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Announcements

« Assignment 1 was due last week. Have you sent it?

Please check the table with received assignments on the class
webpage.

http://www.di.ens.fr/willow/teaching/recvis12

» Assignment 2 was out last week. Any questions?
http://www.di.ens.fr/willow/teaching/recvis12/assignment?/

* Topic ideas for the final projects will be out this week:
http://www.di.ens.fr/willow/teaching/recvis12/finalproject/
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Final project presentations (details later)

» 1st batch during class on Tuesday Dec 11 (16:15-19:15)

« 2"d batch either on:

(a) Wednesday Dec 12 (2pm-6pm)
or

(b) Thursday Dec 13 (2pm-6pm)

Which one would you prefer?



What we would like to be able to do...

* Visual scene understanding
* What is in the image and where

—-— b
. Motorbike: Suzuki GSX 750
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» Object categories, identities, properties, activities, relations, ...



Recognition Tasks

 Image Classification \
1 1 ﬁ"_" e I s
— Does the image contain an aeroplane? ==s- a2

(last lecture, assignment 2)

* Object Class Detection/Localization
— Where are the aeroplanes (if any)?

* Object Class Segmentation

— Which pixels are part of an aeroplane
(if any)?




Things vs. Stuff

Thing (n): An object with a
specific size and shape.

Ted Adelson, Forsyth et al. 1996.

Stuff (n): Material defined by a
homogeneous or repetitive pattern
of fine-scale properties, but has
no specific or distinctive spatial
extent or shape.

Slide: Geremy Heitz



Recognition Task

* Object Class Detection/Localization
— Where are the aeroplanes (if any)?

« Challenges

— Imaging factors e.g. lighting, pose,
occlusion, clutter

— Intra-class variation

« Compared to Classification
— Detailed prediction e.g. bounding box

— Location usually provided for training




Challenges: Scale




Challenges: Background Clutter




Challenges: Occlusion and truncation




Challenges: Intra-class variation




Object Category Recognition by Learning

« Difficult to define model of a category. Instead, learn from
example images




Level of Supervision for Learning

Image-level label

Bounding box




Preview of typical results

aeroplane bicycle

car cow

motorbike



Class of model: Pictorial Structure

« Intuitive model of an object
 Model has two components
1. parts (2D image fragments) LRFE 125

2. structure (configuration of parts)
« Dates back to Fischler & Elschlager 1973

MOUTH

Is this complexity of representation necessary ?

Which features?



Restrict deformations




Problem of background clutter

» Use a sub-window
— At correct position, no clutter is present
— Slide window to detect object
— Change size of window to search over scale




Outline

. Sliding window detectors

. Features and adding spatial information

. Histogram of Oriented Gradients (HOG)

. Two state of the art algorithms and PASCAL VOC

. The future and challenges



a & DN

Outline

. Sliding window detectors

« Start: feature/classifier agnostic

« Method

* Problems/limitations

Features and adding spatial information
Histogram of Oriented Gradients (HOG)

Two state of the art algorithms and PASCAL VOC

The future and challenges



Detection by Classification

« Basic component: binary classifier
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Car/non-car
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Classifier

J

l

No,
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Detection by Classification

* Detect objects in clutter by search
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» Sliding window: exhaustive search over position and scale



Detection by Classification

* Detect objects in clutter by search
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» Sliding window: exhaustive search over position and scale



Detection by Classification

* Detect objects in clutter by search

-

\

Car/non-car
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Classifier
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* Sliding window: exhaustive search over position and scale
(can use same size window over a spatial pyramid of images)



Window (Image) Classification

Training Data

Classifier

. F(x) )

. !
Car/Non-car
P(c|x) < F(x)

Feature

Extraction
- Y

[

* Features usually engineered
* Classifier learnt from data



Problems with sliding windows ...

