

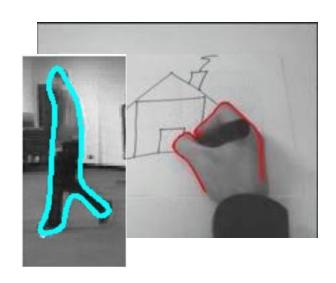
Motion and Human Actions II

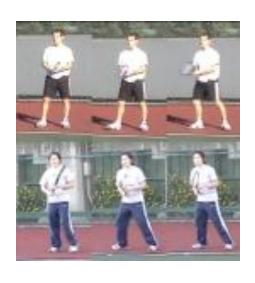
Ivan Laptev

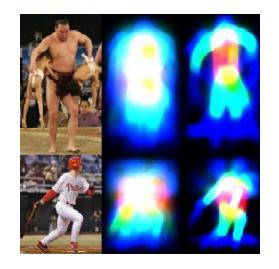
ivan.laptev@inria.fr

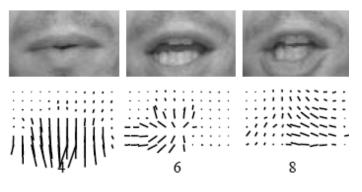
INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d'Informatique, Ecole Normale Supérieure, Paris

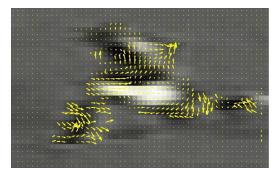
Poses and actions so far:











Space-time

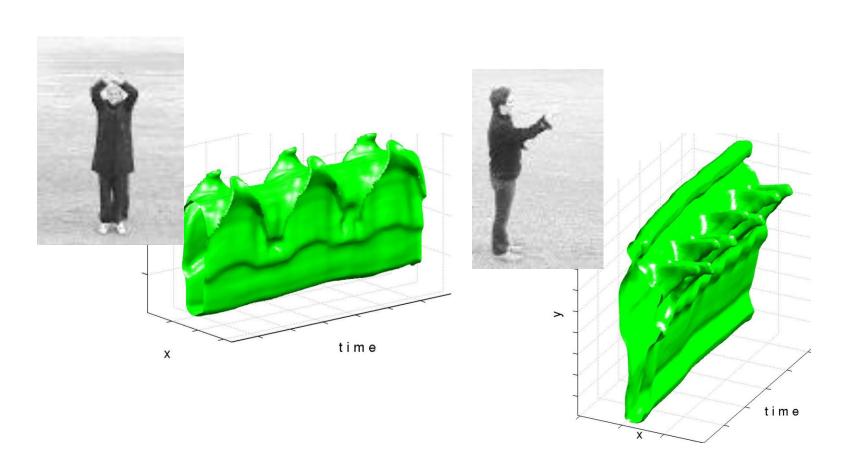
No global assumptions \Rightarrow

Consider local spatio-temporal neighborhoods

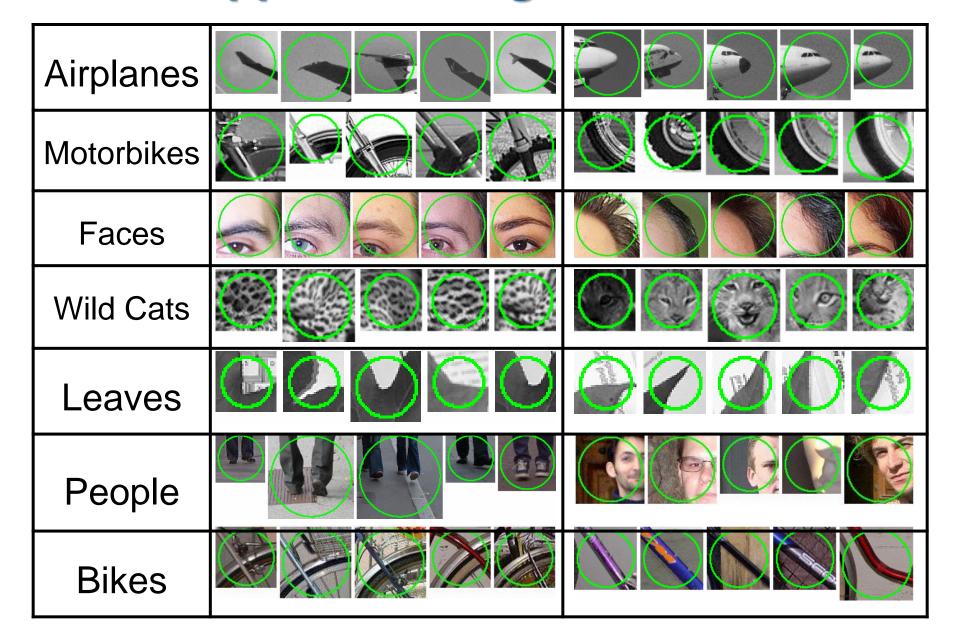
hand waving

boxing

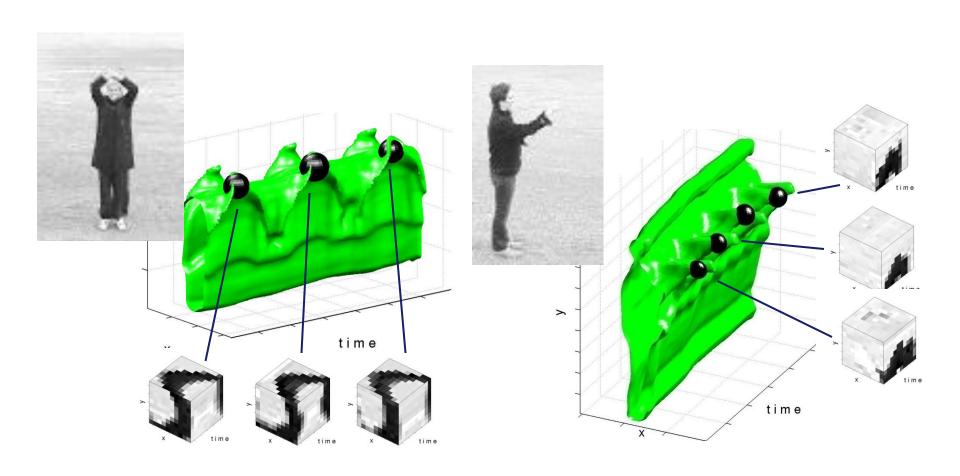
Actions == Space-time objects?



Local approach: Bag of Visual Words



Space-time local features



Space-Time Interest Points: Detection

What neighborhoods to consider?

