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Announcements   
• Assignment 2 was due today. Have you sent it? 
 
• Assignment 3 is out.  
http://www.di.ens.fr/willow/teaching/recvis12/assignment3/ 
 
• Topic ideas for the final projects (any questions?): 
http://www.di.ens.fr/willow/teaching/recvis12/finalproject/ 
Send us your project proposal by this Friday (Nov 9). 



What we would like to be able to do… 
• Visual scene understanding 
• What is in the image and where 
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• Object categories, identities, properties, activities, relations, … 



Recognition Tasks 
•  Image Classification 

– Does the image contain an aeroplane? 

• Object Class Detection/Localization 
– Where are the aeroplanes (if any)? 

• Object Class Segmentation 
– Which pixels are part of an aeroplane 

(if any)? 



Feature:  Histogram of Oriented 
Gradients (HOG) 

image 
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orientation 

•  tile 64 x 128 pixel window into 8 x 8 pixel cells 

•  each cell represented by histogram over 8 
orientation bins  (i.e. angles in range 0-180 degrees) 



Window (Image) Classification 

• HOG Features 
• Linear SVM classifier 

Feature 
Extraction 

• 
• 
• 
• 
• 

Classifier 
 

Training Data 

pedestrian/Non-pedestrian 



Learned model 

average over 
positive training data 

€ 

f(x) = wTx + b



Slide from Deva Ramanan 



Object Detection with Discriminatively 
Trained Part Based Models 

Pedro F. Felzenszwalb, David Mcallester, 
Deva Ramanan, Ross Girshick 

PAMI 2010 
 

Matlab code available online: 
http://www.cs.brown.edu/~pff/latent/ 



Approach 

• Mixture of deformable part-based models 
–  One component per “aspect” e.g. front/side view 

• Each component has global template + deformable parts 
• Discriminative training from bounding boxes alone 



Example Model 
• One component of person model 

root filters 
coarse resolution 

part filters 
finer resolution 

deformation 
models 

x1 

x3 

x4 

x6 

x5 

x2 



Starting Point: HOG Filter 

• Search: sliding window over position and scale 
• Feature extraction: HOG Descriptor 
• Classifier: Linear SVM 

HOG pyramid H 

Score of F at position p is  
F ⋅ φ(p, H) 

Filter F 

φ(p, H) = concatenation of 
HOG features from 

subwindow specified by p 

p 

Dalal & Triggs [2005] 



Object Hypothesis 
• Position of root + each part 
• Each part: HOG filter (at higher resolution) 

Score is sum of filter 
scores minus 

deformation costs 

p0 : location of root 
p1,..., pn : location of parts 

z = (p0,..., pn) 



Score of a Hypothesis 

• Linear classifier applied to feature subset defined by hypothesis 

filters deformation parameters 

displacements 

Appearance term Spatial prior 

concatenation of 
HOG features and 
part displacement 

features 

concatenation of filters 
and deformation 

parameters 



Training 
• Training data = images + bounding boxes 
• Need to learn: model structure, filters, deformation costs 

Training 



Latent SVM (MI-SVM) 

Minimize 

Training data 

We would like to find β such that: 

Classifiers that score an example x using 

β are model parameters 
z are latent values 

• Which component? 
• Where are the parts? 

SVM objective 

“Hinge loss” on one training example Regularizer 



Latent SVM Training 

• Convex if we fix z for positive examples 

• Optimization: 
–  Initialize β and iterate: 

•  Pick best z for each positive example 
•  Optimize β with z fixed 

• Local minimum: needs good initialization 
–  Parts initialized heuristically from root 

Alternation 
strategy 



Person Model 

root filters	


coarse resolution	



part filters	


finer resolution	



deformation	


models	



Handles partial occlusion/truncation 



Car Model 

root filters	


coarse resolution	



part filters	


finer resolution	



deformation	


models	





Car Detections 

high scoring false positives high scoring true positives 



Person Detections 

high scoring true positives 
high scoring false positives 

(not enough overlap) 
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UoCTTIUCI (42.0)
LEAR_PlusClass (19.7)
CASIA_Det (11.2)
XRCE_Det (9.0)
MPI_struct (2.5)
Jena (2.0)

Precision/Recall: VOC2008 Person 
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Precision/Recall: VOC2008 Bicycle 



Comparison of Models 



Summary 
• Multiple features and multiple kernels boost 

performance 
• Discriminative learning of model with latent 

variables for single feature (HOG): 
–  Latent variables can learn best alignment in the 

ROI  training annotation 
–  Parts can be thought of as local SIFT vectors 
–  Some similarities to Implicit Shape Model/

Constellation models but with discriminative/
careful training throughout 

NB: Code available for latent model ! 
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Current  Research Challenges 
• Context (See class on scenes and objects on Dec 3). 

