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Announcements

« Assignment 2 was due today. Have you sent it?

» Assignment 3 is out.
http://www.di.ens.fr/willow/teaching/recvis12/assignment3/

* Topic ideas for the final projects (any questions?):
http://www.di.ens.fr/willow/teaching/recvis12/finalproject/
Send us your project proposal by this Friday (Nov 9).




What we would like to be able to do...

* Visual scene understanding
* What is in the image and where
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» Object categories, identities, properties, activities, relations, ...



Recognition Tasks

 Image Classification \
1 1 s"_' B M
— Does the image contain an aeroplane? z=#- .. ~=~

* Object Class Detection/Localization
— Where are the aeroplanes (if any)?

* Object Class Segmentation

— Which pixels are part of an aeroplane
(if any)?




Feature: Histogram of Oriented
Gradients (HOG)

dominant

image HOG

« tile 64 x 128 pixel window into 8 x 8 pixel cells

frequency

 each cell represented by histogram over 8
orientation bins (i.e. angles in range 0-180 degrees) orientation



Window (Image) Classification

Tra|n|ng Data

4 )
Feature | __ _, | Classifier
Extraction F(x)
- y - y
: !
« HOG Features pedestrian/Non-pedestrian

e Linear SVM classifier P(clx) < F'(x)



Learned model
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What do negative weights mean!

wx > 0
(w+-w)x>0

Rk
- =-u-==-=,1u!:_.-",.-",.-l"—-—]l-

edestrian
~Jbackground
model

EEa <

-

!
‘¢
‘<
O |
v X

)

4

‘_f

pedestrianj!
model}’

-

(] "||.-"'\---|._.I
§ e -
¢ _
=

Complete system should compete pedestrian/pillar/doorway models
Discriminative models come equipped with own bg
(avoid firing on doorways by penalizing vertical edges)

Slide from Deva Ramanan




Object Detection with Discriminatively
Trained Part Based Models

Pedro F. Felzenszwalb, David Mcallester,
Deva Ramanan, Ross Girshick

PAMI 2010

Matlab code available online:
http://www.cs.brown.edu/~pff/latent/



Approach

» Mixture of deformable part-based models
— One component per “aspect” e.g. front/side view

« Each component has global template + deformable parts
» Discriminative training from bounding boxes alone



Example Model

* One component of person model

root filters part filters
coarse resolution finer resolution

deformation
models

NG



Starting Point: HOG Filter

Filter F

Score of F at position p is
F - @(p, H)

@(p, H) = concatenation of
REseRREReettt HOG features from
HOG pyramid H subwindow specified by p

« Search: sliding window over position and scale
 Feature extraction: HOG Descriptor
 Classifier: Linear SVM Dalal & Triggs [2005]



Object Hypothesis

* Position of root + each part
« Each part: HOG filter (at higher resolution)

Z = (po,..., Pn)
. location of root
. location of parts

scores minus

@ Score is sum of filter
deformation costs

» ln'n;tger pyré:hic[ : - HOG feature pyramid



Score of a Hypothesis

Appearance term Spatial prior

score(po,---,pn)=ZF¢-¢(H,I% Zd - (dzf, dy})
'=01 1 displacements

filters deformation parameters

score(z) = 3 - V(H, 2)
/ \

concatenation of filters concatenation of

and deformation HOG features and

parameters part displacement
features

* Linear classifier applied to feature subset defined by hypothesis



Training

* Training data = images + bounding boxes
Need to learn: model structure, filters, deformation costs




Latent SVM (MI-SVM)

Classifiers that score an example x using

fs(z) = max (- ®(z,2)

o / ;: | ::
3 are model parameters

* Which component?
* Where are the parts?

z are latent values <«

Training data D = ({(z1,y1),-- -5 (Tn,¥n)) ¥ €{-1,1}
We would like to find 8 such that: ¥ifs(z:) >0

Minimize Regularizer “Hinge loss™ on one training example
~— n A N\

1 5 r
Lp(B) = §||ﬁ|| + CZmax(O, 1 —y;fa(x;))
1=1 SVM objective




Latent SVM Training

Lo(8) = 5181 + O3 max(0,1 - yifs(a:))

1=1

« Convex if we fix z for positive examples

» Optimization:
— Initialize p and iterate:
 Pick best z for each positive example
* Optimize g with z fixed

 Local minimum: needs good initialization
— Parts initialized heuristically from root