Definitions:

$$f\colon\mathbb{R}^2 imes\mathbb{R} o\mathbb{R}$$
 Original image sequence $g(x,y,t;\Sigma)$ Space-time Gaussian with covariance $\Sigma\in \mathrm{SPSD}(3)$ $L_\xi(\cdot;\Sigma)=f(\cdot)*g_\xi(\cdot;\Sigma)$ Gaussian derivative of f $\nabla L=(L_x,L_y,L_t)^T$ Space-time gradient $\mu(\cdot;\Sigma)=\nabla L(\cdot;\Sigma)(\nabla L(\cdot;\Sigma))^T*g(\cdot;s\Sigma)=\begin{pmatrix} \mu_{xx}&\mu_{xy}&\mu_{xt}\\\mu_{xy}&\mu_{yy}&\mu_{yt}\\\mu_{xt}&\mu_{yt}&\mu_{tt} \end{pmatrix}$ Second-moment matrix

Space-Time Interest Points: Detection

Properties of $\mu(\cdot; \Sigma)$

 $\mu(\cdot; \Sigma)$ defines second order approximation for the local distribution of ∇L within neighborhood Σ

$${\rm rank}(\mu)=1$$
 \Rightarrow 1D space-time variation of f e.g. moving bar ${\rm rank}(\mu)=2$ \Rightarrow 2D space-time variation of f e.g. moving ball

 ${\rm rank}(\mu)=3$ \implies 3D space-time variation of f e.g. jumping ball

Large eigenvalues of μ can be detected by the local maxima of H over (x,y,t):

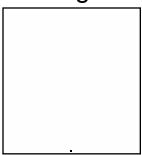
$$H(p; \Sigma) = \det(\mu(p; \Sigma)) + k \operatorname{trace}^{3}(\mu(p; \Sigma))$$

= $\lambda_{1}\lambda_{2}\lambda_{3} - k(\lambda_{1} + \lambda_{2} + \lambda_{3})^{3}$

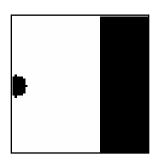
(similar to Harris operator [Harris and Stephens, 1988])

Space-Time interest points

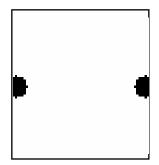
Velocity changes

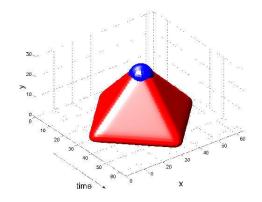


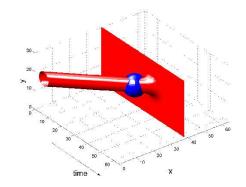
appearance/disappearance

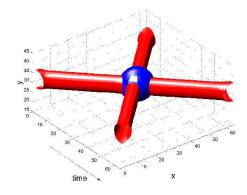


split/merge



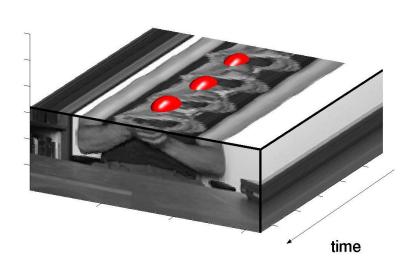


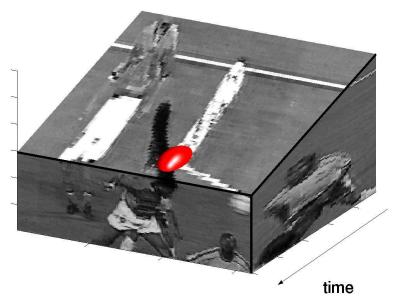




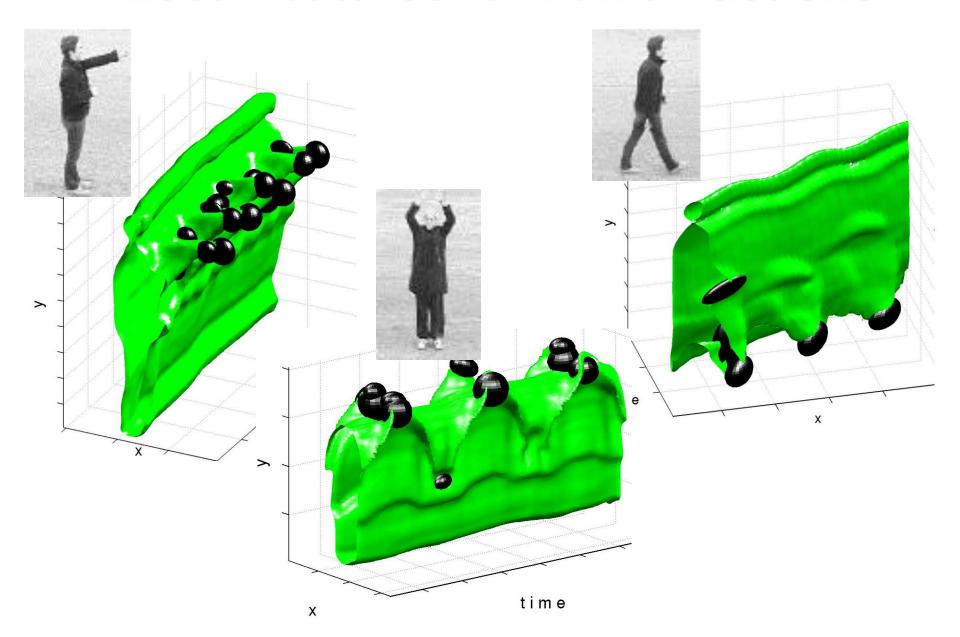
Space-Time Interest Points: Examples

Motion event detection

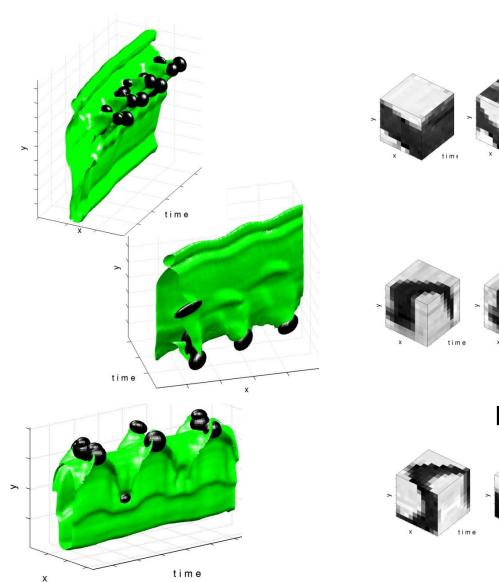




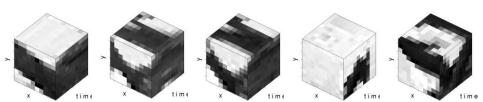
Local features for human actions



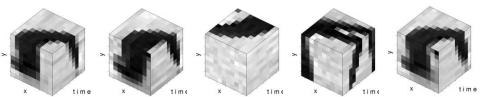
Local features for human actions



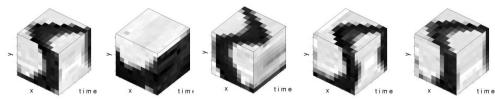
boxing



walking



hand waving



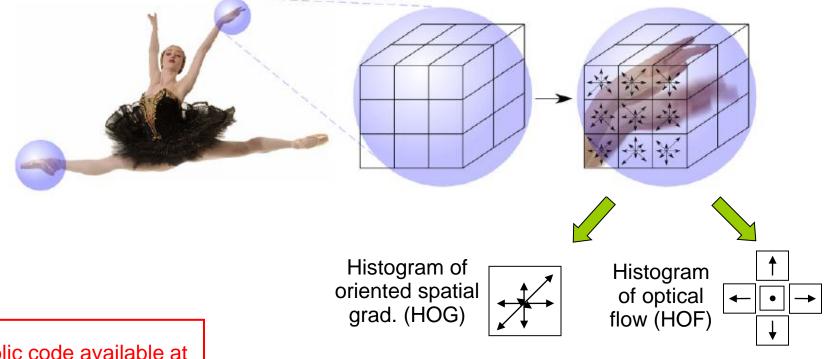
Local space-time descriptor: Jet

Local jet descriptor [Koenderink and van Doorn, 1987]: spatio-temporal Gaussian derivatives at interest points p:

$$D(p) = (L_x(p), L_y(p), L_t(p), L_{xx}(p), ..., L_{ttt}(p))$$

Local space-time descriptor: HOG/HOF

Multi-scale space-time patches



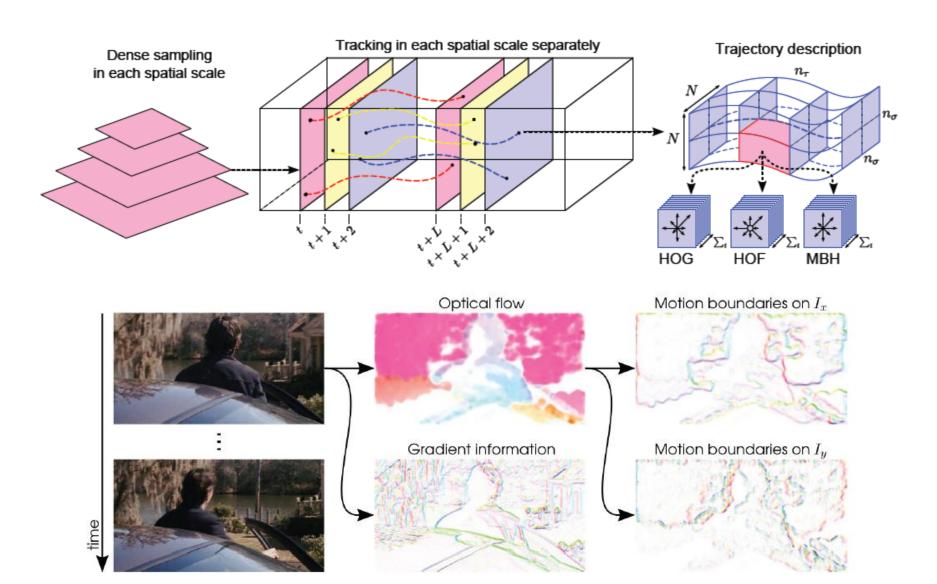
Public code available at www.irisa.fr/vista/actions

3x3x2x4bins **HOG** descriptor

3x3x2x5bins **HOF** descriptor

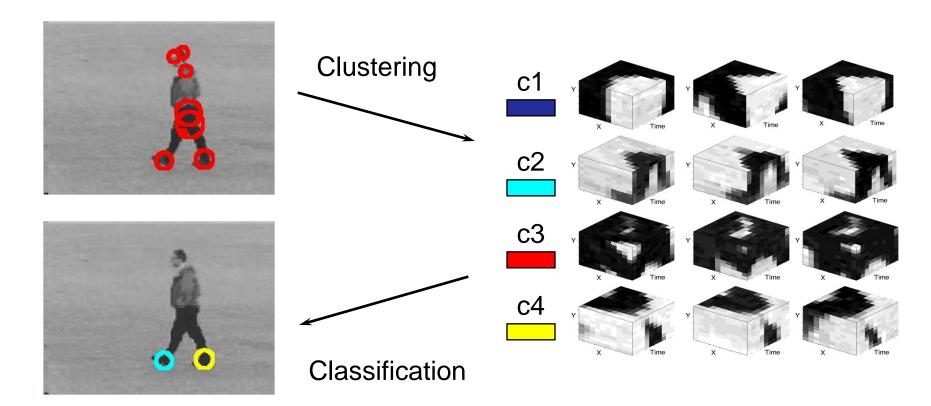
Dense trajectory descriptors

[Wang et al. CVPR'11]



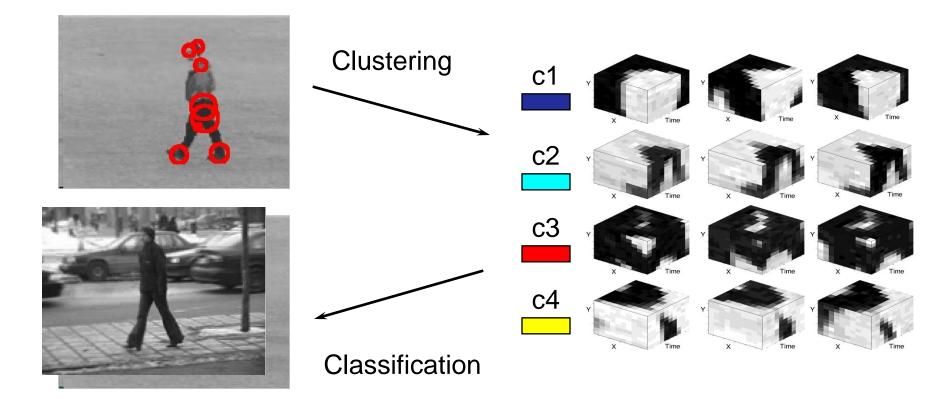
Visual Vocabulary: K-means clustering

- Group similar points in the space of image descriptors using K-means clustering
- Select significant clusters



Visual Vocabulary: K-means clustering

- Group similar points in the space of image descriptors using K-means clustering
- Select significant clusters

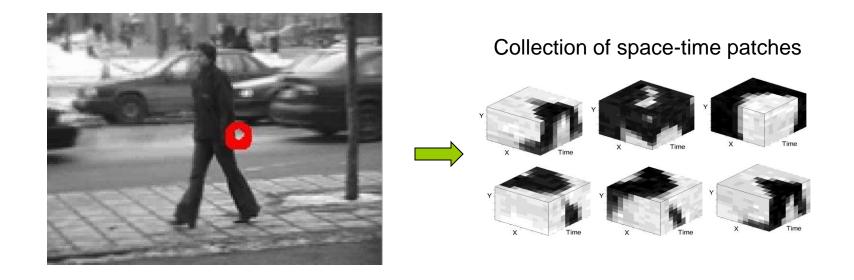


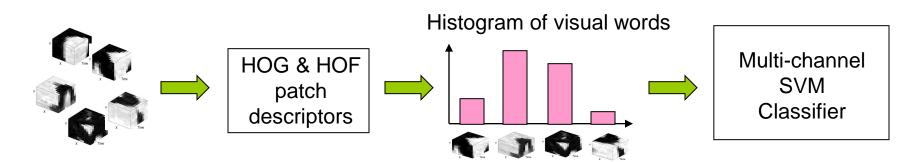
Local feature methods: Matching

Finds similar events in pairs of video sequences

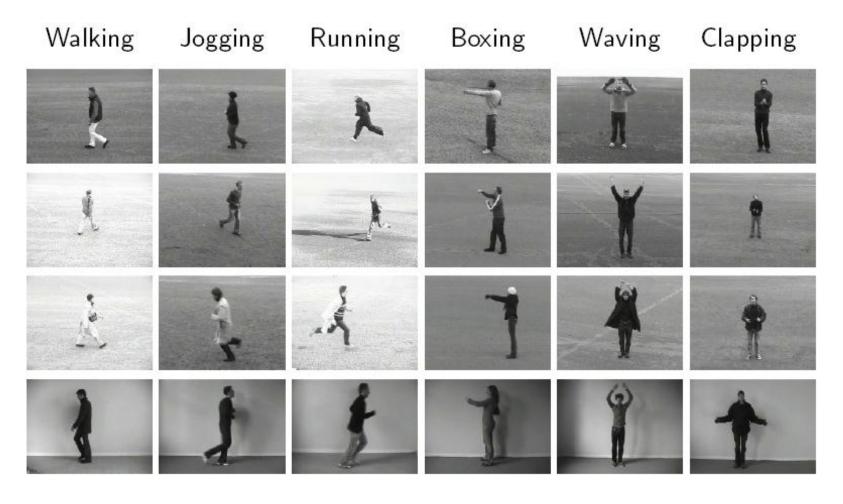
Action Classification: Overview

Bag of space-time features + multi-channel SVM [Laptev'03, Schuldt'04, Niebles'06, Zhang'07]





Action recognition in KTH dataset



Sample frames from the KTH actions sequences, all six classes (columns) and scenarios (rows) are presented