–  from scene properties: GIST, BoW, stuff  
–  from other objects 
–  from geometry of scene, e.g.  Hoiem et al CVPR 06 

• Occlusion/truncation 
–  Winn & Shotton, Layout Consistent Random Field, CVPR 06 
–  Vedaldi & Zisserman, NIPS 09 
–  Yang et al, Layered Object Detection, CVPR 10 

 
• 3D 

–  Zhu&Ramanan, CVPR’12 (view-based representation of faces) 

• Scaling up – thousands of classes 
–  Torralba et al, feature sharing 
–  ImageNet 

• Weak and noisy supervision 



Pictorial structure model re-visited: 
efficient fitting 

Let’s have a closer look at the LSVM deformable part-based model… 



Object Hypothesis 
• Position of root + each part 
• Each part: HOG filter (at higher resolution) 

Score is sum of filter 
scores minus 

deformation costs 

p0 : location of root 
p1,..., pn : location of parts 

z = (p0,..., pn) 



What is the cost of fitting the PS model? 
• For fixed (learned) Fi and di 

• For simplicity, consider only single scale of the pyramid 
• Parts can appear anywhere in the image (h=number of pixels) 

filters deformation parameters 

displacements 

Appearance term Spatial prior 

p0 : location of root 
p1,..., pn : location of parts 

    pi = (xi , yi )  
  dxi = xi – x0 
  dyi = yi – y0 

Fitting cost: Naïve search is O(nh2) 



What is the cost of fitting the PS model? 
• For fixed (learned) Fi and di 

• For simplicity, consider only single scale of the pyramid 
• Parts can appear anywhere in the image (h=number of pixels) 

filters deformation parameters 

displacements 

Appearance term Spatial prior 

Fitting cost: Naïve search is O(nh2) 
Need to evaluate the deformation cost of each part with respect to 

the root. 



Special case of a more general problem 

filters deformation parameters 

displacements 

Appearance term Spatial prior 
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Maximization of the PS score can be re-written as a minimization of 
the following cost function on a “star” graph: 



Dynamic programming on graphs 

² G raph ( V; E )

² V ert ic es vi for i = 1 ; : : : ; n

² E dg es ei j c onnec t vi to other vert ic es vj

f ( x ) =
X

vi 2 V
m i ( vi ) +

X

ei j 2 E
Á( vi ; vj )

S o far have considered cha ins



Dynamic programming - review 

•  Discrete optimization 

•  Each variable x has a finite number of possible 
states 

•  Applies to problems that can be decomposed into a 
sequence of stages 

•  Each stage expressed in terms of results of fixed 
number of previous stages 

•  The cost function need not be convex 

•  The name “dynamic” is historical 

•  Also called the “Viterbi” algorithm 

•  Let’s first consider a chain: 
5 4 6 1 2 3 



Consider a cost function                                            of the form  

where xi can take one of h values 

e.g. h=5, n=6 

x1 x2 x3 x4 x5 x6 

f ( x ) : IR n ! IR

f ( x ) =

find 
shortest 

path 

Complexity of minimization: 

•  exhaustive search O(hn) 

•  dynamic programming O(nh2) 

f ( x ) =
nX

i= 1
m i ( x i ) +

nX

i= 2
Ái ( x i ¡ 1 ; x i )

m1( x 1) + m2( x 2) + m3( x 3) + m4( x 4) + m5( x 5) + m6( x 6)

Á( x 1; x 2) + Á( x 2; x 3) + Á( x 3; x 4) + Á( x 4; x 5) + Á( x 5; x 6)

trellis 



x1 x2 x3 x4 x5 x6 

Key idea: the optimization can be broken down into n  sub-optimizations 

f ( x ) =
nX

i= 1
m i ( x i ) +

nX

i= 2
Á( x i ¡ 1 ; x i )

