Reconnaissance d'objets et vision artificielle 2012

Category-level localization

Josef Sivic

http://www.di.ens.fr/~josef

Slides from Andrew Zisserman

Visual Recognition and Machine Learning Summer School, 2010-2012 http://www.di.ens.fr/willow/events/cvml2012/

Includes slides from: Ondra Chum, Alyosha Efros, Mark Everingham, Pedro Felzenszwalb, Rob Fergus, Kristen Grauman, Bastian Leibe, Ivan Laptev, Fei-Fei Li, Marcin Marszalek, Pietro Perona, Deva Ramanan, Bernt Schiele, Jamie Shotton, Andrea Vedaldi

Announcements

Assignment 1 was due last week. Have you sent it?
 Please check the table with received assignments on the class webpage.

http://www.di.ens.fr/willow/teaching/recvis12

- Assignment 2 was out last week. Any questions?
 http://www.di.ens.fr/willow/teaching/recvis12/assignment2/
- Topic ideas for the final projects will be out this week:
 http://www.di.ens.fr/willow/teaching/recvis12/finalproject/

Assignment 1 – received reports

[RecVis12] Received assignments : Sheet1		
RecVis12	Received Assignments	
Key:	R=received, L=late (<=3days), VL=very late (>3days)	
Student name	Email	Assignment 1
BIENVENU Alexis	alexis.bienvenu@eleves.enpc.fr	R
BELGHITI Ismael	isma.belghiti@gmail.com	R
COLONNA Andréa	colonnafinance@gmail.com	R
CIRSTEA Bogdan	cirstea.bogdanionut@yahoo.com	R
DARDARD Floriane	floriane.dardard@ens.fr	R
HEDOUIN Renaud	renaud.hedouin@gmail.com	R
HUYNH Olivier	olivier.huynh@mines-paristech.fr	R
KUMAR KARRI Senanayak Sesh	seshkumar@gmail.com	R
LE GUEN Vincent	vincent.le-guen@telecom-paristech.fr	L
MOISY-MABILLE Kévin	kevin.moisy-mabille@dptinfo.ens-cachan.fr	R
OQUAB Maxime	oquabm@eleves.enpc.fr	R
OYALLON Edouard	edouard.oyallon@ens-cachan.fr	R
PUMIR Thomas	pumir.thomas@gmail.com	R
RERRONNET Lorraine	glowable@gmail.com	R
REZENDE Rafael	rafael.sampaio-de-rezende@polytechnique.org	R
RICAUD Bruno	bruno.ricaud@mines-paristech.fr	R
SAHIN Aytunc	aytunc.sahin@polytechnique.edu	R
SPISIAK Michal	michal.spisiak@gmail.com	R
TERRAZZONI Frédéric	frederic.terrazzoni@gmail.com	R
VU Tuan Hung	tuan-hung.vu@telecom-paristech.fr	R
YAO Tao Jin	tao-jin.yao@mines-paristech.fr	R

Final project presentations (details later)

• 1st batch during class on Tuesday Dec 11 (16:15-19:15)

• 2nd batch either on:

(a) Wednesday Dec 12 (2pm-6pm)

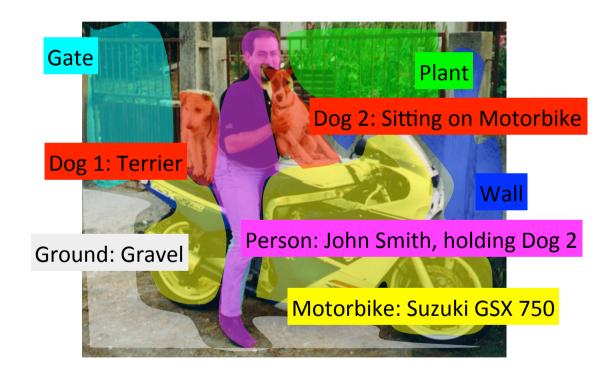
or

(b) Thursday Dec 13 (2pm-6pm)

Which one would you prefer?

What we would like to be able to do...

- Visual scene understanding
- What is in the image and where



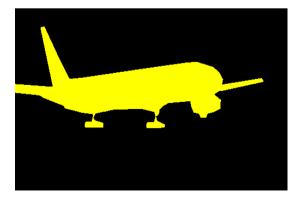
Object categories, identities, properties, activities, relations, ...

Recognition Tasks

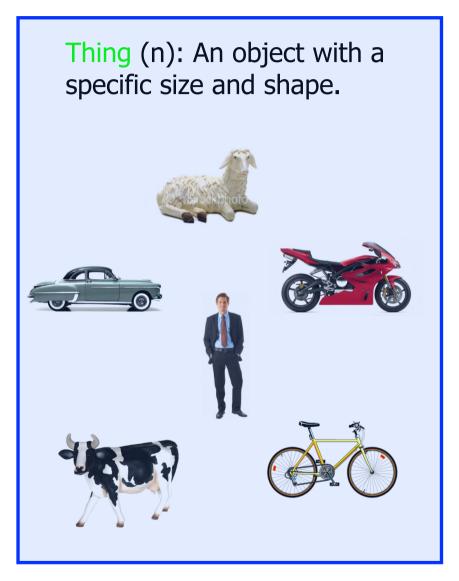
- Image Classification
 - Does the image contain an aeroplane?(last lecture, assignment 2)

- Object Class Detection/Localization
 - Where are the aeroplanes (if any)?

- Object Class Segmentation
 - Which pixels are part of an aeroplane (if any)?

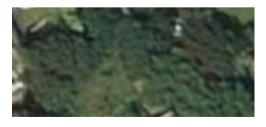


Things vs. Stuff



Ted Adelson, Forsyth et al. 1996.

Stuff (n): Material defined by a homogeneous or repetitive pattern of fine-scale properties, but has no specific or distinctive spatial extent or shape.



Slide: Geremy Heitz

Recognition Task

Object Class Detection/Localization

– Where are the aeroplanes (if any)?