>

Alternation
strategy



Person Model
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part filters deformation

finer resolution

root filters
coarse resolution

models

Handles partial occlusion/truncation



Car Model

P
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root filters part filters deformation
coarse resolution finer resolution models



Car Detections

high scoring true positives high scoring false positives




Person Detections

high scoring false positives
(not enough overlap)

high scoring true positives




Precision/Recall: VOC2008 Person

precision
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Precision/Recall: VOC2008 Bicycle
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Comparison of Models

class: car, year 2006

precision
°o o
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031 —4—1 Root (0.48)
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Summary

* Multiple features and multiple kernels boost
performance

* Discriminative learning of model with latent

variables for single feature (HOG):
— Latent variables can learn best alignment in the
ROI training annotation
— Parts can be thought of as local SIFT vectors
— Some similarities to Implicit Shape Model/

Constellation models but with discriminative/
careful training throughout

| W= -
al el e
f

NB: Code available for latent model !



Current Research Challenges

» Context (See class on scenes and objects on Dec 3).
— from scene properties: GIST, BoW, stuff
— from other objects
— from geometry of scene, e.g. Hoiem et al CVPR 06

 Occlusion/truncation
— Winn & Shotton, Layout Consistent Random Field, CVPR 06
— Vedaldi & Zisserman, NIPS 09
— Yang et al, Layered Object Detection, CVPR 10

* 3D

— Zhu&Ramanan, CVPR’12 (view-based representation of faces)

 Scaling up — thousands of classes
— Torralba et al, feature sharing
— ImageNet

* Weak and noisy supervision



Pictorial structure model re-visited:
efficient fitting

MOUTH

Let’s have a closer look at the LSVM deformable part-based model...



Object Hypothesis

* Position of root + each part
« Each part: HOG filter (at higher resolution)

Z = (po,..., Pn)
. location of root
. location of parts

scores minus

@ Score is sum of filter
deformation costs

» ln'n;tger pyré:hic[ : - HOG feature pyramid



What is the cost of fitting the PS model?

* For fixed (learned) F, and d,
 For simplicity, consider only single scale of the pyramid
« Parts can appear anywhere in the image (h=number of pixels)

Appearance term Spatial prior

score(po, ... ,Pn) = ZFz -d(H, p;) — Zd - (dx?, dy?)

=0 1 1 displacements
filters deformation parameters
po: location of root p; = (X;, ¥;)
: X. = X.— X
p1,..., pn : location of parts d ot n0
ay; = yi— Yo

Fitting cost: Naive search is O(nh?)



What is the cost of fitting the PS model?

* For fixed (learned) F, and d,
 For simplicity, consider only single scale of the pyramid
« Parts can appear anywhere in the image (h=number of pixels)

Appearance term Spatial prior

score(po, ... ,Pn) = ZFz -d(H, p;) — Zd - (dz?, dy?)
=0 1 1 displacements

filters deformation parameters

Fitting cost: Naive search is O(nh?)

Need to evaluate the deformation cost of each part with respect to
the root.



Special case of a more general problem

Appearance term Spatial prior

score(Po, ... Pn) = ZF - o(H, pz)—zd (da: dyz)

1 1=1 1 displacements

filters deformation parameters

Maximization of the PS score can be re-written as a minimization of
the following cost function on a “star” graph:

F(x)= > mi(v;)) + > o(vi,v;)
v; eV e ;€L

e Graph (V, E)

e Verticesvy; forie=1,...,n

e Edges ¢;; connect v; to other vertices v.



Dynamic programming on graphs
e Graph (V, E)
o Verticesv; for:=1,...,n

e Edges ¢;; connect v; to other vertices v;

F(x)= > mi(vi))+ > ¢(v,v,)

v; €V e ;€L



Dynamic programming - review

Discrete optimization

Each variable x has a finite number of possible
states

Applies to problems that can be decomposed into a
sequence of stages

Each stage expressed in terms of results of fixed
number of previous stages

The cost function need not be convex
The name “dynamic” is historical
Also called the “Viterbi” algorithm

O @66 w66 6

Let’s first consider a chain:




Consider a cost function f(x) : ]Rn — R of the form

n n
fFx) =) mi(z;) + ) di(zi—1,2;)
1=1 1=2
where x; can take one of h values trellis
e.g. h=5, n=6 find
shortest
path

m1(z1) + ma(z2) + m3(z3) + ma(za) + ms(zs) + me(zs)
f(X) — { ¢(z1,z2) + (2, 23) + ¢(z3, 24) + d(z4,25) + ¢(xs, T6)

