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@ Introduction
e Linear classifier
e Convolutional neural networks

e Stochastic gradient descent
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Foreword

@ I'm here for you, | already know that stuff
@ It’s better to look silly than to stay so

@ Ask questions if you don’t understand !
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Goal : classification and regression

@ Medical imaging : cancer or not ? Classification
@ Autonomous driving : optimal wheel position Regression
@ Kinect : where are the limbs ? Regression

@ OCR : what are the characters ? Classification
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Goal : classification and regression

@ Medical imaging : cancer or not ? Classification
@ Autonomous driving : optimal wheel position Regression
@ Kinect : where are the limbs ? Regression

@ OCR : what are the characters ? Classification

Regression and classification are similar problems
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Goal : real-time object recognition

Zoom=_ 1.0, Threshold= -1.2, filter on
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Linear classifier

@ Dataset : (X, Y!) pairs, i =1,...,N.
@ X eR" YO € {1 1}.
@ Goal : Find w and b such that sign(w' X + b) = Y.
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Linear classifier

@ Dataset : (X, Y!) pairs, i =1,...,N.
@ X eR" YO € {1 1}.
@ Goal : Find w and b such that sign(w' X + b) = Y.
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Perceptron algorithm (Rosenblatt, 57)

@ Wo=0,by=0

o Y =sign(wT X" + b)

® Wit < w3 (YW — ?(f)) X()
® by« b+, (YO - ?(f))

Movie linearly_separable_perceptron.avi
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linearly_separable_perceptron.avi

Some data are not separable
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The Perceptron algorithm is NOT convergent for non linearly
separable data.
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Non convergence of the perceptron algorithm

Movie non_linearly_separable_perceptron.avi

@ We need an algorithm which works both on separable and

non separable data.
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non_linearly_separable_perceptron.avi

Cost function

@ Classification error is not smooth.
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Cost function

@ Classification error is not smooth.

@ Sigmoid is smooth but not convex.

@ Convexity guarantees the same solution every time.

@ In practice, it is not always crucial.
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Convex cost functions

@ Classification error is not smooth.
@ Sigmoid is smooth but not convex.

@ Logistic loss is a convex upper bound.
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Convex cost functions

@ Classification error is not smooth.
@ Sigmoid is smooth but not convex.
@ Logistic loss is a convex upper bound.

@ Hinge loss (SVMs) is very much like logistic.
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Solving separable AND non-separable

problems

Movie non_linearly_separable_logistic.avi Movie
linearly_separable_logistic.avi
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non_linearly_separable_logistic.avi
linearly_separable_logistic.avi

Non-linear classification

Movie non_linearly_separable_poly_kernel.avi
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non_linearly_separable_poly_kernel.avi

Non-linear classification

Iter = 500 || Polynomial kemel = 0% ||
.
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@ Features : X;, Xo — linear classifier

@ Features : Xi, X, X1 Xz, X2, ... — non-linear classifier
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Choosing the features

@ To make it work, | created lots of exira features :

@ (Xi, Xo, Xi Xo, X2Xo, Xy X2)(1:2:3-:10)
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non_linearly_separable_poly_2.avi

Choosing the features

@ To make it work, | created lots of exira features :
® (X1, Xz, X1 X0, X2 X2, X Xzz)(1’2’3""’10)
@ Would it work with fewer features ?

@ Test with (X1, Xo, Xi Xo, X2Xz, X; X2)(12)

Movie non_linearly_separable_poly_2.avi
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non_linearly_separable_poly_2.avi

A graphical view of the classifiers

@ o
&)
f(X) =wiX;i+woXo+ b
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A graphical view of the classifiers

f(X) = w1 Xi + waXo + W3X12+ W4)(22 + ws X1 Xo + ...
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Non-linear features

@ A linear classifier on a non-linear transformation is

non-linear.
@ A non-linear classifier relies on non-linear features.

@ Which ones do we choose ?
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Non-linear features

@ A linear classifier on a non-linear transformation is

non-linear.
@ A non-linear classifier relies on non-linear features.

@ Which ones do we choose ?