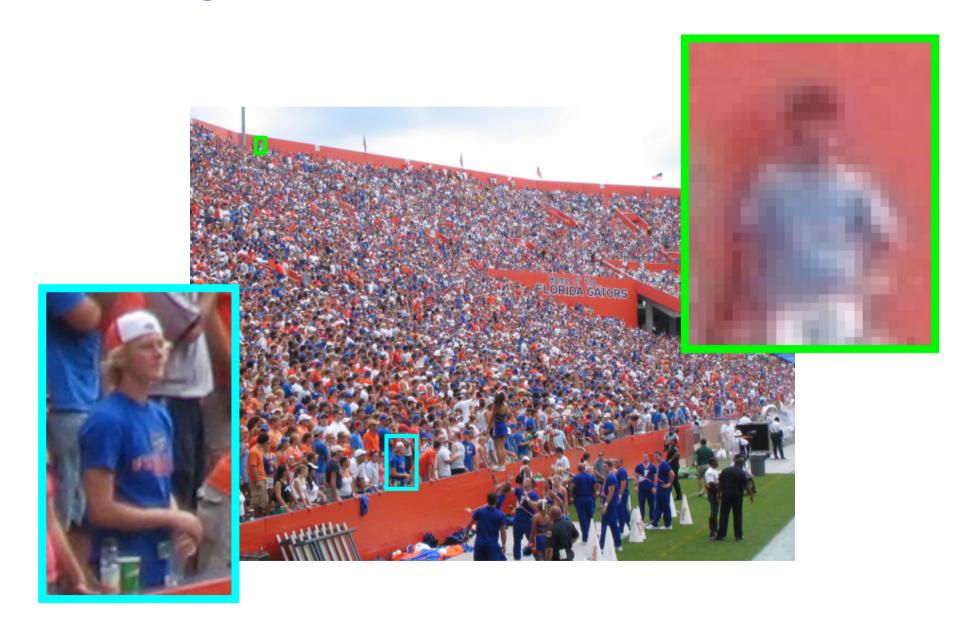
Challenges

- Imaging factors e.g. lighting, pose, occlusion, clutter
- Intra-class variation

Compared to Classification

- Detailed prediction e.g. bounding box
- Location usually provided for training

Challenges: Scale



Challenges: Background Clutter

Challenges: Occlusion and truncation

Challenges: Intra-class variation

Object Category Recognition by Learning

Difficult to define model of a category. Instead, <u>learn</u> from <u>example images</u>

Level of Supervision for Learning

Image-level label

Pixel-level segmentation

Bounding box

"Parts"

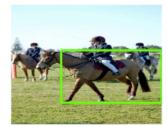
Preview of typical results

bicycle

aeroplane

car

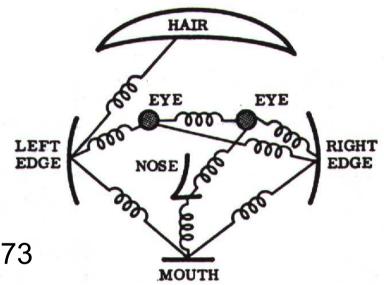
cow



horse motorbike

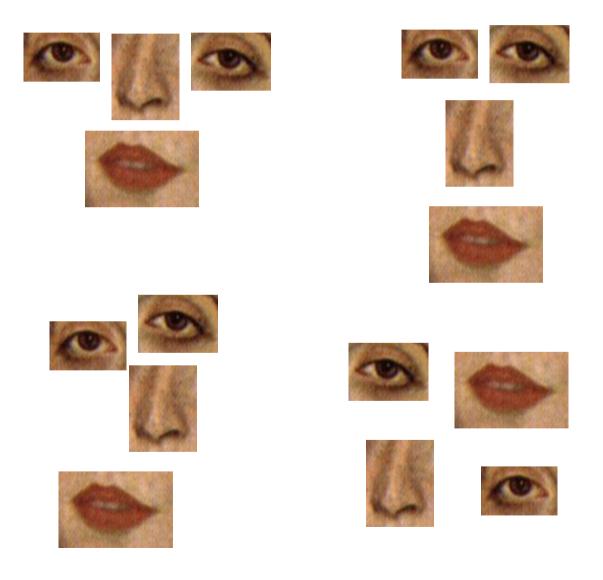
Class of model: Pictorial Structure

- Intuitive model of an object
- Model has two components
 - 1. parts (2D image fragments)
 - 2. structure (configuration of parts)
- Dates back to Fischler & Elschlager 1973



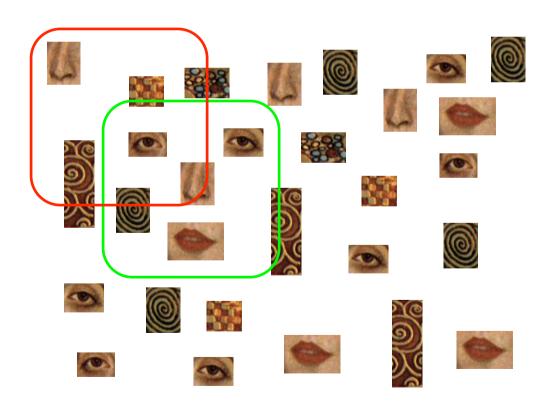
Is this complexity of representation necessary?
Which features?

Restrict deformations



Problem of background clutter

- Use a sub-window
 - At correct position, no clutter is present
 - Slide window to detect object
 - Change size of window to search over scale



Outline

1. Sliding window detectors

2. Features and adding spatial information

3. Histogram of Oriented Gradients (HOG)

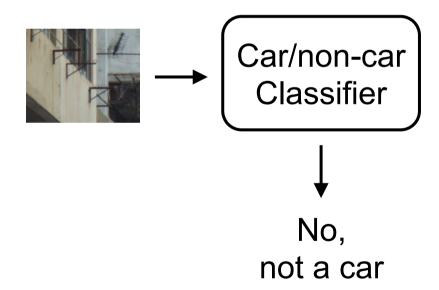
4. Two state of the art algorithms and PASCAL VOC

5. The future and challenges

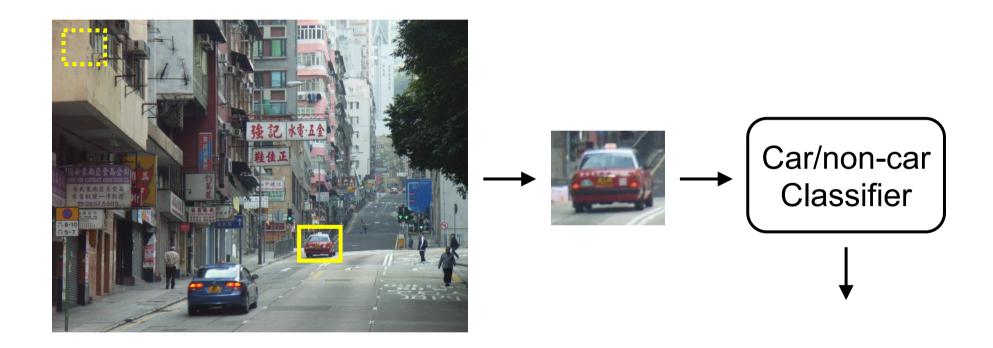
Outline

- 1. Sliding window detectors
 - Start: feature/classifier agnostic
 - Method
 - Problems/limitations
- 2. Features and adding spatial information
- 3. Histogram of Oriented Gradients (HOG)
- 4. Two state of the art algorithms and PASCAL VOC
- 5. The future and challenges