sonFrontal m

» aspect ratio
« granularity (finite grid)
* partial occlusion

* multiple responses

See recent work by

* Christoph Lampert et al CVPR 08, ECCV 08



Outline

. Sliding window detectors

. Features and adding spatial information
Bag of visual word (BoW) models

Beyond BoW I: Constellation and ISM models
Beyond BoW II: Grids and spatial pyramids

. Histogram of Oriented Gradients (HOG)
. Two state of the art algorithms and PASCAL VOC

. The future and challenges



Recap: Bag of (visual) Words representation

» ©@%O ® %@ @ o e ©@® @@(
® @

 Detect affine invariant local features (e.g.
affine-Harris)

* Represent by high-dimensional
descriptors, e.g. 128-D for SIFT

* How to summarize sliding window content in
a fixed-length vector for classification?

i S NN N
URNTE
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vocabulary of visual words

2. Represent image as a histogram over visual
words — a bag of words




Local region descriptors and visual words
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* Normalize regions to fixed size and shape

 Describe each region by a SIFT descriptor

* Vector quantize into visual words, e.g. using k-means

NB: aff. detectors/SIFT/visual words originally for view point invariant matching



Visual Words

Local Descriptors
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Example Visual Words




Intuition

Visual Vocabulary

* Visual words represent “iconic” image fragments
« Feature detectors and SIFT give invariance to local rotation and scale
 Discarding spatial information gives configuration invariance




Learning from positive ROl examples

[ ] Feature Vector [ ]



Sliding window detector

e Classifier: SVM with linear kernel
« BOW representation for ROI

e

Example detections for dog

Lampert et al CVPR 08



Discussion: ROl as a Bag of Visual Words

» Advantages

— No explicit modelling of spatial information ->
high level of invariance to position and
orientation in image

— Fixed length vector -> standard machine
learning methods applicable

* Disadvantages

— No explicit modelling of spatial information ->
less discriminative power

— Inferior to state of the art performance




Beyond BOW I: Pictorial Structure

« Intuitive model of an object
 Model has two components
1. parts (2D image fragments) LEXT 1o

2. structure (configuration of parts)
« Dates back to Fischler & Elschlager 1973

MOUTH

Two approaches that have investigated this spring like model:
 Constellation model

* Implicit shape model



Spatial Models Considered

Fully connected shape

e.g. Constellation Model

Parts fully connected
Recognition complexity: O(NP)
Method: Exhaustive search

“Star” shape model

e.g. ISM

Parts mutually independent
Recognition complexity: O(NP)
Method: Gen. Hough Transform



Constellation model

Fergus, Perona & Zisserman,CVPR 03

 Explicit structure model — Joint Gaussian over all
part positions

 Part detector determines position and scale
« Simultaneous learning of parts and structure
 Learn from images alone using EM algorithm

Given detections: learn a
six part model by
optimizing part and
configuration similarity




Example — Learnt Motorbike Model

Samples from appearance model

Part 1 Det: x1O 18
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Recognized Motorbikes
Shape model
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Airplanes

Airplane shape model
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Spotted cats

Spotted cat shape model
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Discussion: Constellation Model

« Advantages
— Works well for many different object categories

— Can adapt well to categories where
« Shape is more important
« Appearance is more important

— Everything is learned from training data
— Weakly-supervised training possible

* Disadvantages
— Model contains many parameters that need to be estimated
— Cost increases exponentially with increasing number of parameters
=> Fully connected model restricted to small number of parts.



Implicit Shape Model (ISM)

Leibe, Leonardis, Schiele, 03/04

- Basic ideas -
— Learn an appearance codebook X X
— Learn a star-topology structural model x x

« Features are considered independent given object centre

 Algorithm: probabilistic Generalized Hough Transform
Good engineering:
— Soft assignment
— Probabilistic voting
— Continuous Hough space



Codebook Representation

 Extraction of local object features
— Interest Points (e.g. Harris detector)
— Sparse representation of the object appearance

* Collect features from whole training set

« Example:
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Class specific vocabulary



Leibe & Schiele 03/04: Generalized Hough Transform

Learning: for every cluster, store possible “occurrences”