@ Example : H; = X' X}
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Non-linear features

@ A linear classifier on a non-linear transformation is

non-linear.
@ A non-linear classifier relies on non-linear features.

@ Which ones do we choose ?

@ Example : H; = X' X}
@ SVM: H; = K(X, X)) with K some kernel function
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Non-linear features

@ A linear classifier on a non-linear transformation is

non-linear.
@ A non-linear classifier relies on non-linear features.

@ Which ones do we choose ?

@ Example : H; = X' X}
@ SVM: H; = K(X, X") with K some kernel function

@ Do they have to be predefined ?
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Neural networks

@ A neural network will learn
the H’s
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Neural networks

@ A neural network will learn
the H’s

@ Usually, we use
H; = g(v' X)
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Neural networks

@ A neural network will learn
the H’s

@ Usually, we use
H = g(v/ X)

@ H; : Hidden unit

@ v; : Input weight

@ g : Transfer function
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Transfer function

f(X) =Y wH(X)+b=> wg(vX)+b
i i
@ g is the transfer function.

@ Usually, g is the sigmoid or the tanh.
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Neural networks
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Example on the non-separable problem

Movie non_linearly_separable_mlp_3.avi
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non_linearly_separable_mlp_3.avi

Training a neural network

@ Dataset : (X, Y!) pairs, i =1,...,N.

@ Goal : Find w and b such that

sign (w'X() 4 p) = Y1)
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Training a neural network

@ Dataset : (X, Y!) pairs, i =1,...,N.

@ Goal : Find w and b to minimize

ng +exp (—YO (w' XD 1 b)))
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Training a neural network

@ Dataset : (X, Y)) pairs, i =1,...,N.

@ Goal : Find v,..., v, wand b to minimize

Zlog (1 + exp ( y(® [Z wig (v X1)
i )

)
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Neural network - 8 hidden units

Movie non_linearly_separable_mlp_8.avi
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non_linearly_separable_mlp_8.avi

Neural network - 5 hidden units

Movie non_linearly_separable_mlp_5.avi
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non_linearly_separable_mlp_5.avi

Neural network - 3 hidden units

Movie non_linearly_separable_mlp_3.avi
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non_linearly_separable_mlp_3.avi

Neural network - 2 hidden units

Movie non_linearly_separable_mlp_2.avi
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non_linearly_separable_mlp_2.avi

Non-linear classification

Hter = 5000 || Neural network = 0% |
*

% .+ #  Neural network
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Non-linear classification

Iter = 500 || Polynomial kemel = 0% ||
*

. . ¥ #*  Polynomial kemel
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Non-linear classification

Hter = 5000 || Neural network = 0% |
*

% .+ #  Neural network
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Cost function

s = cost function (logistic loss, hinge loss, ...)

v, w, b, XD, YD) =g (W, Y<’>)

o

J
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Backpropagation - Output weights
s = cost function (logistic loss, hinge loss, ...)

YO =3 wH(x")
J

at(v, w,b, XD, YD) ae(v, w, b, XD, YD) oYW

ow; oY) ow;
() y@) .
— ag(va Watix 7Y )I'I/(X(I))
oYW
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Backpropagation - Input weights
s = cost function (logistic loss, hinge loss, ...)

Z Wik (X®)
HOX) = g (4 XO)

(v, w, b, XD, YD) au(v, w, b, XD, YO) gH(XD)

0vj N OH(X) 0vj
al(v, w, b, X1 YD) gYW)  gH(XD)
o %0 OH;(XD)  dy,
o0(v, w, b, XD, YD)y |
_ P ’/i ; WX(I) / VTX(I)
570 i XUg' ( j )
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Training neural networks - Summary

@ For each datapoint, compute the gradient of the cost with

respect to the weights.
@ Done using the backpropagation of the gradient.
@ Convex with respect to the output weights (linear classifier).

@ NOT convex with respect to the input weights : POTENTIAL
PROBLEMS!!
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Neural networks - Summary

@ Alinear classifier in a feature space can model non-linear

boundaries.
@ Finding a good feature space is essential.
@ One can design the feature map by hand.