S t ep 1 : F or each va lue of x 2 determ ine the best va lue of x 1

² C ompute

S 2 ( x 2 ) = m inx 1
f m2 ( x 2 ) + m1( x 1 ) + Á( x 1 ; x 2 ) g

= m2( x 2 ) + m inx 1
f m1 ( x 1 ) + Á( x 1 ; x 2 ) g

² R ecord the va lue of x 1 for which S 2 ( x 2 ) is a m inim um

T o compute this m inim um for a ll x 2 involves O ( h2 ) operat ions



x1 x2 x3 x4 x5 x6 

S t ep 2 : F or each va lue of x 3 determ ine the best va lue of x 2 a nd x 1

² C ompute

S 3 ( x 3 ) = m3( x 3 ) + m inx 2
f S 2 ( x 2 ) + Á( x 2 ; x 3 ) g

² R ecord the va lue of x 2 for which S 3 ( x 3 ) is a m inim um

A g ain, to compute this m inim um for a ll x 3 involves O ( h2 ) operat ions
N ote S k ( x k ) encodes the lowest cost part ia l sum for a ll nodes up to k
which have the va lue x k at node k , i.e.

S k ( x k ) = m inx 1 ;x 2 ;:::;x k ¡ 1

kX

i = 1
m i ( x i ) +

kX

i = 2
Á( x i ¡ 1 ; x i )



Viterbi Algorithm 

Complexity O(nh2) 

² In it ia liz e S 1 ( x 1 ) = m1( x 1 )

² F or k = 2 : n

S k ( x k ) = mk ( x k ) + m inx k¡ 1
f S k ¡ 1 ( x k ¡ 1 ) + Á( x k ¡ 1 ; x k ) g

bk ( x k ) = arg m inx k¡ 1
f S k ¡ 1 ( x k ¡ 1 ) + Á( x k ¡ 1 ; x k ) g

² T erm inate

x ¤n = arg m inx n
S n ( x n )

² B ack t rac k

x i ¡ 1 = bi ( x i )



Dynamic programming on graphs 

5 4 6 1 2 3 

² G raph ( V; E )

² V ert ic es vi for i = 1 ; : : : ; n

² E dg es ei j c onnec t vi to other vert ic es vj

f ( x ) =
X

vi 2 V
m i ( vi ) +

X

ei j 2 E
Á( vi ; vj )

S o far have considered cha ins



Different graph structures 

Fully connected 
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Star structure 

O(nh2) 
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Tree structure 

O(nh2) 

n parts 

h positions (e.g. every pixel for translation) 

Can use dynamic programming  



Distance transforms for DP 



Special case of DP cost function 

• Distance transforms 
–  O(nh2)  O(nh) for DP cost functions 

–  Assume model is quadratic, i.e. Á( x k¡ 1 ; x k) = ¸ 2( x k¡ 1 ¡ x k )
2

R eca ll that we need to compute

m inx k¡ 1
f S k¡ 1 ( x k ¡ 1 ) + Á( x k¡ 1 ; x k ) g

e.g . for k = 2 , compute for each va lue of x 2

m inx 1
f m1 ( x 1 ) + Á( x 1 ; x 2 ) g

P lot m inx 1 f m1( x 1 ) + Á( x 1 ; x 2 ) g as func t ion of x 2



x1 

x2 

a b 

Á( x 1 = a; x 2)
= ¸ 2 ( x 2 ¡ a) 2

¸ 2 ( x 2 ¡ b) 2

P lot m inx 1 f m1( x 1) + Á( x 1 ; x 2) g as funct ion of x 2

m1( x 1 = a) m1( x 1 = b)



x1 

x2 

Felzenszwalb and Huttenlocher ’05 

For each x2 
•  Finding min over x1 is equivalent finding minimum over set of offset parabolas 
•  Lower envelope computed in O(h) rather than O(h2) via distance transform 

P lot m inx 1 f m1( x 1) + Á( x 1 ; x 2) g as funct ion of x 2
for each x1 



x1 

x2 

Felzenszwalb and Huttenlocher ’05 

For each x2 
•  Finding min over x1 is equivalent finding minimum over set of offset parabolas 
•  Lower envelope computed in O(h) rather than O(h2) via distance transform 

P lot m inx 1 f m1( x 1) + Á( x 1 ; x 2) g as funct ion of x 2



1D Examples 
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“Lower Envelope” Algorithm 

Add first Add second 

Try adding third 

Remove second 

Try again and add 
…  



Algorithm for Lower Envelope 

• Quadratics ordered left to right 
•  At step j consider adding j-th quadratic to LE of first j-1 quadratics 

–  Maintain two ordered lists 
•  Quadratics currently visible on LE 
•  Intersections currently visible on LE 

