Reconnaissance d'objets et vision artificielle 2012

Category-level localization and human pose estimation

Josef Sivic

Slides from Andrew Zisserman and Deva Ramanan

Also includes slides from: Ondra Chum, Alyosha Efros, Mark Everingham, Pedro Felzenszwalb, Rob Fergus, Kristen Grauman, Bastian Leibe, Fei-Fei Li, Marcin Marszalek, Pietro Perona, Bernt Schiele, Jamie Shotton, Andrea Vedaldi

Announcements

- Assignment 2 was due today. Have you sent it?
- Assignment 3 is out.

http://www.di.ens.fr/willow/teaching/recvis12/assignment3/

 Topic ideas for the final projects (any questions?): <u>http://www.di.ens.fr/willow/teaching/recvis12/finalproject/</u> Send us your **project proposal** by this **Friday (Nov 9).**

What we would like to be able to do...

- Visual scene understanding
- <u>What</u> is in the image and <u>where</u>

• Object categories, identities, properties, activities, relations, ...

Recognition Tasks

- Image Classification
 - Does the image contain an aeroplane?

• Object Class Detection/Localization – Where are the aeroplanes (if any)?

- Object Class Segmentation
 - Which pixels are part of an aeroplane (if any)?

Feature: Histogram of Oriented Gradients (HOG)

image

dominant direction

HOG

- tile 64 x 128 pixel window into 8 x 8 pixel cells
- each cell represented by histogram over 8 orientation bins (i.e. angles in range 0-180 degrees)

Window (Image) Classification

Linear SVM classifier

Learned model

 $\mathbf{f}(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$

average over positive training data

Complete system should compete pedestrian/pillar/doorway models Discriminative models come equipped with own bg (avoid firing on doorways by penalizing vertical edges)

Slide from Deva Ramanan

Object Detection with Discriminatively Trained Part Based Models

Pedro F. Felzenszwalb, David Mcallester, Deva Ramanan, Ross Girshick PAMI 2010

Matlab code available online: http://www.cs.brown.edu/~pff/latent/

Approach

- Mixture of deformable part-based models
 - One component per "aspect" e.g. front/side view
- Each component has global template + deformable parts
- Discriminative training from bounding boxes alone

Example Model

• One component of person model

Starting Point: HOG Filter

Score of *F* at position *p* is $F \cdot \varphi(p, H)$

 $\varphi(p, H)$ = concatenation of HOG features from subwindow specified by *p*

- Search: sliding window over position and scale
- Feature extraction: HOG Descriptor
- Classifier: Linear SVM

Dalal & Triggs [2005]

Object Hypothesis

- Position of root + each part
- Each part: HOG filter (at higher resolution)

Score of a Hypothesis

Appearance termSpatial prior
$$score(p_0, \ldots, p_n) = \sum_{i=0}^{n} F_i \cdot \phi(H, p_i)$$
 $-\sum_{i=1}^{n} d_i \cdot (dx_i^2, dy_i^2)$ $i=1 \uparrow$ displacementsfiltersdeformation parameters $score(z) = \beta \cdot \Psi(H, z)$ \checkmark concatenation of filters
and deformation
parameters \land OG features and
part displacement
features

• Linear classifier applied to feature subset defined by hypothesis

Training

- Training data = images + bounding boxes
- Need to learn: model structure, filters, deformation costs

Latent SVM (MI-SVM)

Classifiers that score an example x using

Training data
$$D = (\langle x_1, y_1 \rangle, \dots, \langle x_n, y_n \rangle)$$
 $y_i \in \{-1, 1\}$
We would like to find β such that: $y_i f_\beta(x_i) > 0$

Minimize Regularizer "Hinge loss" on one training example

$$L_D(\beta) = \frac{1}{2} ||\beta||^2 + C \sum_{i=1}^n \max(0, 1 - y_i f_\beta(x_i))$$
SVM objective

Latent SVM Training

$$L_D(eta) = rac{1}{2} ||eta||^2 + C \sum_{i=1}^n \max(0, 1 - y_i f_eta(x_i))$$

- Convex if we fix z for positive examples
- Optimization:
 - Initialize β and iterate:
 - Pick best *z* for each positive example
 Optimize *R* with *z* fixed
 - Optimize β with z fixed

- Local minimum: needs good initialization
 - Parts initialized heuristically from root