Complexity of minimization:
- exhaustive search O(h")

* dynamic programming O(nh2)



n

f(x)= > mi(z;) + Xn: ¢(zi—1, ;)
i=2

=1

Key idea: the optimization can be broken down into n sub-optimizations

Step 1: For each value of zo determine the best value of z1

e Compute

Sa(z2) min{mz(z2) + mi(21) + ¢(21,22)}

ma(22) + min{m1(z1) + ¢(z1,22)}

e Record the value of z1 for which S2(z2) is @ minimum

To compute this minimum for all z, involves O(k?) operations



Step 2: For each value of z3 determine the best value of zo and z;

e Compute

S3(z3) = ma(z3) + min{Sa(z2) + ¢(z2, 23)}

e Record the value of zo for which S3(z3) is @ minimum

Again, to compute this minimum for all 3 involves O(h2) operations
Note Si(zp) encodes the lowest cost partial sum for all nodes up to k&
which have the value z; at node k, i.e.

k k
Sp(zr) = min > mi(z;) + > ¢(zi_1,2;)

H rk I 1y YOURRR 4 A
15%2502%k o1 i=2



Viterbi Algorithm

e Initialize S1(z1) = m1(z1)
e Fork=2:n

Sp(zr) = mi(zr) + Min{Sk—1(zk-1) + ¢(zk—1,2k)}
br(zk) arg min{Sg_1(zx—1) + ¢(zp—1,2k)}

Th—1

e [erminate

x, = arg min Sn(zn)

e Backtrack

z;—1 = b;j(z;)

Complexity O(nh?)



Dynamic programming on graphs
e Graph (V, FE)
o Verticesv; for:=1,...,n

e Edges ¢;; connect v; to other vertices v;

F(x)= > mi(v))+ > o(v,v;)

v; €V e ;€L

So far have considered chains

O @66 w666




Different graph structures

Can use dynamic programming

Fully connected Tree structure Star structure
O(hn) O(nh?) O(nh?)
n parts

h positions (e.g. every pixel for translation)



Distance transforms for DP



Special case of DP cost function

* Distance transforms
— O(nh?) = O(nh) for DP cost functions

— Assume model is quadratic, i.e. b(zp_1,75) = )\2(% - C’/’k)Q

Recall that we need to compute

mMin{Sy_1(zx—1) + ¢(xr—_1,71)}

Lk—1

e.g. for £ = 2, compute for each value of x5

rgiln{ml(:cl) + ¢(z1,72)}

Plot ming, {mi(x1) + ¢(x1,22)} as function of x5



Plot {m1(z1) + ¢(x1,25)} as function of z,

¢(r1 = a,x2)

=)\2(:132—CL)2
A2(zo — b)?
m (o1 = a)— ey (21 = D)
>




Plot {m1(z1) + ¢(x1,22)} as function of x5
for each x,

I I I T I I I I I I I I I I I I I I I I I=X1

IIIIIIIIIIIIIIIIIIIII=X2

For each x5
- Finding min over x, is equivalent finding minimum over set of offset parabolas
* Lower envelope computed in O(h) rather than O(h2) via distance transform

Felzenszwalb and Huttenlocher '05



Plot ming,{m1(x1) + ¢(x1,x2)} as function of x5

||||=)(1

IIIIIIIIIIIIIIIIIIIII=X2

For each x5
- Finding min over x, is equivalent finding minimum over set of offset parabolas
* Lower envelope computed in O(h) rather than O(h2) via distance transform

Felzenszwalb and Huttenlocher '05



1D Examples
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1D Examples
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1D Examples
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Generalized distance transform

Given a function f:G—R,

Dy(q) = min (llg = 2l + £ ()

— for each location ¢, find nearby location p with f(p) small.

— equals DT of points P if f is an indicator function.

f(p) = {O Tpe P.

~c otherwise



There is a simple geometric algorithm that computes Df(p) N
O(h) time for the 1D case.

— similar to Graham's scan convex hull algorithm.

— about 20 lines of C code.

The 2D case is ‘“separable”, it can be solved by sequential 1D
transformations along rows and columns of the grid.