Basic component: binary classifier

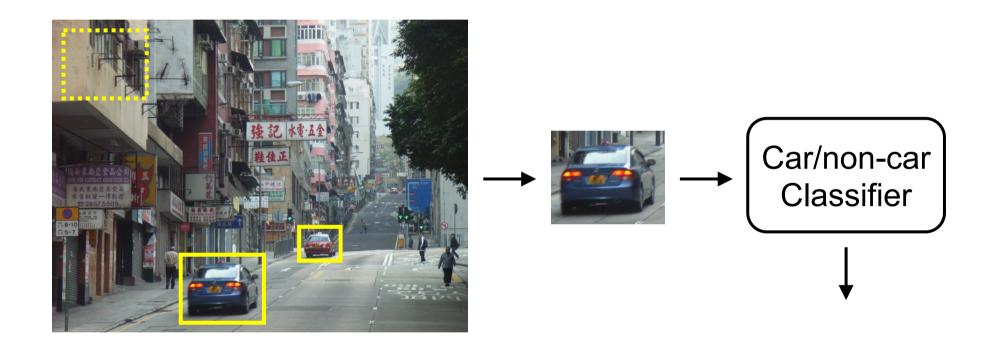


• Detect objects in clutter by **search**



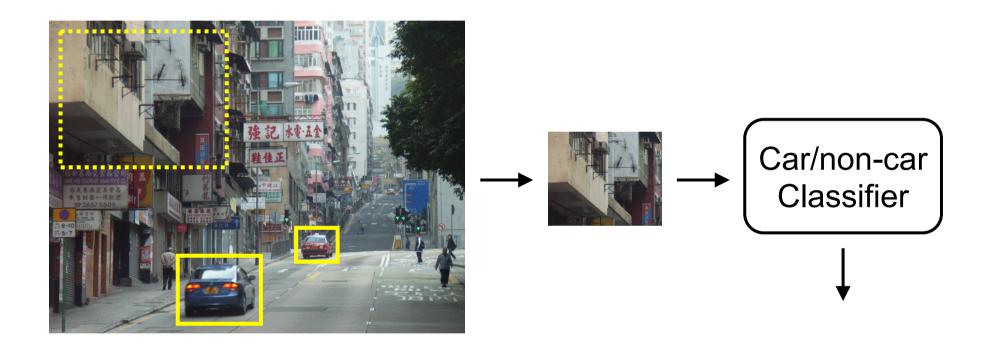
• Sliding window: exhaustive search over position and scale

• Detect objects in clutter by **search**



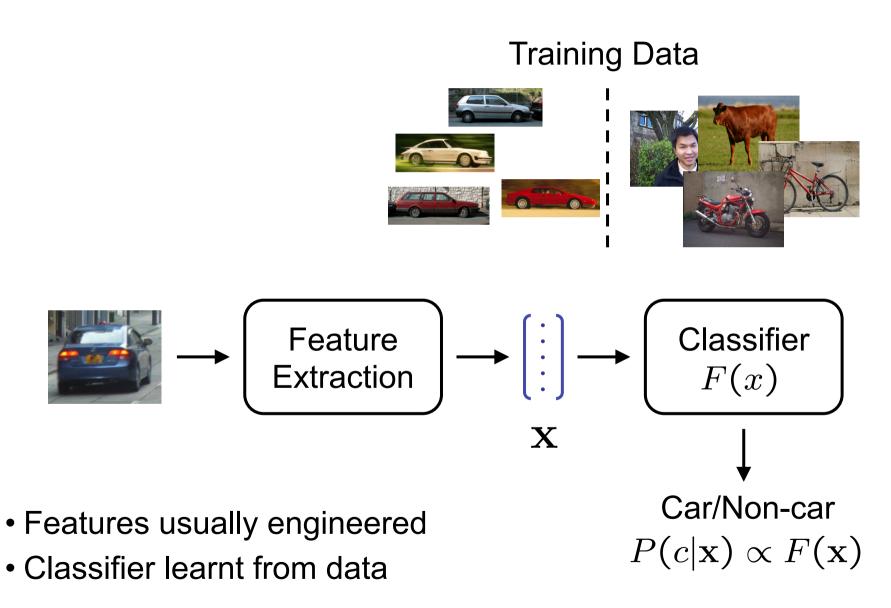
• Sliding window: exhaustive search over position and scale

Detect objects in clutter by <u>search</u>



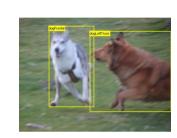
• Sliding window: exhaustive search over position and scale (can use same size window over a spatial pyramid of images)

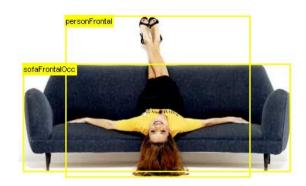
Window (Image) Classification



Problems with sliding windows ...

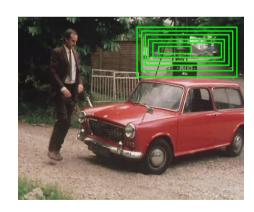
- aspect ratio
- granularity (finite grid)
- partial occlusion
- multiple responses





See recent work by

• Christoph Lampert et al CVPR 08, ECCV 08



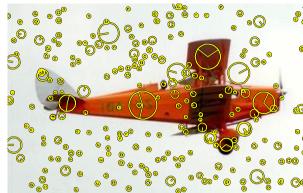
Outline

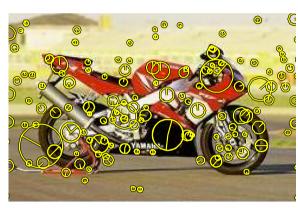
- 1. Sliding window detectors
- 2. Features and adding spatial information
 - Bag of visual word (BoW) models
 - Beyond BoW I: Constellation and ISM models
 - Beyond BoW II: Grids and spatial pyramids
- 3. Histogram of Oriented Gradients (HOG)
- 4. Two state of the art algorithms and PASCAL VOC
- 5. The future and challenges

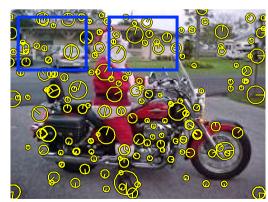
Recap: Bag of (visual) Words representation

- Detect affine invariant local features (e.g. affine-Harris)
- Represent by high-dimensional descriptors, e.g. 128-D for SIFT
- How to summarize sliding window content in a fixed-length vector for classification?

