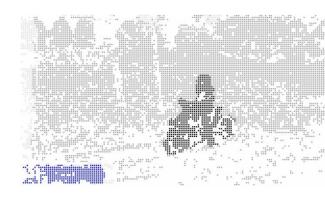


Candidate tubes

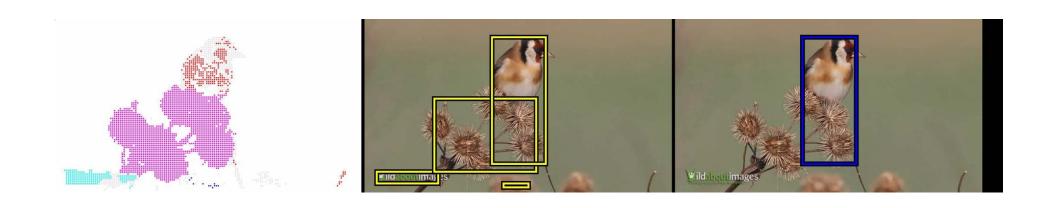
motion segmentation



Selecting candidate tubes



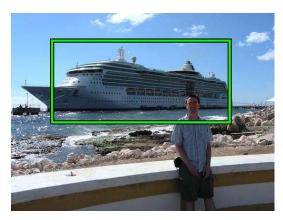
Selecting candidate tubes



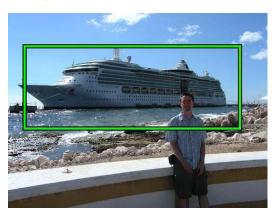
Training + testing object detectors

Still images

Video



Combination



Still images from PASCAL VOC 2007

Discussion

- Need for more challenging datasets
 - Need for realistic datasets

- Scale up number of classes (today ~10 actions per dataset)
- Increase number of examples per class, possibly with weakly supervised learning (the number of examples per videos is low)
- Define a taxonomy, use redundancy between action classes to improve training
- Manual exhaustive labeling of all actions impossible

Discussion

- Make better use of the large amount of information inherent in videos
 - automatic collection of additional examples
 - improve models incrementally
 - use weak labels from associated data (text, sound, subtitles)
- Many existing techniques are straightforward extensions of methods for images
 - almost no use of 3D information
 - learn better interaction and temporal models
 - design activity models by decomposition into simple actions