Person Model

root filters part filters deformation coarse resolution finer resolution models

Handles partial occlusion/truncation

Car Model

root filters coarse resolution

part filters finer resolution

deformation models

Car Detections

high scoring true positives

high scoring false positives

Person Detections

high scoring true positives

high scoring false positives (not enough overlap)

Precision/Recall: VOC2008 Person

Precision/Recall: VOC2008 Bicycle

Comparison of Models

Summary

- Multiple features and multiple kernels boost performance
- Discriminative learning of model with latent variables for single feature (HOG):
 - Latent variables can learn best alignment in the ROI training annotation
 - Parts can be thought of as local SIFT vectors
 - Some similarities to Implicit Shape Model/ Constellation models but with discriminative/ careful training throughout

NB: Code available for latent model !

Current Research Challenges

- Context (See class on scenes and objects on Dec 3).
 - from scene properties: GIST, BoW, stuff
 - from other objects
 - from geometry of scene, e.g. Hoiem et al CVPR 06
- Occlusion/truncation
 - Winn & Shotton, Layout Consistent Random Field, CVPR 06
 - Vedaldi & Zisserman, NIPS 09
 - Yang et al, Layered Object Detection, CVPR 10
- 3D
 - Zhu&Ramanan, CVPR'12 (view-based representation of faces)
- Scaling up thousands of classes
 - Torralba et al, feature sharing
 - ImageNet
- Weak and noisy supervision

Pictorial structure model re-visited: efficient fitting

Let's have a closer look at the LSVM deformable part-based model...

Object Hypothesis

- Position of root + each part
- Each part: HOG filter (at higher resolution)

What is the cost of fitting the PS model?

- For fixed (learned) F_i and d_i
- For simplicity, consider only single scale of the pyramid
- Parts can appear anywhere in the image (h=number of pixels)

 $dx_i = x_i - x_0$

 $dy_i = y_i - y_0$

 p_0 : location of root p_1, \dots, p_n : location of parts

Fitting cost: Naïve search is O(nh²)

What is the cost of fitting the PS model?

- For fixed (learned) F_i and d_i
- For simplicity, consider only single scale of the pyramid
- Parts can appear anywhere in the image (h=number of pixels)

Appearance term Spatial prior

$$\operatorname{score}(p_0, \dots, p_n) = \sum_{\substack{i=0 \\ i \equiv 0 \\ \text{filters}}}^n F_i \cdot \phi(H, p_i) - \sum_{\substack{i=1 \\ i \equiv 1 \\ \text{displacements}}}^n d_i \cdot (dx_i^2, dy_i^2) d_{isplacements}$$

Fitting cost: Naïve search is O(nh²)

Need to evaluate the deformation cost of each part with respect to the root.

Special case of a more general problem

Appearance term Spatial prior

$$score(p_0, \dots, p_n) = \sum_{i=0}^{n} F_i \cdot \phi(H, p_i) - \sum_{i=1}^{n} d_i \cdot (dx_i^2, dy_i^2)$$
displacements
deformation parameters

Maximization of the PS score can be re-written as a **minimization** of the following cost function on a "star" graph:

$$f(\mathbf{x}) = \sum_{v_i \in V} m_i(v_i) + \sum_{e_{ij} \in E} \phi(v_i, v_j)$$

- Graph (V, E)
- Vertices v_i for $i = 1, \ldots, n$
- Edges e_{ij} connect v_i to other vertices v_j

Dynamic programming on graphs

- Graph (V, E)
- Vertices v_i for $i = 1, \ldots, n$
- Edges e_{ij} connect v_i to other vertices v_j

$$f(\mathbf{x}) = \sum_{v_i \in V} m_i(v_i) + \sum_{e_{ij} \in E} \phi(v_i, v_j)$$

Dynamic programming - review

- Discrete optimization
- Each variable x has a finite number of possible states
- Applies to problems that can be decomposed into a sequence of stages
- Each stage expressed in terms of results of fixed number of previous stages
- The cost function need not be convex
- The name "dynamic" is historical
- Also called the "Viterbi" algorithm
- Let's first consider a chain:

Consider a cost function $\,f({f x}):{f \mathbb R}^n o{f R}\,$ of the form

$$f(\mathbf{x}) = \sum_{i=1}^{n} m_i(x_i) + \sum_{i=2}^{n} \phi_i(x_{i-1}, x_i)$$

where x_i can take one of h values

trellis

Complexity of minimization:

- exhaustive search O(hⁿ)
- dynamic programming O(nh²)

Key idea: the optimization can be broken down into n sub-optimizations

Step 1: For each value of x_2 determine the best value of x_1

Compute

$$S_2(x_2) = \min_{x_1} \{ m_2(x_2) + m_1(x_1) + \phi(x_1, x_2) \}$$

= $m_2(x_2) + \min_{x_1} \{ m_1(x_1) + \phi(x_1, x_2) \}$

• Record the value of x_1 for which $S_2(x_2)$ is a minimum To compute this minimum for all x_2 involves $O(h^2)$ operations

Step 2: For each value of x_3 determine the best value of x_2 and x_1

• Compute

$$S_3(x_3) = m_3(x_3) + \min_{x_2} \{S_2(x_2) + \phi(x_2, x_3)\}$$

• Record the value of x_2 for which $S_3(x_3)$ is a minimum

Again, to compute this minimum for all x_3 involves $O(h^2)$ operations Note $S_k(x_k)$ encodes the lowest cost partial sum for all nodes up to kwhich have the value x_k at node k, i.e.

$$S_k(x_k) = \min_{x_1, x_2, \dots, x_k} \sum_{i=1}^k m_i(x_i) + \sum_{i=2}^k \phi(x_{i-1}, x_i)$$
Viterbi Algorithm

• Initialize
$$S_1(x_1) = m_1(x_1)$$

• For *k* = 2 : *n*

$$S_k(x_k) = m_k(x_k) + \min_{x_{k-1}} \{S_{k-1}(x_{k-1}) + \phi(x_{k-1}, x_k)\}$$

$$b_k(x_k) = \arg\min_{x_{k-1}} \{S_{k-1}(x_{k-1}) + \phi(x_{k-1}, x_k)\}$$

• Terminate

$$x_n^* = \arg\min_{x_n} S_n(x_n)$$

Backtrack

$$x_{i-1} = b_i(x_i)$$

Complexity O(nh²)

Dynamic programming on graphs

- Graph (V, E)
- Vertices v_i for $i = 1, \ldots, n$
- Edges e_{ij} connect v_i to other vertices v_j

$$f(\mathbf{x}) = \sum_{v_i \in V} m_i(v_i) + \sum_{e_{ij} \in E} \phi(v_i, v_j)$$

So far have considered chains

Different graph structures

Can use dynamic programming

n parts

h positions (e.g. every pixel for translation)

Distance transforms for DP

Special case of DP cost function

- Distance transforms
 - O(nh²) → O(nh) for DP cost functions
 - Assume model is quadratic, i.e. $\phi(x_{k-1}, x_k) = \lambda^2 (x_{k-1} x_k)^2$

Recall that we need to compute

$$\min_{x_{k-1}} \{ S_{k-1}(x_{k-1}) + \phi(x_{k-1}, x_k) \}$$

e.g. for k = 2, compute for each value of x_2

$$\min_{x_1} \{ m_1(x_1) + \phi(x_1, x_2) \}$$

Plot $\min_{x_1} \{m_1(x_1) + \phi(x_1, x_2)\}$ as function of x_2

For each x₂

- Finding min over x_1 is equivalent finding minimum over set of offset parabolas
- Lower envelope computed in O(h) rather than $O(h^2)$ via distance transform

Felzenszwalb and Huttenlocher '05

For each x₂

- Finding min over x_1 is equivalent finding minimum over set of offset parabolas
- Lower envelope computed in O(h) rather than $O(h^2)$ via distance transform

Felzenszwalb and Huttenlocher '05

1D Examples

1D Examples

1D Examples

Generalized distance transform

Given a function $f: \mathcal{G} \to \mathbb{R}$,

$$\mathcal{D}_f(q) = \min_{p \in \mathcal{G}} \left(||q - p||^2 + f(p) \right)$$

- for each location q, find nearby location p with f(p) small.
- equals DT of points P if f is an indicator function.

$$f(p) = \begin{cases} 0 & \text{if } p \in P \\ \infty & \text{otherwise} \end{cases}.$$

There is a simple geometric algorithm that computes $\mathcal{D}_f(p)$ in O(h) time for the 1D case.

- similar to Graham's scan convex hull algorithm.
- about 20 lines of C code.