Classification results on KTH dataset

	NSIX	ing logi	Ing Ring	ing Both	us Nav	Ing Clab	911/go
	1/3/	7069	Sill	801	1/3	Class	
Walking	.99	.01	.00	.00	.00	.00	
Jogging	.04	.89	.07	.00	.00	.00	
Running	.01	.19	.80	.00	.00	.00	
Boxing	.00	.00	.00	.97	.00	.03	
Waving	.00	.00	.00	.00	.91	.09	
Clapping	.00	.00	.00	.05	.00	.95	

Confusion matrix for KTH actions

Evaluation of local feature detectors and descriptors

Four types of detectors:

Harris3D [Laptev 2003]

Cuboids [Dollar et al. 2005]

Hessian [Willems et al. 2008]

Regular dense sampling

Four types of descriptors:

HoG/HoF [Laptev et al. 2008]

Cuboids [Dollar et al. 2005]

HoG3D [Kläser et al. 2008]

Extended SURF [Willems'et al. 2008]

Three human actions datasets:

KTH actions [Schuldt et al. 2004]

• UCF Sports [Rodriguez et al. 2008]

Hollywood 2 [Marszałek et al. 2009]

Space-time feature detectors

Harris3D

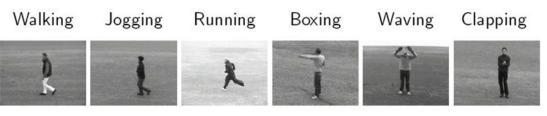
Hessian

Cuboids

Dense

Results on KTH Actions

Descriptors



6 action classes, 4 scenarios, staged

Detectors

	Harris3D	Cuboids	Hessian	Dense
HOG3D	89.0%	90.0%	84.6%	85.3%
HOG/HOF	91.8%	88.7%	88.7%	86.1%
HOG	80.9%	82.3%	77.7%	79.0%
HOF	92.1%	88.2%	88.6%	88.0%
Cuboids	-	89.1%	-	-
E-SURF	-	-	81.4%	-

(Average accuracy scores)

- Best results for sparse Harris3D + HOF
- Dense features perform relatively poor compared to sparse features

[Wang, Ullah, Kläser, Laptev, Schmid, 2009]

Results on UCF Sports

10 action classes, videos from TV broadcasts

Detectors

	Harris3D	Cuboids	Hessian	Dense
HOG3D	79.7%	82.9%	79.0%	85.6%
HOG/HOF	78.1%	77.7%	79.3%	81.6%
HOG	71.4%	72.7%	66.0%	77.4%
HOF	75.4%	76.7%	75.3%	82.6%
Cuboids	-	76.6%	-	-
E-SURF	-	-	77.3%	-

(Average precision scores)

Best results for dense + HOG3D

Descriptors

Results on Hollywood-2

12 action classes collected from 69 movies

Detectors

	Harris3D	Cuboids	Hessian	Dense
HOG3D	43.7%	45.7%	41.3%	45.3%
HOG/HOF	45.2%	46.2%	46.0%	47.4%
HOG	32.8%	39.4%	36.2%	39.4%
HOF	43.3%	42.9%	43.0%	45.5%
Cuboids	-	45.0%	-	-
E-SURF	-	-	38.2%	-

(Average precision scores)

Best results for dense + HOG/HOF

Descriptors

What about 3D?

Local motion and appearance features are not invariant to view changes

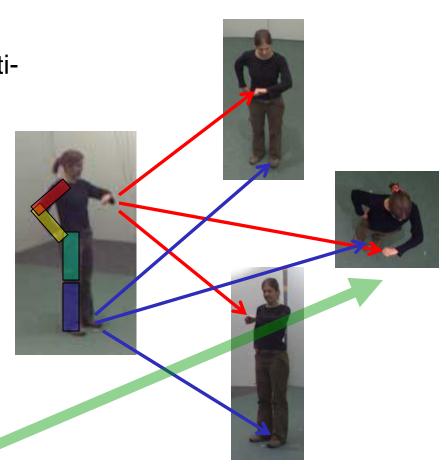
Multi-view action recognition

Difficult to apply standard multi-view methods:

 Do not want to search for multiview point correspondence ---Non-rigid motion, clothing changes, ... --> It's Hard!

 Do not want to identify body parts. Current methods are not reliable enough.

 Yet, want to learn actions from one view and recognize actions in very different views



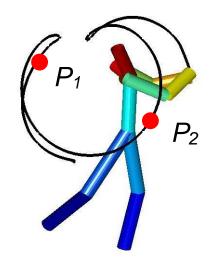
Temporal self-similarities

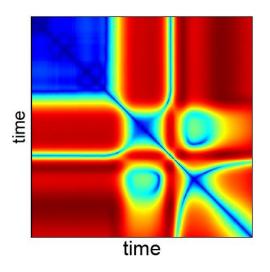
Idea:

- Cross-view matching is hard but cross-time matching (tracking) is relatively easy.
- Measure self-(dis)similarities across time: $\mathcal{D}(t_1, t_2), t_1, t_2 \in (1, ..., T)$

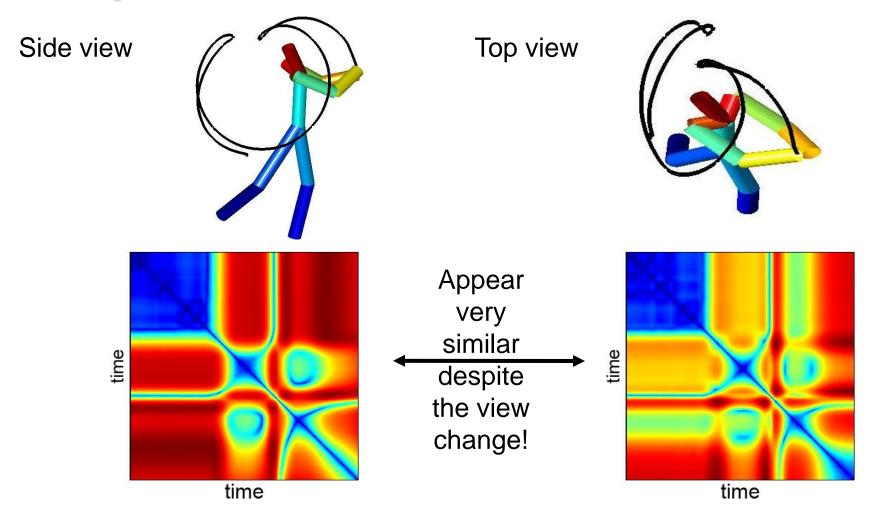
Example: $\mathcal{D}(t_1, t_2) = ||P_1 - P_2||_2$

Distance matrix / self-similarity matrix (SSM):