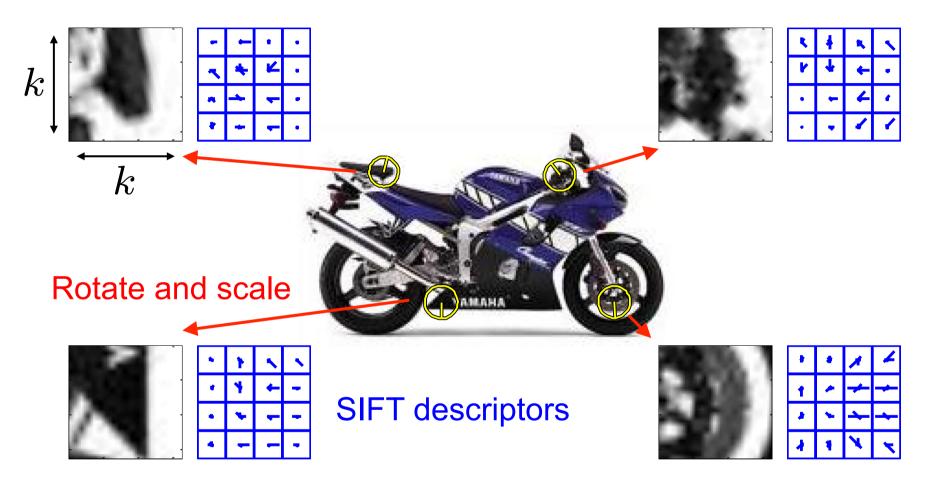
- Map descriptors onto a common vocabulary of visual words
- Represent image as a histogram over visual words a bag of words







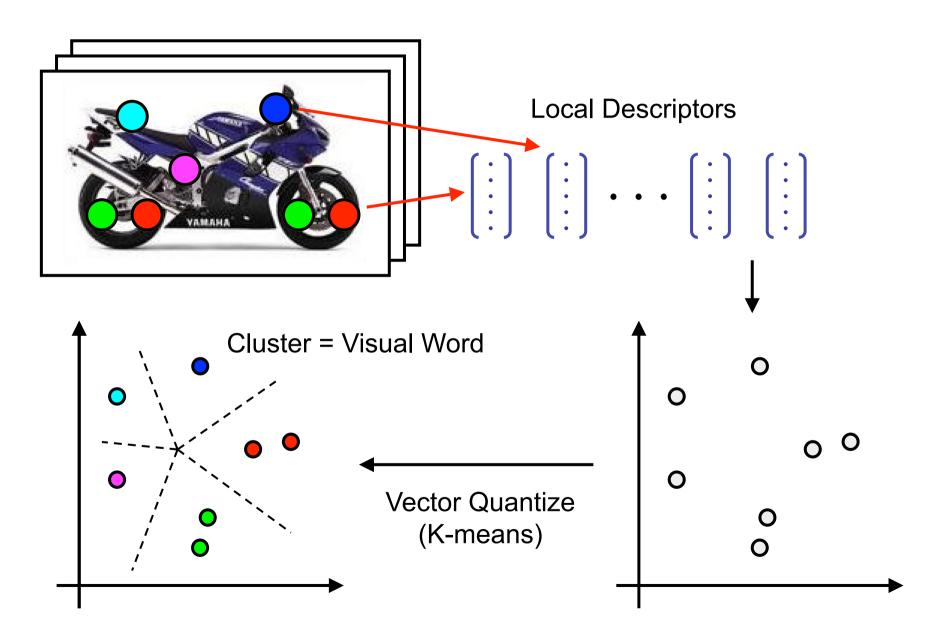
Local region descriptors and visual words



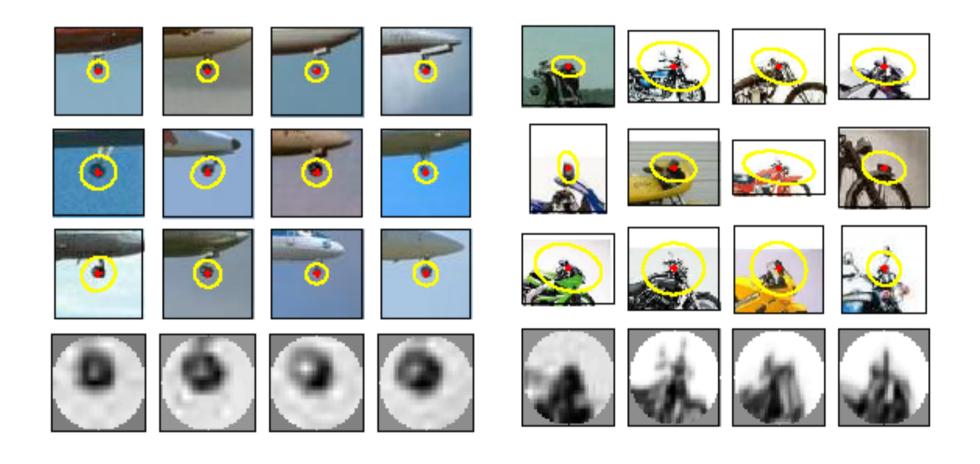
- Normalize regions to fixed size and shape
- Describe each region by a SIFT descriptor
- Vector quantize into visual words, e.g. using k-means

NB: aff. detectors/SIFT/visual words originally for view point invariant matching