See Distance Transforms of Sampled Functions, Felzen-
szwalb and Huttenlocher.



“Lower Envelope” Algorithm

Add first Add second

\ Try adding third
Remove second

Try again and add




Algorithm for Lower Envelope

« Quadratics ordered left to right
« At step j consider adding j-th quadratic to LE of first j-1 quadratics

— Maintain two ordered lists
» Quadratics currently visible on LE
* Intersections currently visible on LE

— Compute intersection of j-th quadratic and rightmost quadratic visible on LE

« If to right of rightmost visible intersection, add quadratic and
intersection to lists

* If not, this quadratic hides at least rightmost quadratic, remove it and try
again

Code available online: http://people.cs.uchicago.edu/~pff/dt/



Running Time of LE Algorithm

« Considers adding each of h quadratics just once
— Intersection and comparison constant time
— Adding to lists constant time
— Removing from lists constant time
« But then need to try again

« Simple amortized analysis
— Total number of removals O(h)
» Each quadratic once removed never considered for removal again

* Thus overall running time O(h)



Coming back to fitting pictorial structures

Appearance term Spatial prior

score(Po, ... Pn) = ZF - o(H, pz)—zd (da: dyz)

1 1=1 1 displacements

filters deformation parameters

Maximization of the PS score can be re-written as a minimization of
the following cost function on a “star” graph:

F(x)= > mi(v;)) + > o(vi,v;)

v; eV e ;€L

As the spatial prior is a quadratic function of part
positions, (x;, y;), finding the optimal configuration

of parts can be done in O(nh) time, instead of
naive O(nh?).




Part Detection

iInput image

head filter
Response of filter in I-th pyramid level

Ry(z,y) =F - ¢(H,(z,y,1))
cross-correlation

Transformed response
Di(z,y) = max (Ri(z +dz,y + dy) — di - (do?,dy?))

Distance transform computed in linear time
(spreading, local max, etc)




System

model

feature map at twice the resolution

lresponse of part fitters

l transformed responses

response of root filter

=
+

-
-

color encoding of filter
response values
root locations



Other applications of PS models:
facial feature detection in images

The goal: Localize facial features in faces
output by face detector

e Parts V= {v,, ... v,;}

« Connected by springs in a star configuration to
nose (can be a tree)

« Quadratic cost for springs

high spring cost




Example part localizations in video




Example of a model with 9 parts

Support parts-based face descriptors
Provide initialization for global face descriptors

Code available online: http://www.robots.ox.ac.uk/~vgg/research/nface/index.html



Summary

* Pictorial structure models with tree configuration of parts can
be fitted in O(nh?). {(n=number of parts, h=number of pixels}

 For quadratic pair-wise terms this can be reduced to O(nh).

 This can lead to significant speed-ups if h is large (e.qg.
number of pixels).

Other applications:
* Facial feature finding
* Fitting articulated models



Human Pose Estimation



Objective and motivation

Determine human body pose (layout)

Why? To recognize poses, gestures, actions



Activities characterized by a pose




Activities characterized by a pose




Activities characterized by a pose

phoning




Challenges: articulations and deformations




Challenges: of (almost) unconstrained images

varying illumination and low contrast; moving camera and background;
multiple people; scale changes; extensive clutter; any clothing



Pictorial Structures

* Intuitive model of an object
 Model has two components

1. parts (2D image fragments)

2. structure (configuration of parts)
« Dates back to Fischler & Elschlager 1973

MOUTH



From earlier: objects

Mixture of deformable part-based models

« One component per “aspect” e.g. front/side view
Each component has global template + deformable parts
Discriminative training from bounding boxes alone



Localize multi-part objects at arbitrary locations in an image
» Generic object models such as person or car
 Allow for articulated objects
« Simultaneous use of appearance and spatial information
* Provide efficient and practical algorithms

To fit model to image: minimize an energy (or cost) function that reflects both
« Appearance: how well each part matches at given location
» Configuration: degree to which parts match 2D spatial layout



Long tradition of using pictorial structures for humans

Finding People by Sampling
loffe & Forsyth, ICCV 1999

Pictorial Structure Models for Object Recognition
Felzenszwalb & Huttenlocher, 2000

Learning to Parse Pictures of People
Ronfard, Schmid & Triggs, ECCV 2002




Felzenszwalb & Huttenlocher

NB: requires background subtraction



Variety of Poses




Variety of Poses




Objective: detect human and determine upper body pose (layout)