–  Compute intersection of j-th quadratic and rightmost quadratic visible on LE 
•  If to right of rightmost visible intersection, add quadratic and 

intersection to lists 
•  If not, this quadratic hides at least rightmost quadratic, remove it and try 

again 

Code available online: http://people.cs.uchicago.edu/~pff/dt/ 



Running Time of LE Algorithm 
•  Considers adding each of h quadratics just once 

–  Intersection and comparison constant time 
–  Adding to lists constant time 
–  Removing from lists constant time 

•  But then need to try again 

•  Simple amortized analysis 
–  Total number of removals O(h) 

•  Each quadratic once removed never considered for removal again 

•  Thus overall running time O(h) 



Coming back to fitting pictorial structures 

filters deformation parameters 

displacements 

Appearance term Spatial prior 
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Maximization of the PS score can be re-written as a minimization of 
the following cost function on a “star” graph: 

As the spatial prior is a quadratic function of part 
positions, (xi, yi), finding the optimal configuration 
of parts can be done in O(nh) time, instead of 
naïve O(nh2). 



Part Detection 

head filter 

Transformed response 

Distance transform computed in linear time 
(spreading, local max, etc) 

input image 

Response of filter in l-th pyramid level 

cross-correlation 



System 



Other applications of PS models:  
facial feature detection in images 

•  Parts V= {v1, … vn} 

•  Connected by springs in a star configuration to 
nose (can be a tree) 

•  Quadratic cost for springs 

high spring cost 

v3 

Model"

v1 

v2 

v4 

The goal: Localize facial features in faces 
output by face detector 



Example part localizations in video 



Example of a model with 9 parts 

Support parts-based face descriptors 
Provide initialization for global face descriptors 

Code available online: http://www.robots.ox.ac.uk/~vgg/research/nface/index.html 



Summary 
• Pictorial structure models with tree configuration of parts can 

be fitted in O(nh2). {n=number of parts, h=number of pixels} 

• For quadratic pair-wise terms this can be reduced to O(nh).  

• This can lead to significant speed-ups if h is large (e.g. 
number of pixels). 

 
Other applications:  
• Facial feature finding 
• Fitting articulated models  



Human Pose Estimation 



Objective and motivation 

Determine human body pose (layout) 

Why?  To recognize poses, gestures, actions 



Activities characterized by a pose 



Activities characterized by a pose 



Activities characterized by a pose 



Challenges: articulations and deformations 



Challenges: of (almost) unconstrained images 

varying illumination and low contrast;  moving camera and background; 
multiple people;  scale changes;  extensive clutter;  any clothing 



Pictorial Structures 

•   Intuitive model of an object 

•   Model has two components 

1.  parts (2D image fragments) 

2.  structure (configuration of parts) 

•  Dates back to Fischler & Elschlager 1973 



From earlier: objects 

Mixture of deformable part-based models 
•  One component per “aspect” e.g. front/side view 

Each component has global template + deformable parts 
Discriminative training from bounding boxes alone 



Localize multi-part objects at arbitrary locations in an image 
•  Generic object models such as person or car 
•  Allow for articulated objects 
•  Simultaneous use of appearance and spatial information 
•  Provide efficient and practical algorithms 

To fit model to image: minimize an energy (or cost) function that reflects both 
•  Appearance: how well each part matches at given location 
•  Configuration: degree to which parts match 2D spatial layout 



Long tradition of using pictorial structures for humans 

Learning to Parse Pictures of People  
Ronfard, Schmid & Triggs, ECCV 2002 

Pictorial Structure Models for Object Recognition 
Felzenszwalb & Huttenlocher, 2000 
 

Finding People by Sampling 
Ioffe & Forsyth, ICCV 1999 



Felzenszwalb & Huttenlocher 

NB: requires background subtraction  



Variety of Poses 



Variety of Poses 



Objective: detect human and determine upper body pose (layout) 

a1 

a2 

si f 



Pictorial structure model – CRF  

a1 

a2 

si f 



Unary term: appearance feature I - colour 

input image skin torso background 

colour posteriors 



Histogram of oriented gradients (HOG) 

HOG of image 
HOG of lower 
arm template 

(learned) 
L2 Distance 

Unary term: appearance feature II - HOG 
Dalal & Triggs, CVPR 2005 



 θab;ij = wabd(|i-j|) 

i - j 

d 

Potts 

i - j 

d 

Truncated Quadratic 

Pairwise terms: kinematic layout 



Pictorial structure model – CRF  

a1 

a2 

si f 



Complexity 

a1 

a2 

si f 



Are trees the answer? 