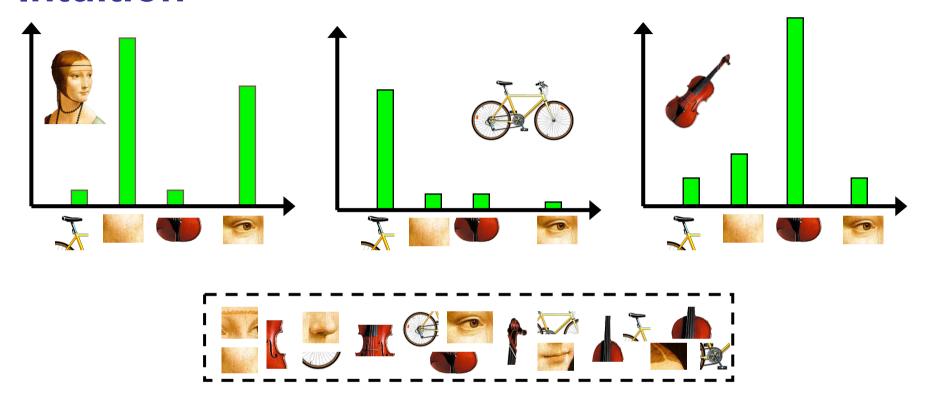
Visual Words



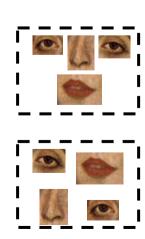
Example Visual Words



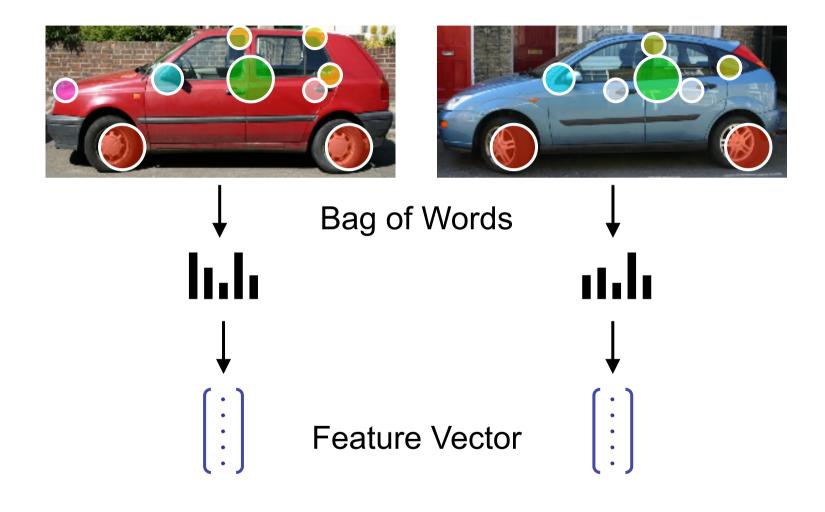
Intuition



- Visual Vocabulary
- Visual words represent "iconic" image fragments
- Feature detectors and SIFT give invariance to local rotation and scale
- Discarding spatial information gives configuration invariance

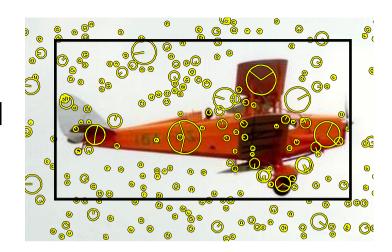


Learning from positive ROI examples

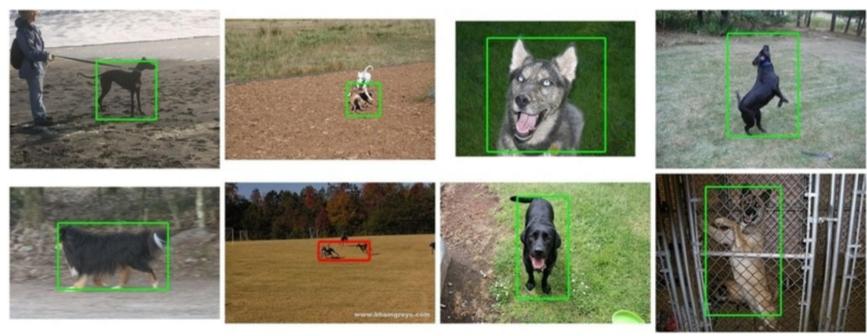


Sliding window detector

- Classifier: SVM with linear kernel
- BOW representation for ROI



Example detections for dog



Lampert et al CVPR 08

Discussion: ROI as a Bag of Visual Words

Advantages

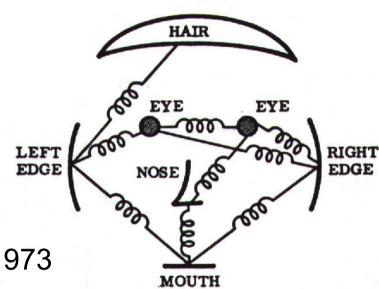
- No explicit modelling of spatial information -> high level of invariance to position and orientation in image
- Fixed length vector -> standard machine learning methods applicable

Disadvantages

- No explicit modelling of spatial information -> less discriminative power
- Inferior to state of the art performance

Beyond BOW I: Pictorial Structure

- Intuitive model of an object
- Model has two components
 - 1. parts (2D image fragments)
 - 2. structure (configuration of parts)
- Dates back to Fischler & Elschlager 1973

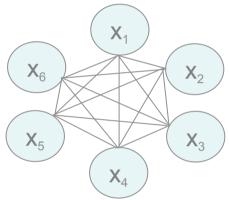


Two approaches that have investigated this spring like model:

- Constellation model
- Implicit shape model

Spatial Models Considered

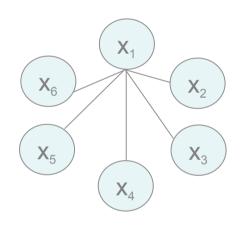
Fully connected shape model



e.g. Constellation Model
Parts fully connected
Recognition complexity: O(NP)

Method: Exhaustive search

"Star" shape model



e.g. ISM

Parts mutually independent

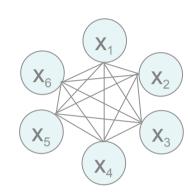
Recognition complexity: O(NP)

Method: Gen. Hough Transform

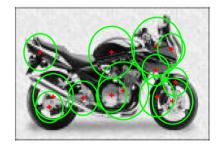
Constellation model

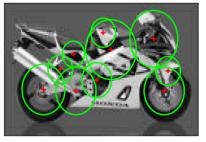
Fergus, Perona & Zisserman, CVPR 03

- Explicit structure model Joint Gaussian over all part positions
- Part detector determines position and scale
- Simultaneous learning of parts and structure
- Learn from images alone using EM algorithm



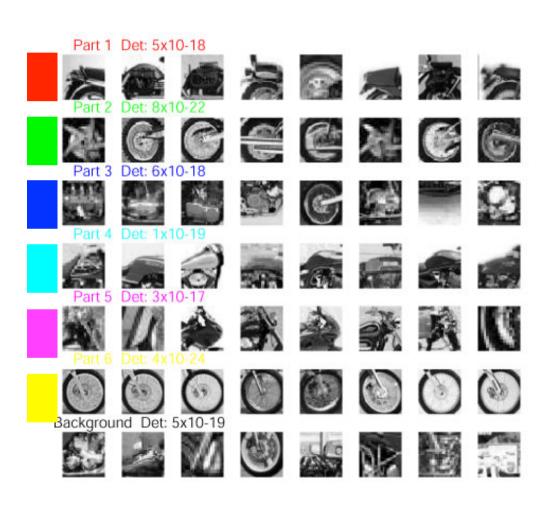
Given detections: learn a six part model by optimizing part and configuration similarity