Model as a graph labelling problem

e Vertices V are parts, a;,1 =1,---,n
e Edges & are pairwise linkages between parts
e For each part there are h possible poses p; = (:cj,yj,qu,sj)

e Label each part by its pose: f:V — {1,--- h}, i.e. part a takes pose P(a)-



Pictorial structure model — CRF

e Each labelling has an energy (cost): Features for unary:
* colour
E() =2 Oupyt 2 babis)s)
acV (a,b)e€ * HOG
—— \ ~— for limbs/torso
unary terms pairwise terms
(appearance) (configuration)

e Fit model (inference) as labelling with lowest energy



Unary term: appearance feature | - colour

40.6

40.5

~10.4

colour posteriors



Unary term: appearance feature Il - HOG
Dalal & Triggs, CVPR 2005

0.9
0.8

F 0.7

Histogram of oriented gradients (HOG)

2 L - 40.6
1

L 104

03
0.2
01

_ HOG of lower
HOG of image arm template L2 Distance
(learned)



Pairwise terms: kinematic layout

Oap:i = Wapd([i-)])

-]
Truncated Quadratic

|||||||||

Potts



Pictorial structure model — CRF

e Each labelling has an energy (cost): Features for unary:
* colour
E(f) = Z Oa:f(a) T Z Oab; £(a) £ (b)
acV (a,b)e€ * HOG
—— \ ~v— for limbs/torso
unary terms pairwise terms
(appearance) (configuration)

e Fit model (inference) as labelling with lowest energy



Complexity

e n parts
e For each part there are h possible poses p; = (z},y;, ¢;, 5;)

e There are h™ possible labellings

Problem: any reasonable discretization (e.g. 12 scales and 36 angles for upper
and lower arm, etc) gives a number of configurations 1012 — 10*14
- Brute force search not feasible



Are trees the answer?

 With n parts and h possible discrete locations per part, O(h")
* For atree, using dynamic programming this reduces to O(nh2)

* If model is a tree and has certain edge costs, then complexity

reduces to O(nh) using a distance transform [Felzenszwalb &
Huttenlocher, 2000, 2005]



Kinematic structure vs graphical (independence) structure

Graph G = (V,E) E

left right  |eft right

Requires more
connections than a tree




Articulated Pose Estimation
with Flexible Mixtures of Parts

Yi Yang & Deva Ramanan




Goal

Articulated pose estimation (by Wikipedia) )
recovers the pose of an articulated object which consists of
joints and rigid parts



Applications

KINECT
for &}

Segmentation

@ it &




Unconstrained Images




N

1]

Classic Approach

Marr & Nishihara 1978

Part Representation

Head, Torso, Arm, Leg
Location, Rotation,

Scale

Sy

Lan & Huttenlocher 2005
Sigal & Black 2006
Ramanan 2007
Epshteian & Ullman 2007
Wang & Mori 2008
Ferrari etc. 2008

C ) [
N } /
= " /
D LEFT [ / —
.\ - EDGE

Fischler & Elschlager 1973
Felzenszwalb & Huttenlocher 2005

Pictorial Structure
 Unary Templates
« Pairwise Springs

MOUTH

Andriluka etc. 2009

Eichner etc. 2009

Singh etc. 2010

Johnson & Everingham 2010
Sapp etc. 2010

Tran & Forsyth 2010



Problem

How to capture affine deformations of limbs?

In plane rotation Out plane rotation

Foreshortening

y ; v g
Y > A .4
-~ - u —~ Va
{ 5 S g \
)
- .
= N . Y -
> = \
% [a p-

Naive brute-force evaluation is expensive




Our Approach - “"Mini” Parts

Capture affine deformations with “mini” part model



Example: Arm Approximation

M=is




Example: Torso Approximation




Our Approach

. Extension of Pictorial Structure Model

D Q
N RN
mon —

ORI |

% 0

| \
[
J

« Why?

Flexibility: General affine warps (orientation,
foreshortening, ...)