The 2D case is "separable", it can be solved by sequential 1D transformations along rows and columns of the grid.

See **Distance Transforms of Sampled Functions**, Felzenszwalb and Huttenlocher.

"Lower Envelope" Algorithm

Algorithm for Lower Envelope

- Quadratics ordered left to right
- At step j consider adding j-th quadratic to LE of first j-1 quadratics
 - Maintain two ordered lists
 - Quadratics currently visible on LE
 - Intersections currently visible on LE
 - Compute intersection of j-th quadratic and rightmost quadratic visible on LE
 - If to right of rightmost visible intersection, add quadratic and intersection to lists
 - If not, this quadratic hides at least rightmost quadratic, remove it and try again

Code available online: http://people.cs.uchicago.edu/~pff/dt/

Running Time of LE Algorithm

- · Considers adding each of h quadratics just once
 - Intersection and comparison constant time
 - Adding to lists constant time
 - Removing from lists constant time
 - But then need to try again
- Simple amortized analysis
 - Total number of removals O(h)
 - Each quadratic once removed never considered for removal again
- Thus overall running time O(h)

Coming back to fitting pictorial structures

Appearance term Spatial prior

$$score(p_0, \dots, p_n) = \sum_{\substack{i=0 \\ i \equiv 0 \\ \text{filters}}}^n F_i \cdot \phi(H, p_i) - \sum_{\substack{i=1 \\ i \equiv 1 \\ \text{displacements}}}^n d_i \cdot (dx_i^2, dy_i^2)$$

Maximization of the PS score can be re-written as a **minimization** of the following cost function on a "star" graph:

Part Detection

head filter

input image

Response of filter in I-th pyramid level

 $R_l(x,y) = F \cdot \phi(H,(x,y,l))$

cross-correlation

Transformed response

$$D_l(x,y) = \max_{dx,dy} \left(R_l(x+dx,y+dy) - d_i \cdot (dx^2,dy^2)
ight)$$

Distance transform computed in linear time (spreading, local max, etc)

Other applications of PS models: facial feature detection in images

Model

high sp

The goal: Localize facial features in faces output by face detector

- Parts V= $\{v_1, \dots, v_n\}$
- Connected by springs in a star configuration to nose (can be a tree)
- Quadratic cost for springs

high spring cost

Example part localizations in video

Example of a model with 9 parts

Support parts-based face descriptors Provide initialization for global face descriptors

Code available online: http://www.robots.ox.ac.uk/~vgg/research/nface/index.html

Summary

- Pictorial structure models with tree configuration of parts can be fitted in O(nh²). {n=number of parts, h=number of pixels}
- For quadratic pair-wise terms this can be reduced to **O(nh)**.
- This can lead to significant speed-ups if h is large (e.g. number of pixels).

Other applications:

- Facial feature finding
- Fitting articulated models

Human Pose Estimation

Objective and motivation

Determine human body pose (layout)

Why? To recognize poses, gestures, actions

Activities characterized by a pose

Activities characterized by a pose

Activities characterized by a pose

Challenges: articulations and deformations

Challenges: of (almost) unconstrained images

varying illumination and low contrast; moving camera and background; multiple people; scale changes; extensive clutter; any clothing

Pictorial Structures

- Intuitive model of an object
- Model has two components
 - 1. parts (2D image fragments)
 - 2. structure (configuration of parts)
- Dates back to Fischler & Elschlager 1973

From earlier: objects

Mixture of deformable part-based models

One component per "aspect" e.g. front/side view
 Each component has global template + deformable parts
 Discriminative training from bounding boxes alone

Localize multi-part objects at arbitrary locations in an image

- Generic object models such as person or car
- Allow for articulated objects
- Simultaneous use of appearance and spatial information
- Provide efficient and practical algorithms

To fit model to image: minimize an energy (or cost) function that reflects both

- Appearance: how well each part matches at given location
- Configuration: degree to which parts match 2D spatial layout

Long tradition of using pictorial structures for humans

Finding People by Sampling loffe & Forsyth, ICCV 1999

Pictorial Structure Models for Object Recognition Felzenszwalb & Huttenlocher, 2000

Learning to Parse Pictures of People Ronfard, Schmid & Triggs, ECCV 2002

Felzenszwalb & Huttenlocher

NB: requires background subtraction

Variety of Poses

Variety of Poses

Objective: detect human and determine upper body pose (layout)

Model as a graph labelling problem

- Vertices ${\mathcal V}$ are parts, $a_i, i=1,\cdots,n$
- Edges \mathcal{E} are pairwise linkages between parts
- For each part there are h possible poses $\mathbf{p}_j = (x_j, y_j, \phi_j, s_j)$
- Label each part by its pose: $f: \mathcal{V} \longrightarrow \{1, \dots, h\}$, i.e. part a takes pose $\mathbf{p}_{f(a)}$.