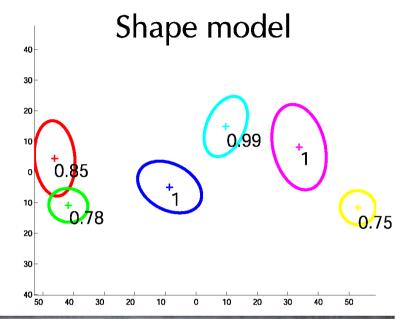




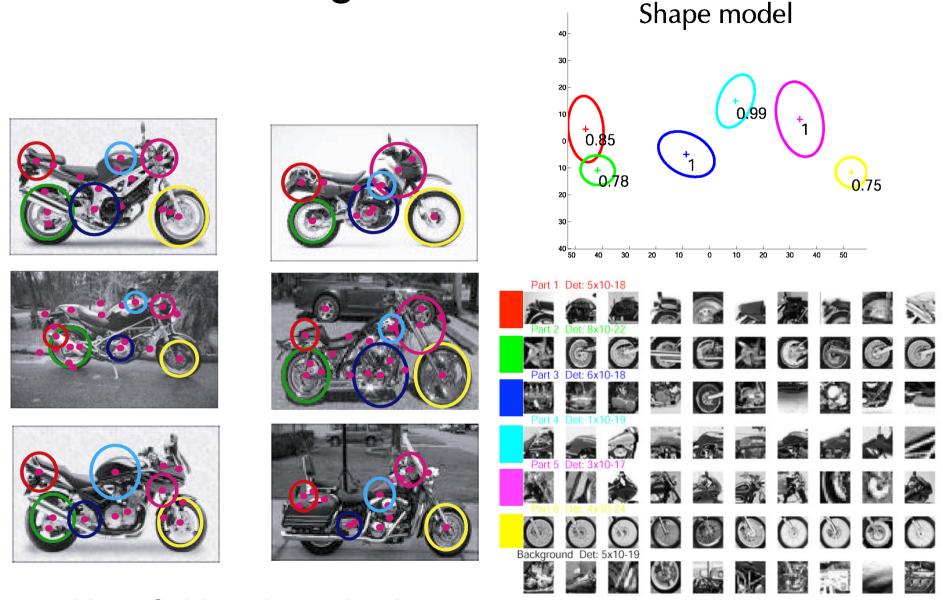
Example – Learnt Motorbike Model

Samples from appearance model



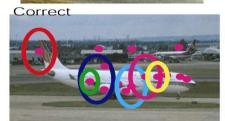


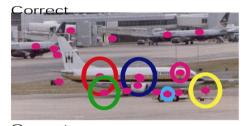
Recognized Motorbikes



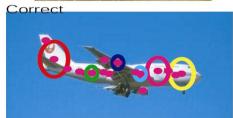
position of object determined

Airplanes

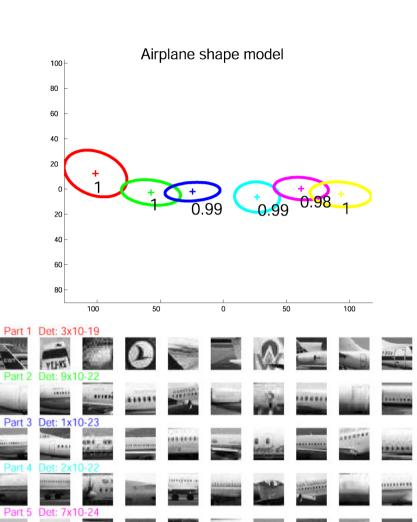




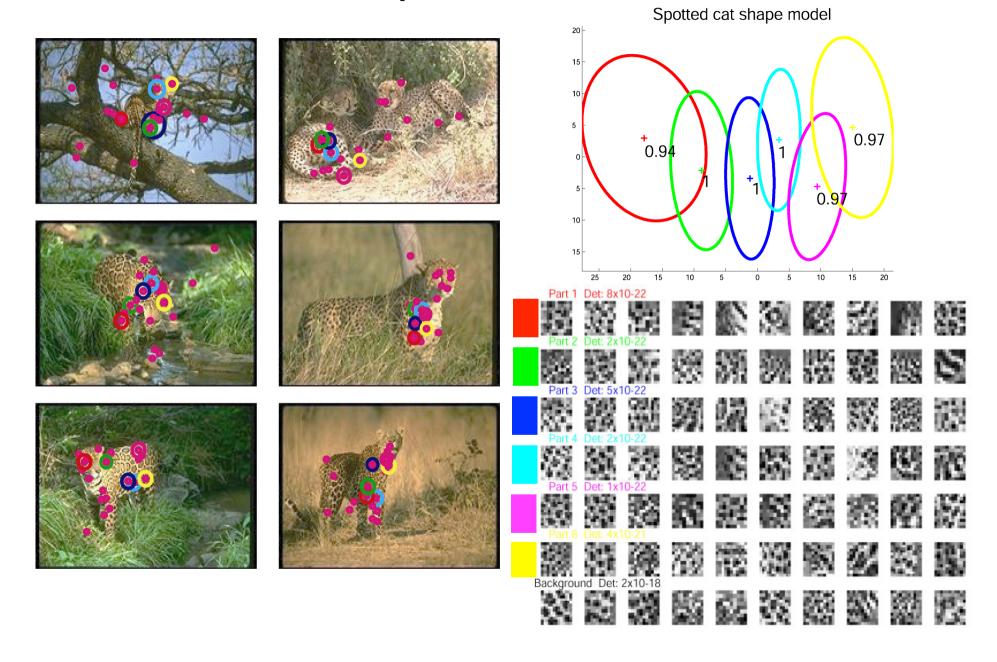




Background Det: 1x10-20



Spotted cats



Discussion: Constellation Model

Advantages

- Works well for many different object categories
- Can adapt well to categories where
 - Shape is more important
 - Appearance is more important
- Everything is learned from training data
- Weakly-supervised training possible

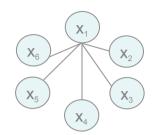
Disadvantages

- Model contains many parameters that need to be estimated
- Cost increases exponentially with increasing number of parameters
- ⇒ Fully connected model restricted to small number of parts.

Implicit Shape Model (ISM)

Leibe, Leonardis, Schiele, 03/04

- Basic ideas
 - Learn an appearance codebook
 - Learn a star-topology structural model
 - Features are considered independent given object centre

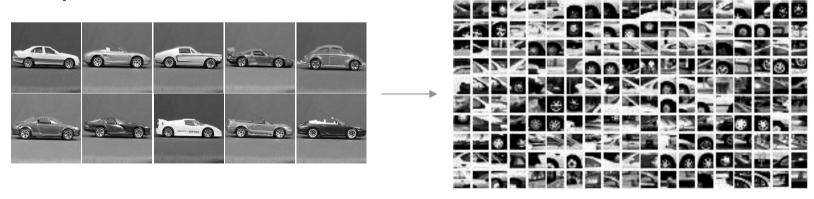


- Algorithm: probabilistic Generalized Hough Transform Good engineering:
 - Soft assignment
 - Probabilistic voting
 - Continuous Hough space