@ One can learn the feature map, using fewer features than if

it done by hand.

@ Learning the feature map is potentially HARD

(non-convexity).
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Neural networks - Not summary

@ Linear combination of the output of soft classifiers.

@ This is a non-linear classifier.

@ One can take a linear combination of these.
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Neural networks - Not summary

@ Linear combination of the output of soft classifiers.
@ This is a non-linear classifier.
@ One can take a linear combination of these.

@ This becomes a neural network with two hidden layers.
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Advantages of neural networks

@ They can learn anything.

@ Extremely fast at test time (computing the answer for a new

datapoint) because fewer features.

@ Complete control over the power of the network (by

controlling the hidden layers sizes).
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Problems of neural networks

@ Highly non-convex — many local minima

@ Can learn anything but have more parameters — need tons

of examples to be good.
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Take-home messages

@ Neural networks are potentially extremely efficient.
@ But it is HARD to train them !

@ If you wish to use them, be smart (or ask someone who

knows) !

@ If you have a huge dataset, they CAN be awesome!

Nicolas Le Roux (Criteo) Neural networks and optimization 13/11/12 36/80



v/'s for images

f(X) = wH(X) + b= wg(y X)+b
J J

@ If X is an image, v; is an image too.
@ v; acts as a filter (presence or absence of a pattern).

@ What does v; look like ?
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v/'s for images - Examples
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@ Filters are mostly local
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Basic idea of convolutional neural networks

@ Filters are mostly local.

@ Instead of using image-wide filters, use small ones over

patches.
@ Repeat for every patch to get a response image.

@ Subsample the response image to get local invariance.
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Filtering - Filter 1

Original image

Nicolas Le Roux (Criteo)

Filter Output image

\

—
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Filtering - Filter 2

Original image Filter Output image
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Filtering - Filter 3

Original image Filter Output image
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Pooling - Filter 1

Original image Output image Subsampled image

A\
\

iz

%

How to do 2x subsampling-pooling :

@ Output image = O, subsampled image = S.

° Slj = MaXk over window around (2i,2)) Ok-
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Pooling - Filter 2

Original image Output image Subsampled image

How to do 2x subsampling-pooling :
@ Output image = O, subsampled image = S.

° Si' = MaXk over window around (2i,2)) Ok-
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Pooling - Filter 3

Original image Output image Subsampled image

How to do 2x subsampling-pooling :
@ Output image = O, subsampled image = S.

° Slj = MaXk over window around (2i,2)) Ok-
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A convolutional layer

“Simple cells”

“Complex cells”

pooling
subsampling

Convolutions

AN

Retinotopic Feature Maps
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Transforming the data with a layer

Original datapoint New datapoint

s
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A convolutional network

Layer 3 Layer 5
Layer 1 Layer 2 12@10x10  Laver4  100@1x1

inpat 12@5%5
lGsay  0@Bx2  6@laxta @5x

Layer 6: 10

2x2 convolutron
Sggvolulion pooling/ pooling/
subsampling subsampling
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Face detection
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Face detection
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NORB dataset

@ 50 toys belonging to 5 categories

» animal, human figure, airplane, truck, car
@ 10 instance per category

» 5 instances used for training, 5 instances for testing
@ Raw dataset

» 972 stereo pairs of each toy. 48,600 image pairs total.
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NORB dataset - 2

For each instance :
@ 18 azimuths
@ 0 to 350 degrees every 20 degrees
@ 9 elevations
@ 30 to 70 degrees from horizontal every 5 degrees
@ 6 illuminations
@ on/off combinations of 4 lights
@ 2 cameras (stereo), 7.5 cm apart

@ 40 cm from the object
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NORB dataset - 3

&+ 1 €125 ¢ &3
Wk AL SN A
WIS N uwgy Y
VEeOCOLCILHTCORL NN

Training instances Test instances

Nicolas Le Roux (Criteo) Neural networks and optimization 13/11/12 54/80



Textured and cluttered versions
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Layer 3