Recognition: for new image, let the matched patches vote for possible object
positions




Leibe & Schiele 03/04: Generalized Hough Transform

Interest Points Matched Codebook
Entries




Scale Voting: Efficient Computation
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* Mean-Shift formulation for refinement
— Scale-adaptive balloon density estimator
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Detection Results

 Qualitative Performance
— Recognizes different kinds of cars
— Robust to clutter, occlusion, low contrast, noise




Discussion: ISM and related models

Advantages

» Scale and rotation invariance

can be built into the
representation from the start

* Relatively cheap to learn and
test (inference)

« Works well for many different
object categories

« Max-margin extensions
possible, Maji & Malik, CVPR09

Disadvantages

* Requires searching for modes in the Hough space

 Similar to sliding window in this respect

* Is such a degree of invariance required? (many objects are horizontal)



Beyond BOW II: Grids and spatial pyramids

Start from BoW for ROI

* no spatial information recorded

» sliding window detector

l l

[ ] Feature Vector [ ]



Adding Spatial Information to Bag of Words

Bag of Words

, ... I...

|
..l.I ..|.| aula

/ Concatenate \u/

Feature Vector [ ]

Keeps fixed length feature vector for a window

[Fergus et al, 2005]



Tiling defines (records) the spatial correspondence of the words

« parameter: number of tiles

J

IIIII"
J \

IIIII"
J \

'IIIII"
N J \

If codebook has V visual words, then representation has dimension 4V
Fergus et al ICCV 05



Spatial Pyramid — represent correspondence

\

=

1 BoW

4 BoW

 As in scene/image classification can use pyramid kernel

[Grauman & Darrell, 2005]

[Lazebnik et al, 2006]



Dense Visual Words

* Why extract only sparse image
fragments?

 Good where lots of invariance
IS needed, but not relevant to
sliding window detection?

 Extract dense visual words on an overlapping grid

[Luong & Malik, 1999]

. Quantize [Varma & Zisserman, 2003]
| —> Word [Vogel & Schiele, 2004]
[Jurie & Triggs, 2005]

[Fei-Fei & Perona, 2005]
Patch / SIFT [Bosch et al, 2006]

* More “detail” at the expense of invariance
« Pyramid histogram of visual words (PHOW)



Outline

. Sliding window detectors
. Features and adding spatial information

. Histogram of Oriented Gradients + linear SVM classifier
Dalal & Triggs pedestrian detector
HOG and history

Training an object detector

. Two state of the art algorithms and PASCAL VOC

. The future and challenges



Dalal & Triggs CVPR 2005 Pedestrian
detection

 Objective: detect (localize) standing humans in an image
» sliding window classifier

* train a binary classifier on whether a window contains a
standing person or not

 Histogram of Oriented Gradients (HOG) feature

* although HOG + SVM originally introduced for pedestrians
has been used very successfully for many object categories



Feature: Histogram of Oriented
Gradients (HOG)

dominant

image HOG

« tile 64 x 128 pixel window into 8 x 8 pixel cells

frequency

 each cell represented by histogram over 8
orientation bins (i.e. angles in range 0-180 degrees) orientation



Histogram of Oriented Gradients (HOG) continued

Orientation Voting

b &%

N

= Overlapping Blocks

\\
N
N\

Input Image Gradient Image

-

L.ocal Normalization

» Adds a second level of overlapping spatial bins re-normalizing
orientation histograms over a larger spatial area

 Feature vector dimension (approx) = 16 x 8 (for tiling) x 8
(orientations) x 4 (for blocks) = 4096



Window (Image) Classification

Tra|n|ng Data

4 )
Feature | __ _, | Classifier
Extraction F(x)
- y - y
: !
« HOG Features pedestrian/Non-pedestrian

e Linear SVM classifier P(clx) < F'(x)






Averaged examples
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Classifier: linear support vector
machine (linear SVM)
Advantages of linear SVM: f(X) — WTX + b

* Training (Learning)

* Very efficient packages for the linear case, e.g. LIBLINEAR for batch
training and Pegasos for on-line training.