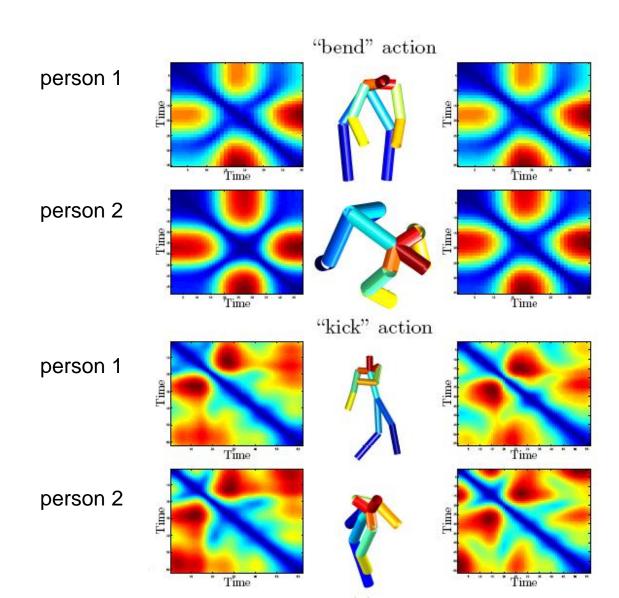
Temporal self-similarities: Multi-views



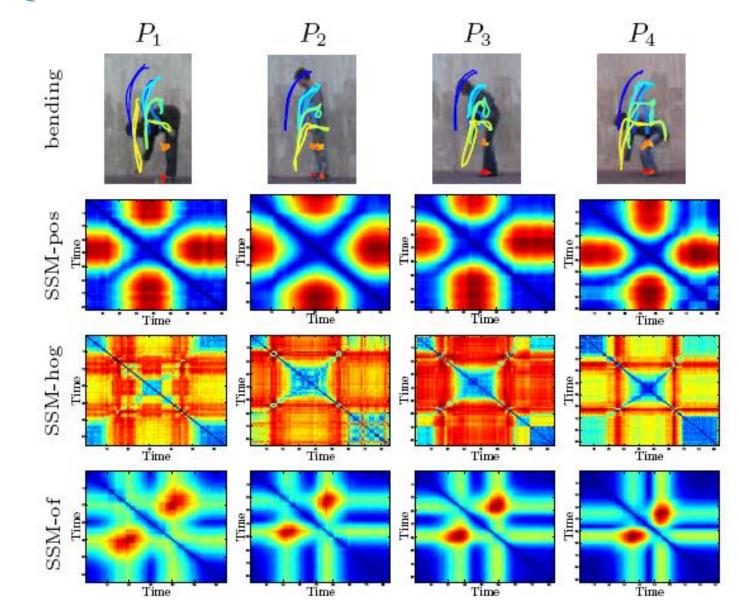
- Intuition: 1. Distance between similar poses is low in any view
 - 2. Distance among different poses is likely to be large in most views

Temporal self-similarities: MoCap

Self-similarities can be measured from Motion Capture (MoCap) data



Temporal self-similarities: Video



Self-similarities can be measured directly from video: HOG or Optical Flow descriptors in image frames

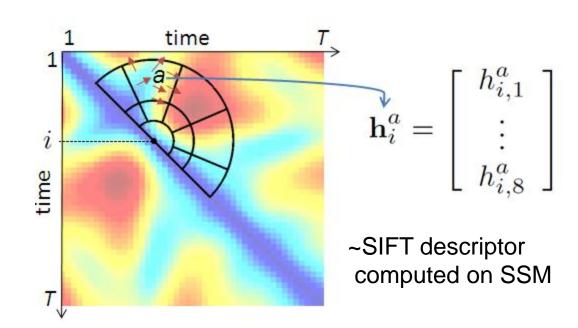
Self-similarity descriptor

Goal:

define a quantitative measure to compare self-similarity matrices

 Define a local histogram descriptor h_i for each point i on the diagonal.

Dynamic Programming for two sequences of descriptors $\{h_i\}$, $\{h_j\}$

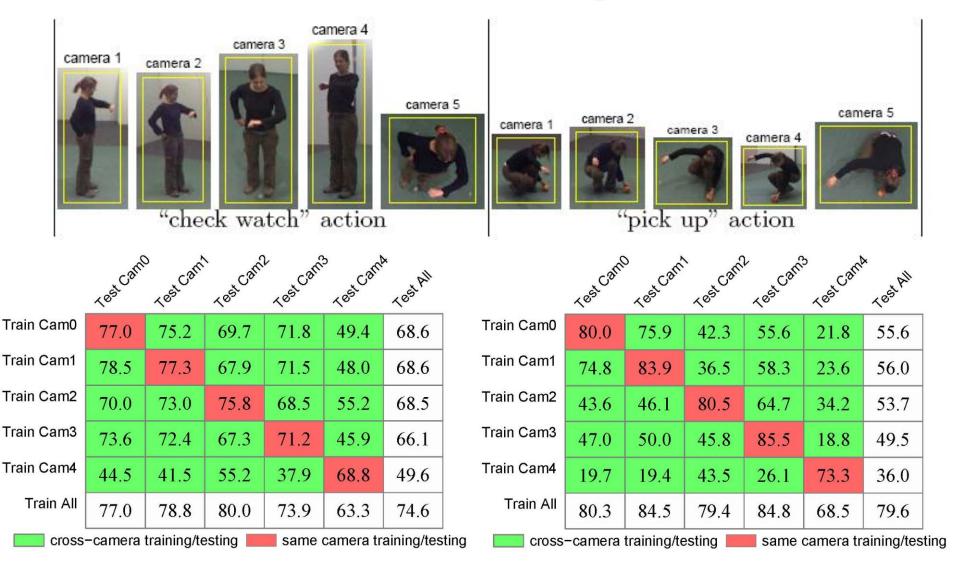


Action recognition:

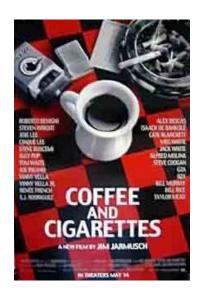
- Visual vocabulary for h
- BoF representation of {h_i}
- SVM

Multi-view alignment

Multi-view action recognition: Video



Space-time action detection



Manual annotation of drinking actions in movies: "Coffee and Cigarettes"; "Sea of Love"