Codebook Representation

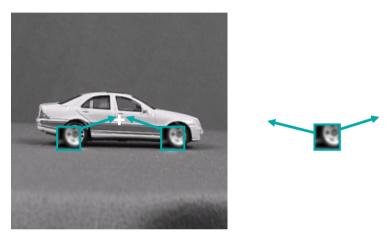
- Extraction of local object features
 - Interest Points (e.g. Harris detector)
 - Sparse representation of the object appearance

- Collect features from whole training set
- Example:

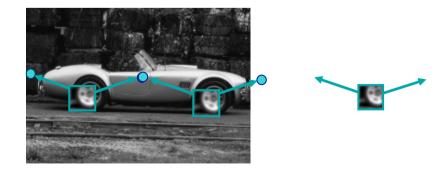


Leibe & Schiele 03/04: Generalized Hough Transform

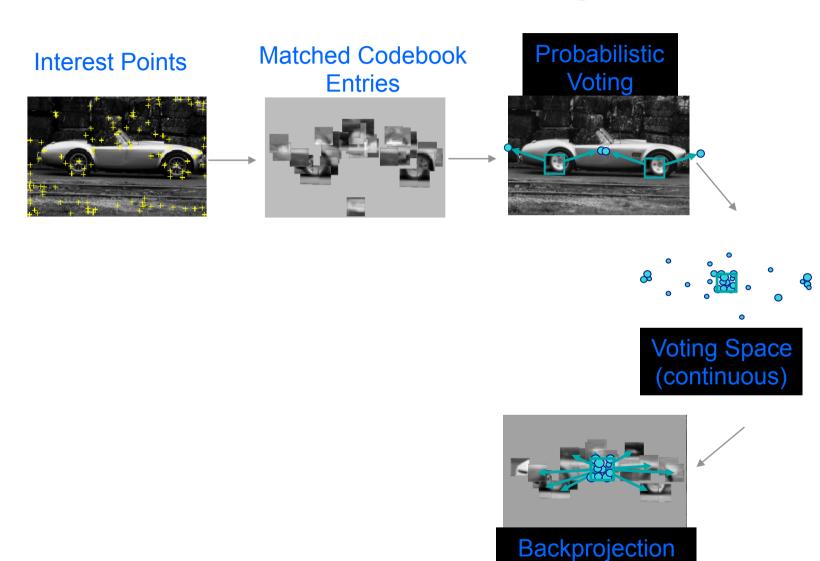
Learning: for every cluster, store possible "occurrences"



 Recognition: for new image, let the matched patches vote for possible object positions

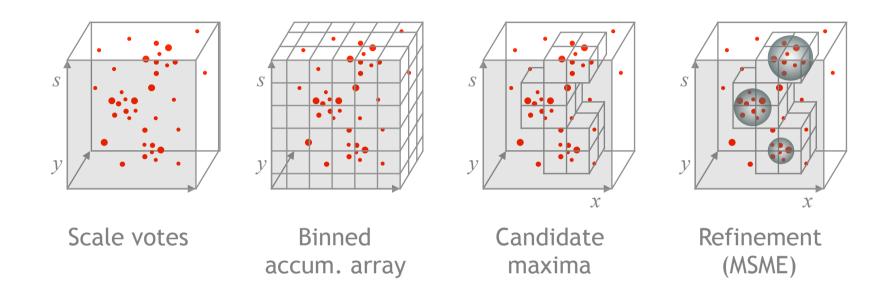


Leibe & Schiele 03/04: Generalized Hough Transform



of Maximum

Scale Voting: Efficient Computation



- Mean-Shift formulation for refinement
 - Scale-adaptive balloon density estimator

$$\hat{p}(o_n, x) = \frac{1}{V_b} \sum_k \sum_j p(o_n, x_j | f_k, \ell_k) K(\frac{x - x_j}{b})$$

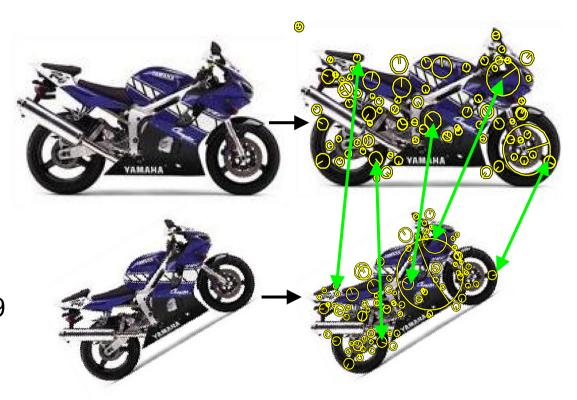
Detection Results

- Qualitative Performance
 - Recognizes different kinds of cars
 - Robust to clutter, occlusion, low contrast, noise

Discussion: ISM and related models

Advantages

- Scale and rotation invariance can be built into the representation from the start
- Relatively cheap to learn and test (inference)
- Works well for many different object categories
- Max-margin extensions possible, Maji & Malik, CVPR09



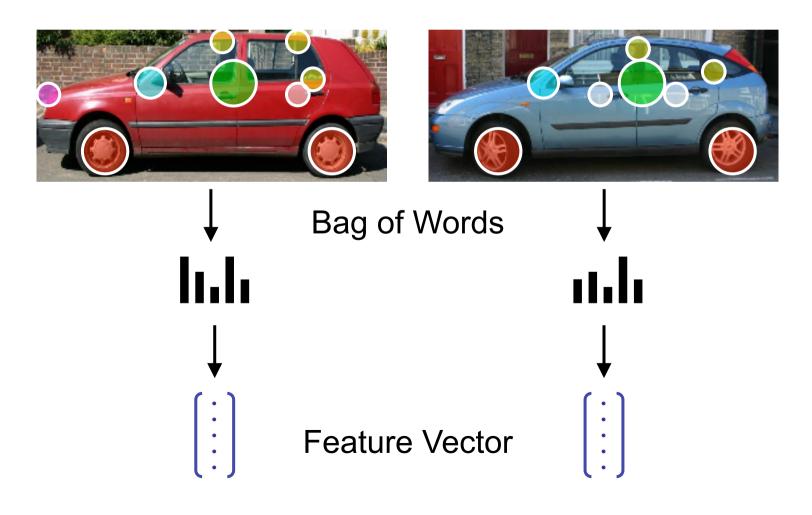
Disadvantages

- Requires searching for modes in the Hough space
- Similar to sliding window in this respect
- Is such a degree of invariance required? (many objects are horizontal)