« Complexity O(N) for N training points (cf O(N”*3) for general SVM)
- Testing (Detection)
S
Non-linear f(X) = Eaik(Xi,X) +b
i

S = # of support vectors
= (worst case ) N

size of training data

S
linear f(X) = EaiXiTX +b

W x+b Independent of size of training data



Review: Binary classification

Given training data (x;,y;) for:=1... N, with
x; € R% and y; € {—1,1}, learn a classifier f(x)
such that

() { o

i.e. y;f(x;) > 0 for a correct classification.

+1
—1

A A Y
° o A .‘ AAA
o. .0 o. AAAAA .:.... A
: o © A AA: AA °.0.o.o A
e ® A A 3
A A aha A




Review: Linear classifiers

A linear classifier has the form

_f(x) =0

fx)=w'x+b

A A
A A,

A AAA ,

A A
A AA

A
f(x) >0

* In 2D the discriminant is a line
W is the normal to the plane, and b the bias

« W is known as the weight vector



Review: Linear classifiers

A linear classifier has the form

f(x) =w'x+0

L3

 in 3D the discriminant is a plane, and in nD it is a hyperplane



Review: Linear classifiers

* Find linear function (hyperplane) to separate positive and
negative examples

X, positive: X, W+b=0

X, negative: X, w+b<0

Which hyperplane
is best?




Review: Linear classifiers - margin

« Generalization is not
good in this case:

 Better if a margin
IS introduced:

x, (roundness)



Support vector machines

* Find a hyperplane that maximizes the margin between
positive and negative examples

\ © X, positive (y, =1):  x.w+b=1

X, negative(y, =-1): x,*w+b=-1

® For support, vectors, X; W +b = =1

O The margin is 2/ liwll

Support vectors Margin

* For more details on SVM please see nice slides at
http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf



Dalal and Triggs, CVPR 2005




Learned model

wx+b

f(x)
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What do negative weights mean!

wx > 0
(w+-w)x>0

Rk
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Complete system should compete pedestrian/pillar/doorway models
Discriminative models come equipped with own bg
(avoid firing on doorways by penalizing vertical edges)

Slide from Deva Ramanan




Why does HOG + SVM work so well?

« Similar to SIFT, records spatial arrangement of histogram orientations
« Compare to learning only edges:

— Complex junctions can be represented

— Avoids problem of early thresholding

— Represents also soft internal gradients
» Older methods based on edges have become largely obsolete
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* HOG gives fixed length vector for window,
suitable for feature vector for SVM




Chamfer Matching

Input Edges Template * Match points between template
and image

e :
I )U —E i « Measure mean distance

‘éli » Template edgel matches nearest
image edgel

D(T,I) = 2 ¥ mind(p,q)
| |pET qel

 Distance transform reduces min operation

Distance to array lookup
Transform o _
« Computable in linear time
* Localize by sliding window search
Best
match

[Gavrila & Philomin, 1999]



Chamfer Matching
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Hierarchy of Templates Detections

* In practice performs poorly in clutter

* Unoriented edges are not discriminative enough

(too easy to find...)
[Gavrila & Philomin, 1999]



Contour-fragment models
Shotton et al ICCV 05, Opelt et al ECCV 06

» Generalized Hough like representation using contour
fragments

« Contour fragments learnt from edges of training images

e A el R

« Hough like voting for detection

N . .