Pictorial structure model – CRF

• Each labelling has an energy (cost):

Features for unary:

- colour
- HOG
- for limbs/torso
- Fit model (inference) as labelling with lowest energy

Unary term: appearance feature I - colour

colour posteriors

Unary term: appearance feature II - HOG

Dalal & Triggs, CVPR 2005

Histogram of oriented gradients (HOG)

Pairwise terms: kinematic layout

$$\theta_{ab;ij} = w_{ab}d(|i-j|)$$

Pictorial structure model – CRF

• Each labelling has an energy (cost):

Features for unary:

- colour
- HOG
- for limbs/torso
- Fit model (inference) as labelling with lowest energy

Complexity

- n parts
- For each part there are h possible poses $\mathbf{p}_j = (x_j, y_j, \phi_j, s_j)$
- There are h^n possible labellings

Problem: any reasonable discretization (e.g. 12 scales and 36 angles for upper and lower arm, etc) gives a number of configurations 10^12 – 10^14

 \rightarrow Brute force search not feasible

Are trees the answer?

- With n parts and h possible discrete locations per part, O(hⁿ)
- For a tree, using dynamic programming this reduces to O(nh²)
- If model is a tree and has certain edge costs, then complexity reduces to O(nh) using a distance transform [Felzenszwalb & Huttenlocher, 2000, 2005]

Kinematic structure vs graphical (independence) structure

Articulated Pose Estimation with Flexible Mixtures of Parts

Yi Yang & Deva Ramanan

Goal

Articulated pose estimation (by Wikipedia)

Applications

Unconstrained Images

Classic Approach

Marr & Nishihara 1978

Part Representation

- Head, Torso, Arm, Leg
- Location, Rotation, Scale

Fischler & Elschlager 1973 Felzenszwalb & Huttenlocher 2005 Pictorial Structure

LEFT EDGE IGHI

- Unary Templates
- Pairwise Springs

Lan & Huttenlocher 2005 Sigal & Black 2006 Ramanan 2007 Epshteian & Ullman 2007 Wang & Mori 2008 Ferrari etc. 2008 Andriluka etc. 2009 Eichner etc. 2009 Singh etc. 2010 Johnson & Everingham 2010 Sapp etc. 2010 Tran & Forsyth 2010

Problem

How to capture affine deformations of limbs?

Naïve brute-force evaluation is expensive

Our Approach – "Mini" Parts

Capture affine deformations with "mini" part model

Example: Arm Approximation

Example: Torso Approximation

Our Approach

• Extension of Pictorial Structure Model

- Why?
 - Flexibility: General affine warps (orientation, foreshortening, ...)
 - Speed: Mixtures of local templates + dynamic programming

Linear-Parameterized Pictorial Structure Model

- : Image;
- : Number of parts
- : Locations of parts

Linear-Parameterized Pictorial Structure Model

$$S(I,L) = \sum_{i \in V} \alpha_i \cdot \phi(I,l_i)$$

- *V* : Vertices
- *α*: Unary template for part
- $_{\phi}$: Local image features at location I_{i}

Linear-Parameterized Pictorial Structure Model

- E : Edges
- Psi : Spatial features between i and j
- Beta : Pairwise springs between part and part

Our Flexible Mixture Model

$$S(I,L,M) = \sum_{i \in V} \alpha_i^{m_i} \cdot \phi(I,l_i) + \sum_{ij \in E} \beta_{ij}^{m_i m_j} \cdot \psi(l_i,l_j)$$

- M: Mixtures of parts
- alpha : Unary template for part with mixture
- Beta : Pairwise springs between part I with mixture m_i and part j with mixture m_i

Our Flexible Mixture Model

$$S(I,L,M) = \sum_{i \in V} \alpha_i^{m_i} \cdot \phi(I,l_i) + \sum_{ij \in E} \beta_{ij}^{m_i m_j} \cdot \psi(l_i,l_j) + S(M)$$