He T 

UA UA 

LA 

Ha 

left 

Ha 

LA 

right 

•  With n parts and h possible discrete locations per part, O(hn) 

•  For a tree, using dynamic programming this reduces to O(nh2) 
 
•  If model is a tree and has certain edge costs, then complexity 

reduces to O(nh) using a distance transform  [Felzenszwalb & 
Huttenlocher, 2000, 2005] 



Kinematic structure vs graphical (independence) structure 

Graph G = (V,E) 

He T 

UA UA 

LA 

Ha 

left 

Ha 

LA 

right 

He T 

UA UA 

LA 

Ha 

left 

Ha 

LA 

right 

Requires more 
connections than a tree 



Articulated Pose Estimation 
with Flexible Mixtures of Parts  



Goal 

Ar#culated	
  pose	
  es#ma#on	
  (by	
  Wikipedia)	
  
recovers	
  the	
  pose	
  of	
  an	
  arKculated	
  object	
  which	
  consists	
  of	
  
joints	
  and	
  rigid	
  parts	
  



Applications 
Action HCI Gaming 

Segmentation Object Detection 

…… 



Unconstrained Images 



Classic Approach 

Part Representation 
•  Head, Torso, Arm, Leg 
•  Location, Rotation, 

Scale 

Fischler & Elschlager 1973  

Felzenszwalb	
  &	
  HuQenlocher	
  2005	
   
Marr	
  &	
  Nishihara	
  1978 

Andriluka	
  etc.	
  2009 
Eichner	
  etc.	
  2009	
  

Johnson	
  &	
  Everingham	
  2010 
Sapp	
  etc.	
  2010 

Singh	
  etc.	
  2010 

Tran	
  &	
  Forsyth	
  2010 

Epshteian	
  &	
  Ullman	
  2007 

Ferrari	
  etc.	
  2008 

Lan	
  &	
  HuQenlocher	
  2005 

Ramanan	
  2007 
Sigal	
  &	
  Black	
  2006 

Wang	
  &	
  Mori	
  2008 

Pictorial Structure 
•  Unary Templates 
•  Pairwise Springs 



Problem 

How	
  to	
  capture	
  affine	
  deformaKons	
  of	
  limbs? 

In plane rotation Out plane rotation 

Foreshortening Scaling 

Naïve brute-force evaluation is expensive 



Our Approach – “Mini” Parts 

Capture	
  affine	
  deformaKons	
  with	
  “mini”	
  part	
  model	
  



Example: Arm Approximation 



Example: Torso Approximation 



•  Why?  

Our Approach 

•  Extension of Pictorial Structure Model 

Flexibility: General affine warps (orientation, 
foreshortening, …) 

Speed: Mixtures of local templates + dynamic 
programming 



Linear-Parameterized Pictorial 
Structure Model 

•  : Image;  
•  : Number of parts 
•  : Locations of parts 



Linear-Parameterized Pictorial 
Structure Model 







•  : Vertices

•  : Unary template for part  
•  : Local image features at location li 




Linear-Parameterized Pictorial 
Structure Model 







•  E : Edges

•  Psi : Spatial features between i and j 

•  Beta : Pairwise springs between part  and part  



Our Flexible Mixture Model 

 
•  M: Mixtures of parts 
•  alpha : Unary template for part  with mixture  
•  Beta : Pairwise springs between part I with    

mixture mi and part j with mixture mj 



Our Flexible Mixture Model 

 
•  M: Mixtures of parts 
•  : Unary template for part  with mixture  
•  : Pairwise springs between part  with    mixture  

and part  with mixture  



•  : Pairwise co-occurrence prior between part  with 
mixture  and part  with mixture  

Co-occurrence “Prior” 

 

 

-0.015

-0.01

-0.005

0

0.005

0.01

 

 

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01



​​max┬𝐿,𝑀  ⁠𝑆(𝐼,𝐿,𝑀)  
 

For a tree graph (V,E): dynamic programming 
 

Inference & Learning 
Inference 



Inference & Learning 

​​max┬𝐿,𝑀  ⁠𝑆(𝐼,𝐿,𝑀)  
 

For a tree graph (V,E): dynamic programming 
 

Given labeled positive  { ​𝐼↓𝑛 , ​𝐿↓𝑛 , ​𝑀↓𝑛 } and 
negative { ​𝐼↓𝑛 },  

write ​𝑧↓𝑛 =( ​𝐿↓𝑛 , ​𝑀↓𝑛 ), and 𝑆(𝐼,𝑧)=𝑤∙𝜙(𝐼,𝑧)