9 Wi



Training a sliding window detector

* Object detection is inherently asymmetric: much more
“non-object” than “object” data

» Classifier needs to have very low false positive rate
* Non-object category is very complex — need lots of data



Bootstrapping

. — - . . 1 n
B 1 - - - -
5 [ A 3
| = b— o i 72

Pick negative training
set at random

Train classifier
Run on training data

Add false positives to
training set

Repeat from 2

* Collect a finite but diverse set of non-object windows
* Force classifier to concentrate on hard negative examples

* For some classifiers can ensure equivalence to training on

entire data set



Example: train an upper body detector

— Training data — used for training and validation sets
« 33 Hollywood2 training movies
« 1122 frames with upper bodies marked

— First stage training (bootstrapping)
« 1607 upper body annotations jittered to 32k positive samples
« 55k negatives sampled from the same set of frames

— Second stage training (retraining)
« 150k hard negatives found in the training data

- - - -
e, -
.
.




Training data — positive annotations




Positive windows

T ———

Note: common size and alignment



Jittered positives




Jittered positives
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Random negatives




Random negatives
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Window (Image) first stage classification

Jittered positives
—>

random negatives

- find high scoring false positives detections

\

-
HOG Featur

Extraction

~N
e

J

-]

* these are the hard negatives for the next round of

training

« cost = # training images x inference on each image

" Linear SVM )
Classifier

. f(X)=wx+b




Hard negatives




Hard negatives

JI JL]L |
A EDEE

AR




First stage performance on validation set
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Precision — Recall curve

correct returned
windows windows
O = :
* Precision: % of returned windows that _—_
are correct Q
» Recall: % of correct windows that are Q T
returned O all windows

""‘"w-.,\ \\cia,ssifier score decreasing
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First stage performance on validation set
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Performance after retraining
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Effects of retraining

precision
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Side by side

before retraining after retraining




Side by side

before retraining after retraining




Side by side

before retraining after retraining

52




Tracked upper body detections

0.464) | ,‘ |{




Tracked upper body person
detections

Combined face, upper body and full body detectors “vote” for
upper body bounding boxes.

Detections are tracked and smoothed over video.
[Lezama, MVA thesis 2010]



Accelerating Sliding Window Search

« Sliding window search is slow because so many windows are
needed e.g. X x y x scale = 100,000 for a 320x240 image

* Most windows are clearly not the object class of interest

« Can we speed up the search?



Cascaded Classification

* Build a sequence of classifiers with increasing complexity

More complex, slower, lower false positive rate

1 fare fage

Window l l l

Non-face Non-face Non-face

* Reject easy non-objects using simpler and faster classifiers

[Classifier] | [I@das&ifgea] ;[Edasﬂiisea]_, Face




Cascaded Classification

* Slow expensive classifiers only applied to a few windows =»

significant speed-up

 Controlling classifier complexity/speed:

— Number of support vectors
— Number of features
— Type of SVM kernel

'Romdhani et al, 2001]
Viola & Jones, 2001]

Vedaldi et al, 2009]



Summary: Sliding Window Detection

« Can convert any image classifier into an
object detector by sliding window. Efficient
search methods available.

* Requirements for invariance are reduced by
searching over e.g. translation and scale

» Spatial correspondence can be s S W:Q"‘!
“engineered in” by spatial tiling ’E"‘ggg
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Outline

. Sliding window detectors

Features and adding spatial information
HOG + linear SVM classifier

Two state of the art algorithms and PASCAL VOC
VOC challenge

Vedaldi et al — multiple kernels and features, cascade

Felzenswalb et al — multiple parts, latent SVM

The future and challenges



The PASCAL Visual Object Classes
(VOC) Dataset and Challenge

Mark Everingham
Luc Van Gool
Chris Williams

John Winn

Andrew Zisserman

3 PASCAL

€ Pattern Analysis, Statistical Modelling and
Computational Learning



The PASCAL VOC Challenge

 Challenge in visual object
recognition funded by

PASCAL network of
excellence

 Publicly available dataset of
annotated images

* Main competitions in classification (is there an X in this
image), detection (where are the X’s), and segmentation
(which pixels belong to X)

 “Taster competitions™ in 2-D human “pose estimation” (2007-
present) and static action classes

« Standard evaluation protocol (software supplied)



Dataset Content

» 20 classes: aeroplane, bicycle, boat, bottle, bus, car, cat,
chair, cow, dining table, dog, horse, motorbike, person,
potted plant, sheep, train, TV

* Real images downloaded from flickr, not filtered for “quality”

« Complex scenes, scale, pose, lighting, occlusion, ...