- M: Mixtures of parts
- : Unary template for part with mixture
- Pairwise springs between part with mixture and part with mixture

Co-occurrence "Prior"

• : Pairwise co-occurrence prior between part with mixture and part with mixture

Inference & Learning

 $\frac{\text{Inference}}{\max \neg L, M S(I, L, M)}$

For a tree graph (*V*,*E*): dynamic programming

Inference & Learning

Inference $\max_{T} L, M S(I, L, M)$ For a tree graph (V, E): dynamic programming Given labeled positive $\{I \downarrow n, L \downarrow n, M \downarrow n\}$ and negative $\{I \downarrow n\}$, write $z \downarrow n = (L \downarrow n, M \downarrow n)$, and $S(I,z) = w \phi(I,z)$ $\min_{\text{Learning}} 1/2 \|w\|$ S.t. $\forall n \in pos \ w \ \phi(I \downarrow n, z \downarrow n) \ge 1$

Benchmark Datasets

PARSE Full-body

http://www.ics.uci.edu/ ~dramanan/papers/parse/ index.html

BUFFY Upper-body

http://www.robots.ox.ac.uk/ ~vgg/data/stickmen/index.html

How to Get Part Mixtures?

Solution:

Cluster relative locations of joints w.r.t. parents

Articulation

K parts, M mixtures $\Rightarrow K \uparrow M$ unique pictorial structures

Not all are equally likely --- "prior" given by S(M)

Qualitative Results

Diagnostic

Performance vs number of types per part

- 14 parts (joints) vs 27 parts (joints + midpoints)
- More parts and types/mixtures help

Quantitative Results

% of correctly localized limbs

Image Parse Testset

Method				Total
Ramanan 2007				27.2
Andrikluka 2009				55.2
Johnson 2010a				56.4
Singh 2010				60.9
Johnson 2010b				66.2
Our Model				74.9

All previous work use explicitly articulated models

Quantitative Results

% of correctly localized limbs

Image	Parse	Testset	

Method	Head	Torso	U. Legs	L. Legs	U. Arms	L. Arms	Total
Ramanan 2007	52.1	37.5	31.0	29.0	17.5	13.6	27.2
Andrikluka 2009	81.4	75.6	63.2	55.1 47.6		31.7	55.2
Johnson 2010a	77.6	68.8	61.5	54.9	53.2	39.3	56.4
Singh 2010	91.2	76.6	71.5	1.5 64.9 50.	50.0	34.2	60.9
Johnson 2010b	85.4	76.1	73.4	65.4	64.7	46.9	66.2
Our Model	97.6	93.2	83.9	75.1	72.0	48.3	74.9

1 second per image

Quantitative Results

% of correctly localized limbs

Subset of Buffy Testset

Method			Total
Tran 2010			62.3
Andrikluka 2009			73.5
Eichner 2009			80.1
Sapp 2010a			85.9
Sapp 2010b			85.5
Our Model			89.1

All previous work use explicitly articulated models
Quantitative Results

% of correctly localized limbs

Subset of Buffy Testset

Method	Head	Torso	U. Arms	L. Arms	Total
Tran 2010					62.3
Andrikluka 2009	90.7	95.5	79.3	41.2	73.5
Eichner 2009	98.7	97.9	82.8	59.8	80.1
Sapp 2010a	100	100	91.1	65.7	85.9
Sapp 2010b	100	96.2	95.3	63.0	85.5
Our Model	100	99.6	96.6	70.9	89.1

Ours | 5 seconds VS 5 minutes | next best

Human Detection

 Model affine warps with a part-based model

- Model affine warps with a part-based model
- Exponential set of pictorial structures

- Model affine warps with a part-based model
- Exponential set of pictorial structures
- Rigid vs flexible relations

- Model affine warps with a part-based model
- Exponential set of pictorial structures
- Rigid vs flexible relations
- Supervision helps

Further ideas:

Human Pose Estimation Using Consistent Max-Covering, Hao Jiang, ICCV 09

Max-margin hidden conditional random fields for human action recognition, Yang Wang and Greg Mori, CVPR 09

Adaptive pose priors for pictorial structures, B. Sapp, C. Jordan, and B. Taskar, CVPR 10