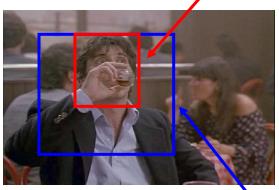
"Drinking": 159 annotated samples

"Smoking": 149 annotated samples

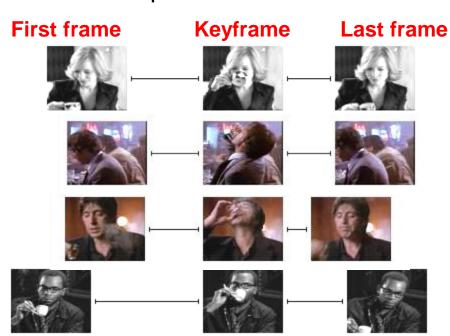
Temporal annotation

Spatial annotation

head rectangle



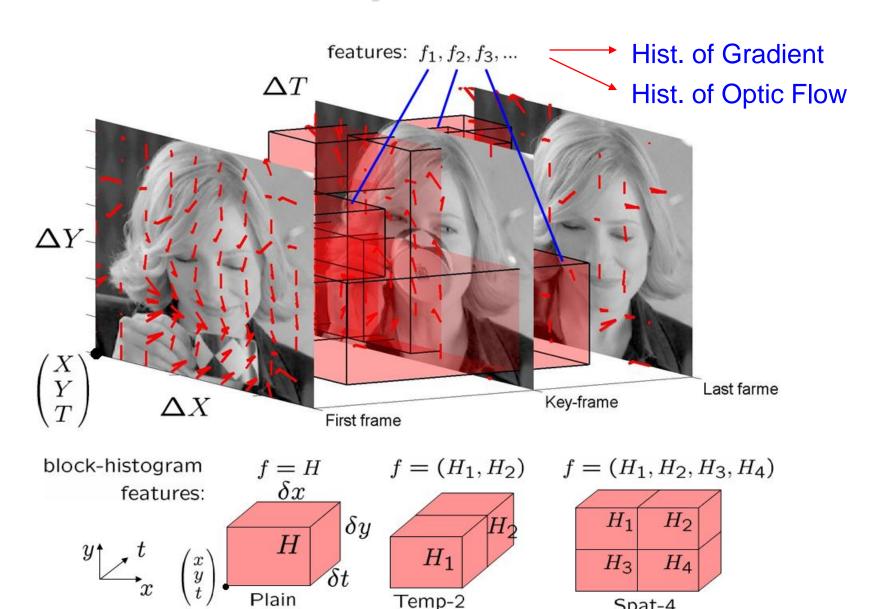
torso rectangle



"Drinking" action samples

training samples test samples

Action representation

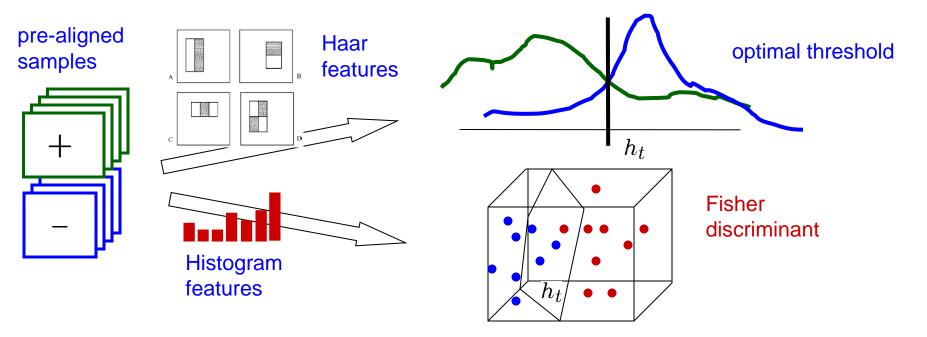


Spat-4

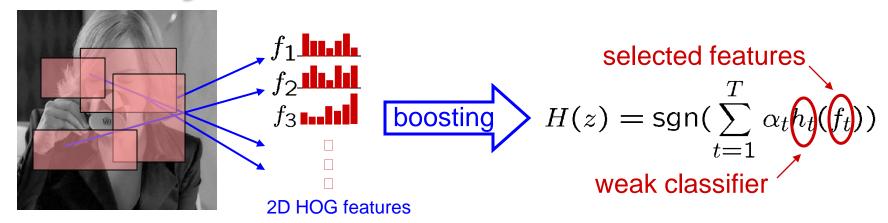
Action learning

AdaBoost:

- Efficient discriminative classifier [Freund&Schapire'97]
- Good performance for face detection [Viola&Jones'01]

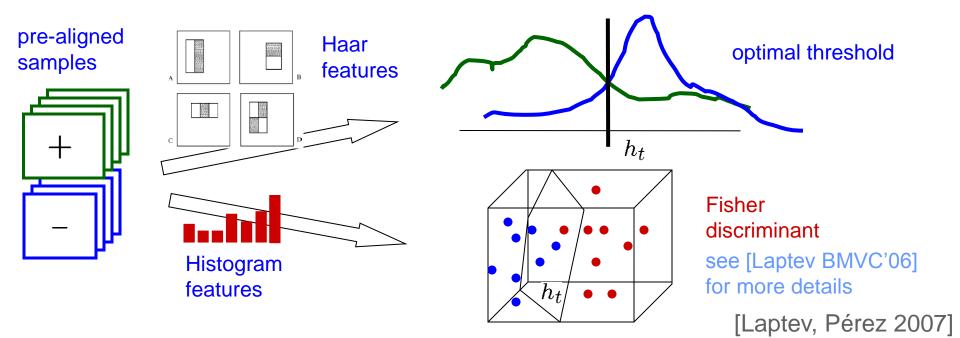


Key-frame action classifier



AdaBoost:

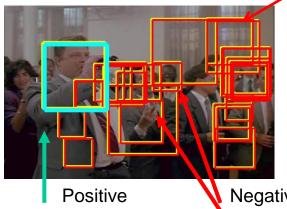
- Efficient discriminative classifier [Freund&Schapire'97]
- Good performance for face detection [Viola&Jones'01]

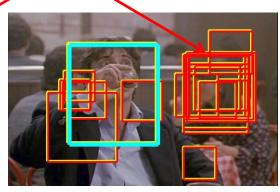


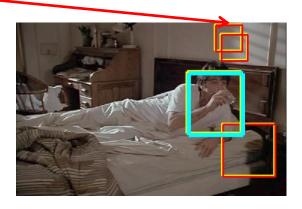
Keyframe priming

Training

False positives of static HOG action detector



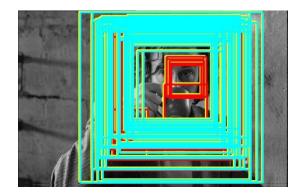


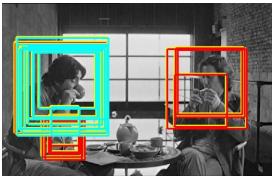


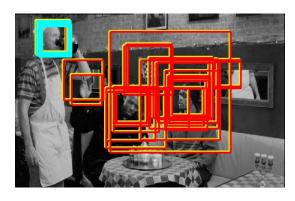
training sample

Negative training samples

Test







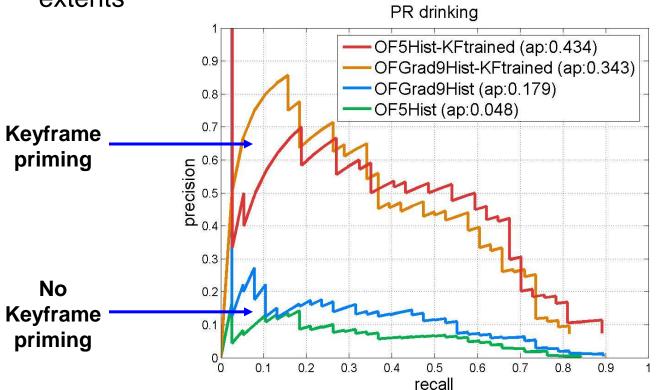
Action detection

Test set:

- 25min from "Coffee and Cigarettes" with GT 38 drinking actions
- No overlap with the training set in subjects or scenes

Detection:

search over all space-time locations and spatio-temporal extents



Action Detection (ICCV 2007)

Test episodes from the movie "Coffee and cigarettes"

20 most confident detections

Learning Actions from Movies

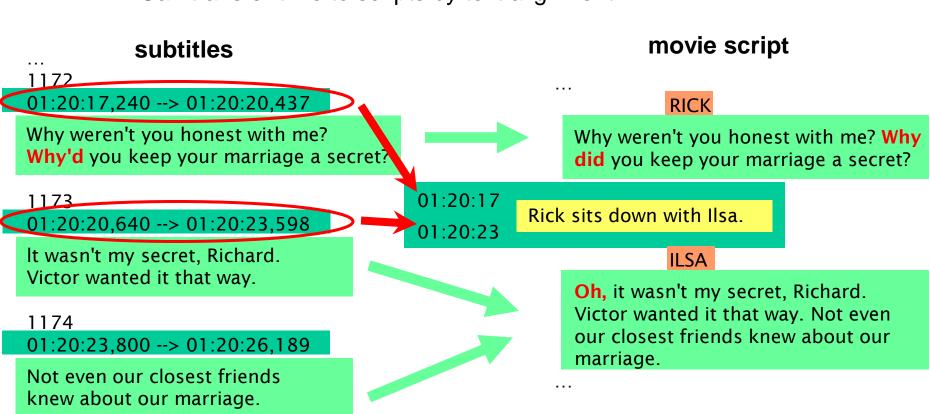
- Realistic variation of human actions
- Many classes and many examples per class

Problems:

- Typically only a few class-samples per movie
- Manual annotation is very time consuming

Automatic video annotation with scripts

- Scripts available for >500 movies (no time synchronization)
 www.dailyscript.com, www.movie-page.com, www.weeklyscript.com ...
- Subtitles (with time info.) are available for the most of movies
- Can transfer time to scripts by text alignment



Script-based action annotation

On the good side:

- Realistic variation of actions: subjects, views, etc...
- Many examples per class, many classes
- No extra overhead for new classes
- Actions, objects, scenes and their combinations
- Character names may be used to resolve "who is doing what?"