Annotation

« Complete annotation of all objects

» Annotated in one session with written guidelines

personFrontal TruncDiff

OCCI Ud ed personOce
Obiject is significantly
occluded within BB

Truncated
Obiject extends
beyond BB

Difficult
Not scored in
evaluation

Pose
Facing left



Examples

Aeroplane Bicycle Bottle




Examples

Dining Table

Horse Motorbike Person

trainTruncDifficut

. psimTM’p.ﬂTTNﬂw!%w
B i
IEI "y



Main Challenge Tasks

* Classification
— Is there a dog in this image?
— Evaluation by precision/recall

* Detection
— Localize all the people (if any) in
this image
— Evaluation by precision/recall
based on bounding box overlap




Detection: Evaluation of Bounding Boxes

 Area of Overlap (AO) Measure
Ground truth B,

Byt [ Bp
AO(Bgy, Bp) = Zotl15
N B O gt p) | Byt U Byl

Bgt p

Predicted Bp

> Threshold
50%

Detection if

-
-




Dataset Statistics

train val trainval test
Images Objects Images Objects Images Objects Images Objects

Aeroplane 201 267 206 266 407 533
Bicycle 167 232 181 236 348 468
Bird 262 381 243 379 505 760
Boat 170 270 155 267 325 537
Bottle 220 394 200 393 420 787
Bus 132 179 126 186 258 365
Car 372 664 358 653 730 1,317
Cat 266 308 277 314 543 622
Chair 338 716 330 713 668 1,429
Cow 86 164 86 172 172 336
Diningtable 140 153 131 153 271 306
Dog 316 391 333 392 649 783
Horse 161 237 167 245 328 482
Motorbike 171 235 167 234 338 469
Person 1,333 2,819 1,446 2,996 2779 5815
Pottedplant 166 311 166 316 332 627
Sheep 67 163 64 175 131 338
Sofa 155 172 153 175 308 347
Train 164 190 160 121 324 381
Tvmonitor 180 259 173 257 353 516

Total 3,473 8,505 3,581 8713 7,054 17,218 6,650 16,829




True Positives - Bicycle

UoCTTI_LSVM-MDPM




False Positives - Bicycle

UoCTTI_LSVM-MDPM

OXFORD_MKL

= 'I'J e —— =1




True Positives — TV /monitor

OXFORD_MKL

LEAR_CHI-SVM-SIFT-HOG-CLS




False Positives — TV /monitor




Precision/Recall - Aeroplane
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Precision/Recall - Car
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Precision/Recall — Potted plant
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AP by Class Detection
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Wide variety of methods: sliding window, combination with whole
image classifiers, segmentation based



Object Detection with Discriminatively
Trained Part Based Models

Pedro F. Felzenszwalb, David Mcallester,
Deva Ramanan, Ross Girshick

PAMI 2010

Matlab code available online:
http://www.cs.brown.edu/~pff/latent/



Approach

» Mixture of deformable part-based models
— One component per “aspect” e.g. front/side view

« Each component has global template + deformable parts
» Discriminative training from bounding boxes alone



Example Model

* One component of person model

root filters part filters
coarse resolution finer resolution

deformation
models

NG



Starting Point: HOG Filter

Filter F

Score of F at position p is
F - @(p, H)

@(p, H) = concatenation of
REseRREReettt HOG features from
HOG pyramid H subwindow specified by p

« Search: sliding window over position and scale
 Feature extraction: HOG Descriptor
 Classifier: Linear SVM Dalal & Triggs [2005]



Object Hypothesis

* Position of root + each part
« Each part: HOG filter (at higher resolution)