​​min┬𝑤  ⁠​1/2 ‖𝑤‖  
s.t.          ∀𝑛∈pos    𝑤∙𝜙(​𝐼↓𝑛 , ​𝑧↓𝑛 )≥1 

          ∀𝑛∈neg,∀𝑧    𝑤∙𝜙(​𝐼↓𝑛 ,𝑧)≤−1 

Learning 

Inference 



Benchmark Datasets 

PARSE Full-body 
 
http://www.ics.uci.edu/
~dramanan/papers/parse/
index.html 

BUFFY Upper-body  
 
http://www.robots.ox.ac.uk/
~vgg/data/stickmen/index.html 



How to Get Part Mixtures? 
Solution: 

Cluster relative locations of joints w.r.t. parents 



Articulation 

𝐾 parts, 𝑀 mixtures ⇒ ​𝐾↑𝑀  unique pictorial 
structures 

 

Not all are equally likely --- “prior” given by 𝑆(𝑀) 



Qualitative Results 



Diagnostic 

•  14 parts (joints) vs 27 parts (joints + 
midpoints) 

•  More parts and types/mixtures help 



Quantitative Results 

 

 
 
 
All previous work use explicitly articulated models 

Image Parse Testset 
Method Total 

Ramanan 2007 27.2 

Andrikluka 2009 55.2 

Johnson 2010a 56.4 

Singh 2010 60.9 

Johnson 2010b 66.2 

Our Model 74.9 

%	
  of	
  correctly	
  localized	
  limbs 



Quantitative Results 

 

 
 
 

1 second per image 

Image Parse Testset 
Method Head Torso U. Legs L. Legs U. Arms L. Arms Total 

Ramanan 2007 52.1 37.5 31.0 29.0 17.5 13.6 27.2 

Andrikluka 2009 81.4 75.6 63.2 55.1 47.6 31.7 55.2 

Johnson 2010a 77.6 68.8 61.5 54.9 53.2 39.3 56.4 

Singh 2010 91.2 76.6 71.5 64.9 50.0 34.2 60.9 

Johnson 2010b 85.4 76.1 73.4 65.4 64.7 46.9 66.2 

Our Model 97.6 93.2 83.9 75.1 72.0 48.3 74.9 

%	
  of	
  correctly	
  localized	
  limbs 



Quantitative Results 

 

 
 
 
All previous work use explicitly articulated models 

Subset of Buffy Testset 
Method Total 

Tran 2010 62.3 

Andrikluka 2009 73.5 

Eichner 2009 80.1 

Sapp 2010a 85.9 

Sapp 2010b 85.5 

Our Model 89.1 

%	
  of	
  correctly	
  localized	
  limbs 



Quantitative Results 

 

 
 
 

	
  	
  	
  	
  Ours	
  |	
  5	
  seconds	
  	
  	
  VS	
  	
  	
  5	
  minutes	
  |	
  next	
  best	
  

Subset of Buffy Testset 
Method Head Torso U. Arms L. Arms Total 

Tran 2010 --- --- --- --- 62.3 

Andrikluka 2009 90.7 95.5 79.3 41.2 73.5 

Eichner 2009 98.7 97.9 82.8 59.8 80.1 

Sapp 2010a 100 100 91.1 65.7 85.9 

Sapp 2010b 100 96.2 95.3 63.0 85.5 

Our Model 100 99.6 96.6 70.9 89.1 

%	
  of	
  correctly	
  localized	
  limbs 



Human Detection 



Conclusion 

•  Model affine warps 
with a part-based 
model 
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Conclusion 

•  Model affine warps 
with a part-based 
model 

•  Exponential set of 
pictorial structures 

•  Rigid vs flexible 
relations 

 

 

-0.015

-0.01

-0.005

0

0.005

0.01

 

 

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01



Conclusion 

•  Model affine warps 
with a part-based 
model 

•  Exponential set of 
pictorial structures 

•  Rigid vs flexible 
relations 

•  Supervision helps 
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 Human Pose Estimation Using Consistent Max-Covering, Hao 
Jiang, ICCV 09 
 
 Max-margin hidden conditional random fields for human action 
recognition, Yang Wang and Greg Mori, CVPR 09 
 
 Adaptive pose priors for pictorial structures, B. Sapp, C. Jordan, 
and B. Taskar, CVPR 10 

 

Further ideas: 