– Problems:

- No spatial localization
- Temporal localization may be poor
- Missing actions: e.g. scripts do not always follow the movie
- Annotation is incomplete, not suitable as ground truth for testing action detection
- Large within-class variability of action classes in text

Script alignment: Evaluation

- Annotate action samples in text
- Do automatic script-to-video alignment
- Check the correspondence of actions in scripts and movies

Example of a "visual false positive"

A black car pulls up, two army officers get out.

Text-based action retrieval

Large variation of action expressions in text:

GetOutCar action:

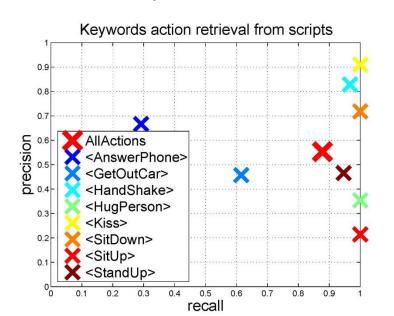
"... Will gets out of the Chevrolet. ..."

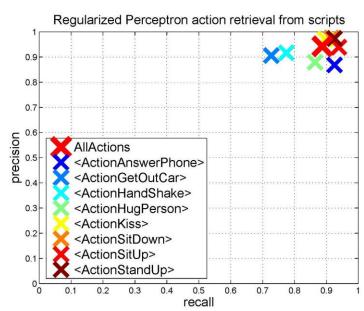
"... Erin exits her new truck..."

Potential false positives:

"...About to sit down, he freezes..."

=> Supervised text classification approach





Automatically annotated action samples

Hollywood-2 actions dataset

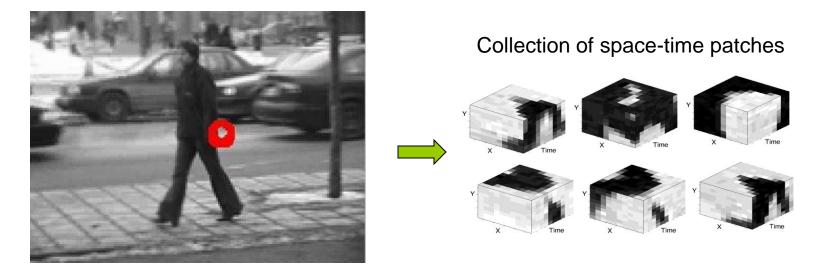
Actions				
	Training subset (clean)	Training subset (automatic)	Test subset (clean)	
AnswerPhone	66	59	64	
DriveCar	85	90	102	
Eat	40	44	33	
FightPerson	54	33	70	
GetOutCar	51	40	57	
HandShake	32	38	45	
HugPerson	64	27	66	
Kiss	114	125	103	
Run	135	187	141	
SitDown	104	87	108	
SitUp	24	26	37	
StandUp	132	133	146	
All Samples	823	810	884	

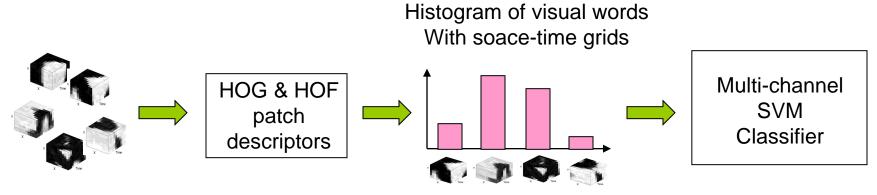
Training and test samples are obtained from 33 and 36 distinct movies respectively.

Hollywood-2 dataset is on-line: http://www.irisa.fr/vista /actions/hollywood2

Action Classification: Overview

Bag of space-time features + multi-channel SVM [Laptev'03, Schuldt'04, Niebles'06, Zhang'07]

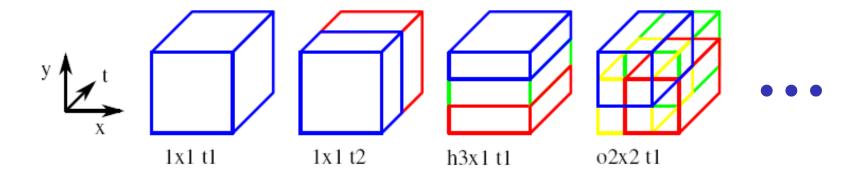




Spatio-temporal grids

In the spatial domain:

- 1x1 (standard BoF)
- 2x2, o2x2 (50% overlap)
- h3x1 (horizontal), v1x3 (vertical)
- 3x3
- In the temporal domain:
 - t1 (standard BoF), t2, t3



Multi-channel chi-square kernel

$$K(H_i, H_j) = \exp\left(-\sum_{c \in \mathcal{C}} \frac{1}{A_c} D_c(H_i, H_j)\right)$$

- Channel c is a combination of a detector, descriptor and a grid
- $D_c(H_i, H_j)$ is the chi-square distance between histograms
- A_c is the mean value of the distances between all training samples
- The best set of channels C for a given training set is found based on a greedy approach

Action classification results

Clean training

Automatic training

	hog	hof		hog	hof	Chance
Channel	bof	flat		bof	flat	
mAP	47.9	50.3	П	31.9	36.0	9.2
AnswerPhone	15.7	20.9	П	18.2	19.1	7.2
DriveCar	86.6	84.6	$\ $	78.2	80.1	11.5
Eat	59.5	67.0	$\ $	13.0	22.3	3.7
FightPerson	71.1	69.8	$\ $	52.9	57.6	7.9
GetOutCar	29.3	45.7	$\ $	13.8	27.7	6.4
HandShake	21.2	27.8	$\ $	12.8	18.9	5.1
HugPerson	35.8	43.2	$\ $	15.2	20.4	7.5
Kiss	51.5	52.5	$\ $	43.2	48.6	11.7
Run	69.1	67.8	$\ $	54.2	49.1	16.0
SitDown	58.2	57.6		28.6	34.1	12.2
SitUp	17.5	17.2		11.8	10.8	4.2
StandUp	51.7	54.3		40.5	43.6	16.5

Average precision (AP) for Hollywood-2 dataset

Action classification (CVPR08)

Actions in Context (CVPR 2009)

Human actions are frequently correlated with particular scene classes
 Reasons: physical properties and particular purposes of scenes

Eating -- kitchen

Running -- road

Eating -- cafe

Running -- street

Mining scene captions

ILSA

01:22:00 01:22:03 I wish I didn't love you so much.

She snuggles closer to Rick.

CUT TO:

EXT_RICK'S CAFE - NIGHT

Laszlo and Carl make their way through the darkness toward a side entrance of Rick's. They run inside the entryway.

The headlights of a speeding police car sweep toward them.

They flatten themselves against a wall to avoid detection.

The lights move past them.

01:22:15 01:22:17

CARL

I think we lost them.

. . .

Mining scene captions

INT. TRENDY RESTAURANT - NIGHT

INT. MARSELLUS WALLACE'S DINING ROOM MORNING

EXT. STREETS BY DORA'S HOUSE - DAY.