Layer 6
24@18x18 Layer 4 Fully
Stereo Layer 1 24@6x6 Layer5 connected
input 8@92x9 Layer 2 i - 100 (500 weights)
Qi My

2@96x96 8@23x23

. |
subsamplin convolution
P9 (o6 kemels) T 3x3

@ 90,857 free parameters, 3,901,162 connections.
@ The entire network is trained end-to-end (all the layers are

trained simultaneously).
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Normalized-Uniform set

Method Error
Linear Classifier on raw stereo images 30.2%
K-Nearest-Neighbors on raw stereo images | 18.4%
K-Nearest-Neighbors on PCA-95 16.6%
Pairwise SVM on 96x96 stereo images 11.6%
Pairwise SVM on 95 Principal Components | 13.3%
Convolutional Net on 96x96 stereo images | 5.8%

Nicolas Le Roux (Criteo) Neural networks and optimization 13/11/12 57 /80



Jittered-Cluttered Dataset

@ 291,600 stereo pairs for training, 58,320 for testing
@ Objects are jittered
» position, scale, in-plane rotation, contrast, brightness,
backgrounds, distractor objects,...

@ Input dimension : 98x98x2 (approx 18,000)
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Jittered-Cluttered Dataset - Results

Method Error
SVM with Gaussian kernel 43.3%
Convolutional Net with binocular input | 7.8%
Convolutional Net + SVM on top 5.9%
Convolutional Net with monocular input | 20.8%
Smaller mono net (DEMO) 26.0%

Dataset available from http://www.cs.nyu.edu/~yann
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http://www.cs.nyu.edu/~yann

NORB recognition - 1
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NORB recognition - 2
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NORB recognition - 3
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NORB recognition - 4

Zoom=_1.0, Threshold=-1.0, filter on
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NORB recognition - 5

Zoom=_ 1.0, Threshold= -1.2, filter on
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NORB recognition - 6

Zoom=_0.7, Threshold= -1.8, filter on
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Summary

@ With complex problems, it is hard to design features by
hand.

@ Neural networks circumvent this problem.

@ They can be hard to train (again...).

@ Convolutional neural networks use knowledge about locality
in images.

@ They are much easier than standard networks.

@ And they are FAST (again...).

Nicolas Le Roux (Criteo) Neural networks and optimization 13/11/12 66 /80



What has not been covered

@ In some cases, we have lots of data, but without the labels.
@ Unsupervised learning.

@ There are techniques to use these data to get better

performance.

@ E.g.: Task-Driven Dictionary Learning, Mairal et al.
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The need for fast learning

@ Neural networks may need many examples (several millions

or more).

@ We need to be able to use them quickly.
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Batch methods

L(F) = 1N > (0, X0, y0)
i

oY oL(e, X0yl
Oti1 — 01 — Nt ( 50 )
j

@ To compute one update of the parameters, we need to go

through all the data.
@ This can be very expensive.
@ What if we have an infinite amount of data ?
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Potential solutions

@ Discard data.

» Seems stupid

» Yet many people do it
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Potential solutions

@ Discard data.

» Seems stupid

» Yet many people do it
@ Use approximate methods.

» Update = average of the updates for all datapoints.
» Are these update really different ?

» If not, how can we learn faster ?
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Stochastic gradient descent

1 . .
L(0) = & > 6. X9, y0)
i

Qt BE(H,X(’), Y(’))
Opp1 — 0 — —
N i o0
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Stochastic gradient descent

L(h) = 1N > 00, X0, y0)

86(97 )((/'r)7 Y(it))

Oti1 — 0 — a0
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Stochastic gradient descent

L(h) = 1N > 06, X0, y0)
86(&7)((/})7 Y(it))
Bl

What do we lose when updating the parameters to satisfy just
one example ?

Oti1 — 0t —
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Disagreement

@ ||1||?/o? during optimization

\ | | | (log scale)
1 @ As optimization progresses,

g | disagreement increases

| @ Early on, one can pick one

| exampleatatime

" O = @ What about later ?
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Training vs test

Standard learning paradigm :
@ We want to solve a task on new datapoints.
@ We have a training set.