Z = (po,..., Pn)
. location of root
. location of parts

scores minus

@ Score is sum of filter
deformation costs

» ln'n;tger pyré:hic[ : - HOG feature pyramid



Score of a Hypothesis

Appearance term Spatial prior

score(po,---,pn)=ZF¢-¢(H,I% Zd - (dzf, dy})
'=01 1 displacements

filters deformation parameters

score(z) = 3 - V(H, 2)
/ \

concatenation of filters concatenation of

and deformation HOG features and

parameters part displacement
features

* Linear classifier applied to feature subset defined by hypothesis



Part Detection

iInput image

head filter
Response of filter in I-th pyramid level

Ry(z,y) =F - ¢(H,(z,y,1))
cross-correlation

Transformed response
Di(z,y) = max (Ri(z +dz,y + dy) — di - (do?,dy?))

max-convolutlon, computed in linear time
(spreading, local max, etc)




System

model

feature map at twice the resolution

lresponse of part fitters

l transformed responses

response of root filter

=
+

-
-

color encoding of filter
response values
root locations



Training

* Training data = images + bounding boxes
Need to learn: model structure, filters, deformation costs




Latent SVM (MI-SVM)

Classifiers that score an example x using

fs(z) = max (- ®(z,2)

o / ;: | ::
3 are model parameters

* Which component?
* Where are the parts?

z are latent values <«

Training data D = ({(z1,y1),-- -5 (Tn,¥n)) ¥ €{-1,1}
We would like to find 8 such that: ¥ifs(z:) >0

Minimize Regularizer “Hinge loss™ on one training example
~— n A N\

1 5 r
Lp(B) = §||ﬁ|| + CZmax(O, 1 —y;fa(x;))
1=1 SVM objective




Latent SVM Training

Lo(8) = 5181 + O3 max(0,1 - yifs(a:))

1=1

« Convex if we fix z for positive examples

» Optimization:
— Initialize p and iterate:
 Pick best z for each positive example
* Optimize g with z fixed

 Local minimum: needs good initialization
— Parts initialized heuristically from root

>

Alternation
strategy



Person Model
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part filters deformation

finer resolution

root filters
coarse resolution

models

Handles partial occlusion/truncation



Car Model

P

- » » - » - - ~

root filters part filters deformation
coarse resolution finer resolution models



Car Detections

high scoring true positives high scoring false positives




Person Detections

high scoring false positives
(not enough overlap)

high scoring true positives




Precision/Recall: VOC2008 Person

precision

1
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N

N

N

0 01 02 03 04 05 06 07 08 09
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Precision/Recall: VOC2008 Bicycle

precision

0.9

0.8/

0.7

0.6

0.5

0.4

0.3}/

0.2]

0.1

UoCTTIUCI (42.0)
LEAR_PlusClass (34.3)
Oxford (24.6)
CASIA_Det (14.6)
— XRCE_Det (10.5)
MPI_struct (8.0)

Jena (1.4)




Comparison of Models

class: car, year 2006

precision
°o o
O, (o3}

o
I

031 —4—1 Root (0.48)
ook 2 Root (0.58)

1 Root+Parts (0.55)
—e— 2 Root+Parts (0.62)
—v— 2 Root+Parts+BB (0.64)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
recall

0.1

1




Summary

* Multiple features and multiple kernels boost
performance

* Discriminative learning of model with latent

variables for single feature (HOG):
— Latent variables can learn best alignment in the
ROI training annotation
— Parts can be thought of as local SIFT vectors
— Some similarities to Implicit Shape Model/

Constellation models but with discriminative/
careful training throughout

| W= -
al el e
f

NB: Code available for latent model !