INT. MELVIN'S APARTMENT, BATHROOM - NIGHT

EXT. NEW YORK CITY STREET NEAR CAROL'S RESTAURANT - DAY

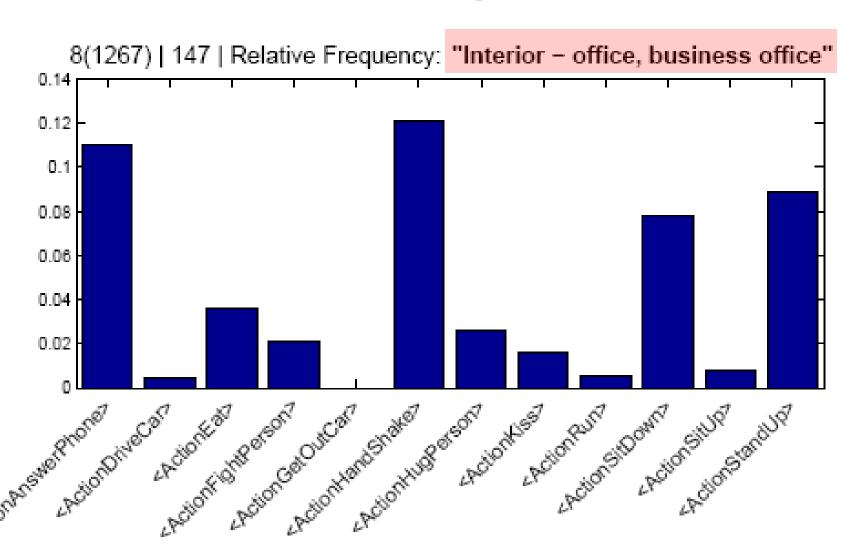
INT. CRAIG AND LOTTE'S BATHROOM - DAY

- Maximize word frequency street, living room, bedroom, car
- Merge words with similar senses using WordNet:

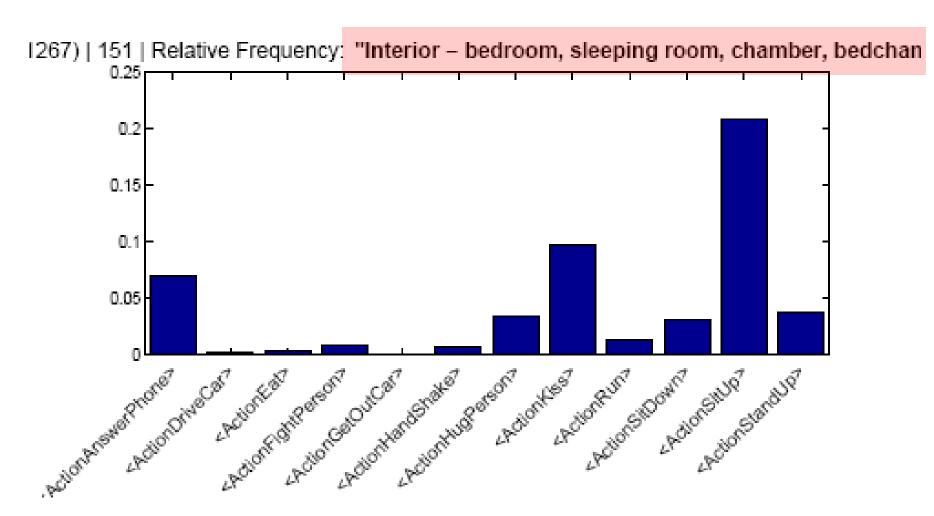
taxi -> car, cafe -> restaurant

- Measure correlation of words with actions (in scripts) and
- Re-sort words by the entropy $S = -k \sum P_i \ln P_i$ for P = p(action | word)

Co-occurrence of actions and scenes in scripts



Co-occurrence of actions and scenes in scripts



Automatic gathering of relevant scene classes and visual samples

	Auto-Train-Actions	Clean-Test-Actions
AnswerPhone	59	64
DriveCar	90	102
Eat	44	33
FightPerson	33	70
GetOutCar	40	57
HandShake	38	45
HugPerson	27	66
Kiss	125	103
Run	187	141
SitDown	87	108
SitUp	26	37
StandUp	133	146
All Samples	810	884

	Auto-Train-Scenes	Clean-Test-Scenes
EXT-house	81	140
EXT-road	81	114
INT-bedroom	67	69
INT-car	44	68
INT-hotel	59	37
INT-kitchen	38	24
INT-living-room	30	51
INT-office	114	110
INT-restaurant	44	36
INT-shop	47	28
All Samples	570	582

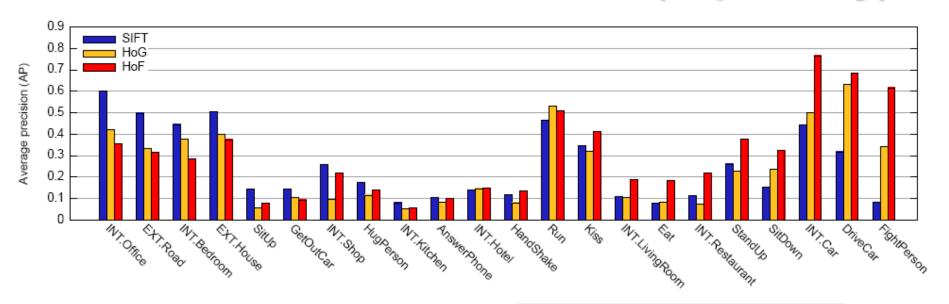
Source:
69 movies
aligned with
the scripts

Hollywood-2 dataset is on-line: http://www.irisa.fr/vista /actions/hollywood2

(a) Actions

(b) Scenes

Results: actions and scenes (separately)



EXT.House	0.503	0.363	0.491
EXT.Road	0.498	0.372	0.389
INT.Bedroom	0.445	0.362	0.462
INT.Car	0.444	0.759	0.773
INT.Hotel	0.141	0.220	0.250
INT.Kitchen	0.081	0.050	0.070
INT.LivingRoom	0.109	0.128	0.152
INT.Office	0.602	0.453	0.574
INT.Restaurant	0.112	0.103	0.108
INT.Shop	0.257	0.149	0.244
Scene average	0.319	0.296	0.351
Total average	0.259	0.310	0.339

			SIFT
		HoG	HoG
	SIFT	HoF	HoF
AnswerPhone	0.105	0.088	0.107
DriveCar	0.313	0.749	0.750
Eat	0.082	0.263	0.286
FightPerson	0.081	0.675	0.571
GetOutCar	0.191	0.090	0.116
HandShake	0.123	0.116	0.141
HugPerson	0.129	0.135	0.138
Kiss	0.348	0.496	0.556
Run	0.458	0.537	0.565
SitDown	0.161	0.316	0.278
SitUp	0.142	0.072	0.078
StandUp	0.262	0.350	0.325
Action average	0.200	0.324	0.326

Classification with the help of context

$$a'_i(\mathbf{x}) = a_i(\mathbf{x}) + \tau \sum_{j \in \mathcal{S}} w_{ij} s_j(\mathbf{x})$$

 $a_i(x)$ Action classification score

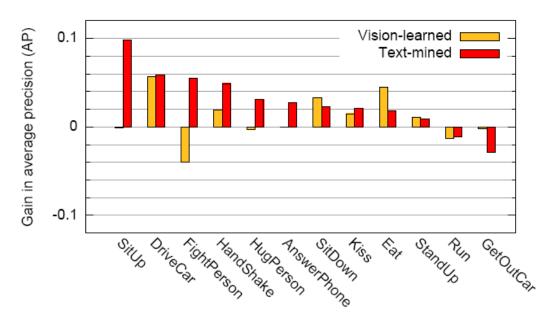
 $s_i(x)$ Scene classification score

 w_{ij} Weight, estimated from text: p(Scene|Action)

 $a_i'(x)$ New action score

Results: actions and scenes (jointly)

Actions in the context of Scenes



Scenes in the context of Actions