@ We hope that the performance on the training set is

informative of the performance on new datapoints.
Can we know when we start overfitting ?
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Overfitting

@ When all gradients disagree, stochastic error stalls.

@ When all gradients disagree, training and test error part.

IT DOES NOT MATTER IF ONE DOES NOT REACH THE
MINIMUM OF THE TRAINING ERROR!!
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Decomposition of the error

E(f,) — E(f") = E(f7) — E(f") Approximation error
E(fy) — E(
E(fy) — E(

) Estimation error

+ o+

f*
f,) Optimization error

Questions :

@ Do we optimize the training error to decrease E(f,) — E(f,) ?

@ Do we increase nto decrease E(f,) — E(f5)?
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Gradient Descent (GD)

Gradient J
Iterate

OF;(fu,) Y
| BRER e ';

Best speed achieved with fixed learning rate n = }\1—
mnax
(e.g., Dennis & Schnabel, 1983)

Cost per Iterations Time to reach Time to reach
iteration to reach p accuracy p E(fn) — E(fr) <€

\ J 1/cx

GD  O(nd) C)(filogrlj) O(-ndfclr)g%) o(ﬁmg?%)

— In the last column, n and p are chosen to reach ¢ as fast as possible.
— Solve for ¢ to find the best error rate achievable in a given time.
— Remark: abuses of the @[] notation

Slide from Léon Botton
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Second Order Gradient Descent (2GD)

Gradient J
Iterate

OB (fw
o Wiy — wp— H! M
dw
We assume ™! is known in advance.
Superlinear optimization speed (e.g., Dennis & Schnabel, 1983)

Cost per Iterations Time to reach Ti_me to reach
iteration to reach p accuracy p E(fn) — E(fy) <e

7

2GD  O(d(d+n)) O(logloe) ©(a(d+n)loglog) O (rlonLioglogt)

— Optimization speed is much faster.
— Learning speed only saves the condition number k.

Slide from Léon Botton
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Stochastic Gradient Descent (SGD)

Iterate Total Gradient <J{x,y,w)>
e Draw random example (x¢, yy).
n ae(fwf_(xt),- yt) = Partial Gradient J(x.y.w)
* W —w—-— : =
t dw

1

min

Best decreasing gain schedule with n =
(see Murata, 1998; Bottou & LeCun, 2004)

Cost per Iterations Time to reach Time to reach

iteration to reach p accuracy p E.;’f,,'] — E{f;}) <eE
" vk 1 dvk A duk
SGD  0(d) k1 o(1) o(4zk) )

With 1 <k < &?

— Optimization speed is catastrophic.
— Learning speed does not depend on the statistical estimation rate «.
— Learning speed depends on condition number x but scales very well.

Slide from Léon Botton
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Second order Stochastic Descent (2SGD)

Iterate
e Draw random example (x¢, y¢). .
| Partial Gradient J(x,y.w)

1 Db fow. k), %
® Wil +— W — — H_l M = Y
t dw

Jmal Gradient <J{x,y,w)>

; g Al ]
Replace scalar gain ? by matrix ;H L

Cost per Iterations Time to reach Time to reach
iteration to reach p accuracy p E(fn) — E(fF) <¢

seo_ow) _pell) o&) o)

o

— Each iteration is d times more expensive.
— The number of iterations is reduced by k2 (or less.)
— Second order only changes the constant factors.

Slide from Léon Botton
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Summary

@ Stochastic methods update the parameters much more

often than batch ones.
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Summary

@ Stochastic methods update the parameters much more
often than batch ones.
@ They are terrible to find the minimum of the training error.
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Summary

@ Stochastic methods update the parameters much more

often than batch ones.

@ They are terrible to find the minimum of the training error.

@ It may not matter as the training error is not the test error.

In practice :
@ You will ALMOST ALWAYS have enough data.
@ You will ALMOST ALWAYS lack time.
@ You must ALMOST ALWAYS use stochastic methods.

@ How to use accelerated techniques remains to be seen.
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