Speed: Mixtures of local templates + dynamic
programming



Linear-Parameterized Pictorial
Structure Model




Linear-Parameterized Pictorial
Structure Model

o 12 Vertices
+ ;. Unary template for part i
+ (1,1;): Local image features at location |

zzai ¢(I,lz)

eV

«/': Vertices
* ¢ : Unary template for part
* - Local image features at location |,



Linear-Parameterized Pictorial
Structure Model

S(I L)—Zaz (L) + > Bij (i, 1)
eV iJEFE
« E : Edges
« Psi : Spatial features between i and j
« Beta : Pairwise springs between part and part



Our Flexible Mixture Model

,,,,,

=N o (Il + )BT (U, 1)

eV ijer

- alpha : Unary template for part with mixture

« Beta : Pairwise springs between part I with
mixture m; and part j with mixture m,;



Our Flexible Mixture Model

,,,,,

=5 am gb(Il + 37 B (s, -
eV ijel

« : Unary template for part with mixture

« : Pairwise springs between part with mixture
and part with mixture



Co-occurrence “Prior”




Inference & Learning

et 5.

For a tree graph (V,E): dynamic programming




Inference & Learning

et 5.

For a tree graph (V,E): dynamic programming

Given labeled positive {/d7n,Lin,Min} and
negative {/{7},

write Zdn=(Lin ,Min), and S(/,z)=w $(/,z)

mineir1/2 [l

Learning

S.t. VnEpos wo(lin,zin )=1



Benchmark Datasets

PARSE Full-body

http://www.ics.uci.edu/
~dramanan/papers/parse/
index.html

BUFFY Upper-body

http://www.robots.ox.ac.uk/
~vgg/data/stickmen/index.html




How to Get Part Mixtures?

Solution:
Cluster relative locations of joints w.r.t. parents

Neck wrt Head Left knee wrt hip Left foot wrt knee Left elbow wrt shoulder Left hand wrt elbow




Articulation
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Diagnostic

Performance vs number of types per part
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« 14 parts (joints) vs 27 parts (joints +
mi pointsi

 More parts and types/mixtures help



Quantitative Results

% of correctly localized limbs

Image Parse Testset

Method Total
Ramanan 2007 27.2
Andrikluka 2009 55.2
Johnson 2010a 56.4
Singh 2010 60.9
Johnson 2010b 66.2
Our Model 74.9

All previous work use explicitly articulated models




Quantitative Results

% of correctly localized limbs

Image Parse Testset

Method Head Torso U. Legs | L. Legs | U. Arms | L. Arms Total
Ramanan 2007 52.1 37.5 31.0 29.0 17.5 13.6 27.2
Andrikluka 2009 81.4 75.6 63.2 55.1 47.6 31.7 55.2
Johnson 2010a 77.6 68.8 61.5 54.9 53.2 39.3 56.4
Singh 2010 91.2 76.6 71.5 64.9 50.0 34.2 60.9
Johnson 2010b 85.4 76.1 73.4 65.4 64.7 46.9 66.2
Our Model | 97.6 93.2 83.9 75.1 72.0 48.3 74.9

1 second per image




Quantitative Results

% of correctly localized limbs

Subset of Buffy Testset

Method Total

Tran 2010 62.3
Andrikluka 2009 73.5
Eichner 2009 80.1
Sapp 2010a 85.9
Sapp 2010b 85.5
Our Model 89.1

All previous work use explicitly articulated models



Quantitative Results

% of correctly localized limbs

Subset of Buffy Testset

Method | Head Torso | U. Arms | L. Arms Total

Tran 2010 -— -— -— -— 62.3
Andrikluka 2009 90.7 95.5 79.3 41.2 73.5
Eichner 2009 98.7 97.9 82.8 59.8 80.1
Sapp 2010a 100 100 91.1 65.7 85.9
Sapp 2010b 100 96.2 95.3 63.0 85.5
Our Model 100 99.6 96.6 70.9 89.1

Ours | 5seconds VS 5 minutes | next best




Human Detection

precision
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Conclusion

 Model affine warps Wil

with a part-based
model
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Conclusion

« Model affine warps iz
with a part-based = >
model

 Exponential set of
pictorial structures

« Rigid vs flexible
relations
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Conclusion

Model affine warps Wil
with a part-based =
model

Exponential set of
pictorial structures

Rigid vs flexible
relations

Supervision helps
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Further ideas:
Human Pose Estimation Using Consistent Max-Covering, Hao
Jiang, ICCV 09

Max-margin hidden conditional random fields for human action
recognition, Yang Wang and Greg Mori, CVPR 09

Adaptive pose priors for pictorial structures, B. Sapp, C. Jordan,
and B. Taskar, CVPR 10