Outline

. Sliding window detectors

. Features and adding spatial information

. HOG + linear SVM classifier

. Two state of the art algorithms and PASCAL VOC

. The future and challenges



Current Research Challenges

» Context (See class on scenes and objects on Dec 3).
— from scene properties: GIST, BoW, stuff
— from other objects
— from geometry of scene, e.g. Hoiem et al CVPR 06

 Occlusion/truncation
— Winn & Shotton, Layout Consistent Random Field, CVPR 06
— Vedaldi & Zisserman, NIPS 09
— Yang et al, Layered Object Detection, CVPR 10

* 3D

— Zhu&Ramanan, CVPR’12 (view-based representation of faces)

 Scaling up — thousands of classes
— Torralba et al, feature sharing
— ImageNet

* Weak and noisy supervision



Final projects

 The final project amounts to 50% of the final grade.

* You will have the opportunity to choose your own research
topic and to work on a method recently published at a top-
quality computer vision conference (ECCV, ICCV, CVPR) or

journal (IJCV, TPAMI).

* Your task will be to:
— (i) read and understand the research paper,
— (ii) implement (a part of ) the paper, and
— (iii) perform qualitative/quantitative experimental evaluation.



Final projects Il.

« We will provide a list of interesting topics.

* If you would like to work on another topic (not from the list
below), which you may have seen during the class or
elsewhere, please consult the topic with the class instructors

(I. Laptev and J. Sivic).

* You may work alone or in a group of 2-3 people. If working in
a group, we expect a more substantial project, and an equal
contribution from each student in the group.



Final projects lll — evaluation and due dates

* Project proposal (due on Nov 9th). You will submit a 1-page
project proposal indicating (i) your chosen topic, (ii) the plan
of work, i.e. what are you going to implement, what data you
are going to use, what experiments you are going to do, (iii) if
working in a group, who are the members of the group and
how you plan to share the work. The project proposal will
represent 10% of the final project grade.

* Project report (due on Dec 23rd). You will write a short
report (<3 pages) summarizing your work. The report will
represent 70% of the final project grade.

* Project presentation (on Dec 11 or Dec 12). You will present
your work in the class on Dec 11 or Dec 12. The project
presentation will represent 20% of the final project grade.



Final projects IV.

Re-using other’s people code:

You can re-use other people’s code. However, you should
clearly indicate in your report/presentation, what is your own
code and what was provided by others (don't forget to indicate
the source).

We expect projects balanced between implementation /
experimental evaluation. For example, if you implement a
difficult algorithm from scratch, only few qualitative
experimental results may suffice. On the other hand, if you
completely use someone else’s implementation, we expect a
strong quantitative experimental evaluation with analysis of the
obtained results and comparison with baseline methods.



Example topics

* Please see
http://www.di.ens.fr/willow/teaching/recvis12/finalproject/

Your own chosen topic:

You can also choose your own topic, e.g. based on a paper,
which has been discussed in the class. Please validate the
topic with the course instructors (l. Laptev or J. Sivic) first. You
can discuss the topic with the course instructors after the class
or emalil to lvan.Laptev@ens.fr or Josef.Sivic@ens.fr.



Example of a topic defined by students

* Defined their own

problem Computer Vision

Recognizing playing instrument
* Collected data (their

own and the |nternet) Pierre-Adrien Nadal, Axel Barrau ©

December 24, 2011
 Applied visual
representations and

classification/detection mu
techniques from the |
)




Joint projects with other classes

* For example with the “Introduction to graphical models” class
(F. Bach and G. Obozinski).

* The joint project between two classes is expected to be more
substantial and will have a strong machine learning as well as
computer vision component. Please contact the instructors of
both courses if you are interested in the joint project. We will
discuss and adjust the requirements from each course
depending on the size of the group.

* The project should have strong “computer vision” and
“graphical models” components.



Example

Activity forecasting

« Paper: Activity forecasting. Kris M. Kitani, Brian D. Ziebart,
Drew Bagnell and Martial Hebert, European Conference on
Computer Vision (ECCV 2012).

« Page: http://www.cs.cmu.edu/~kkitaniActivityForecasting.nhtml

* This topic is particularly suitable for someone taking also the
“Reinforcement learning” class by Remi Munos.

Fig. 1. Given a single pedestrian detection, our proposed approach forecasts plausible
paths and destinations from noisy vision-input