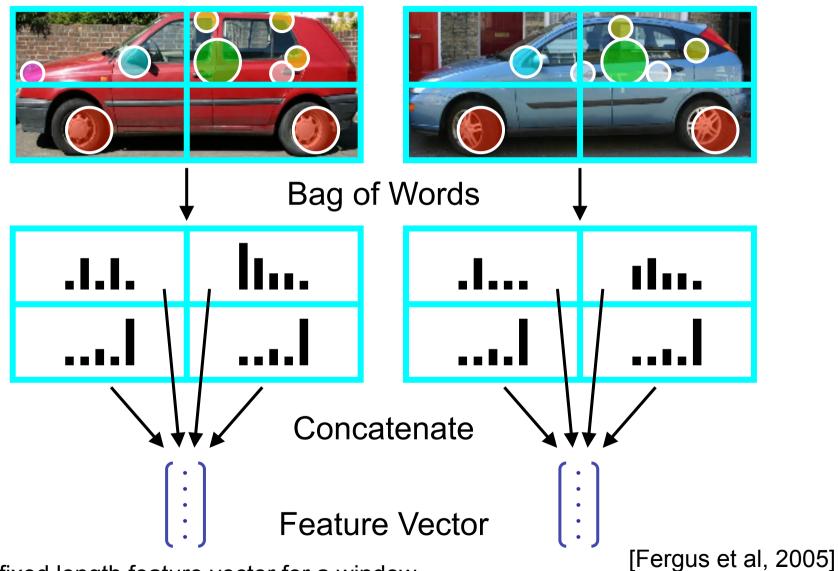
Beyond BOW II: Grids and spatial pyramids

Start from BoW for ROI

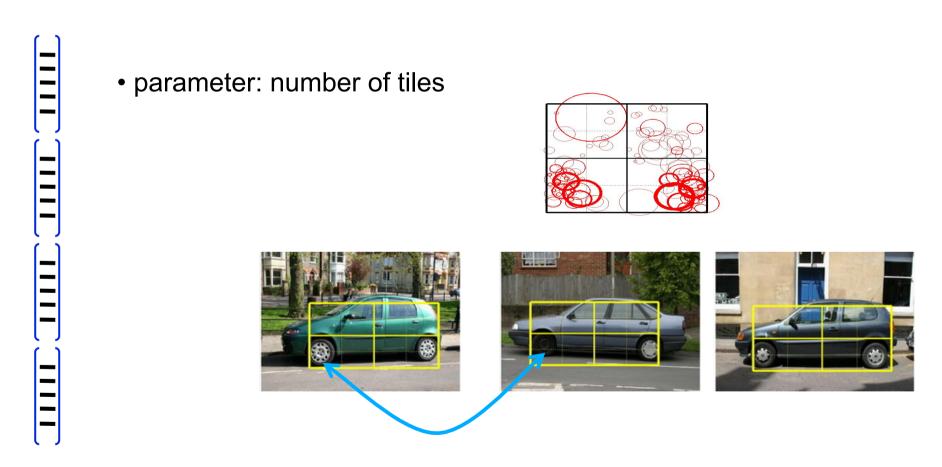
- no spatial information recorded
- sliding window detector



Adding Spatial Information to Bag of Words

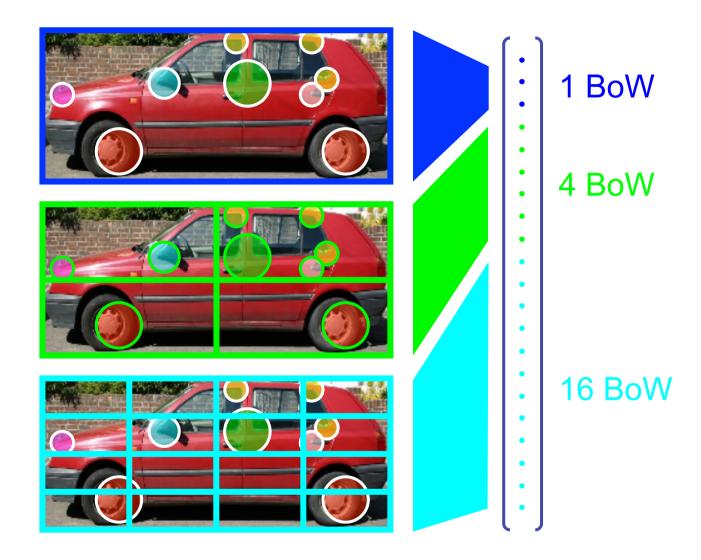


Tiling defines (records) the spatial correspondence of the words



If codebook has V visual words, then representation has dimension 4V Fergus et al ICCV 05

Spatial Pyramid – represent correspondence

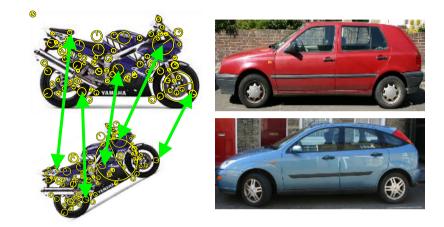


As in scene/image classification can use pyramid kernel

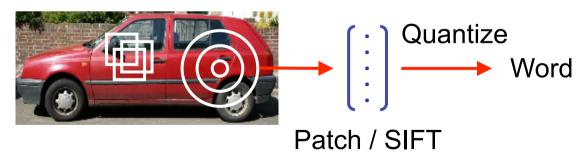
[Grauman & Darrell, 2005] [Lazebnik et al, 2006]

Dense Visual Words

- Why extract only sparse image fragments?
- Good where lots of invariance is needed, but not relevant to sliding window detection?



Extract dense visual words on an overlapping grid



- [Luong & Malik, 1999]
 [Varma & Zisserman, 2003]
 [Vogel & Schiele, 2004]
 [Jurie & Triggs, 2005]
 [Fei-Fei & Perona, 2005]
 [Bosch et al, 2006]
- More "detail" at the expense of invariance
- Pyramid histogram of visual words (PHOW)

Outline

- 1. Sliding window detectors
- 2. Features and adding spatial information
- 3. Histogram of Oriented Gradients + linear SVM classifier
 - Dalal & Triggs pedestrian detector
 - HOG and history
 - Training an object detector
- 4. Two state of the art algorithms and PASCAL VOC
- 5. The future and challenges

Dalal & Triggs CVPR 2005 Pedestrian detection

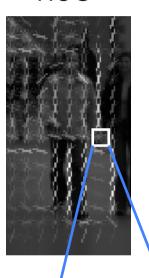
- Objective: detect (localize) standing humans in an image
- sliding window classifier
- train a binary classifier on whether a window contains a standing person or not
- Histogram of Oriented Gradients (HOG) feature
- although HOG + SVM originally introduced for pedestrians has been used very successfully for many object categories

Feature: Histogram of Oriented Gradients (HOG)

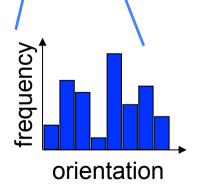
image

dominant direction

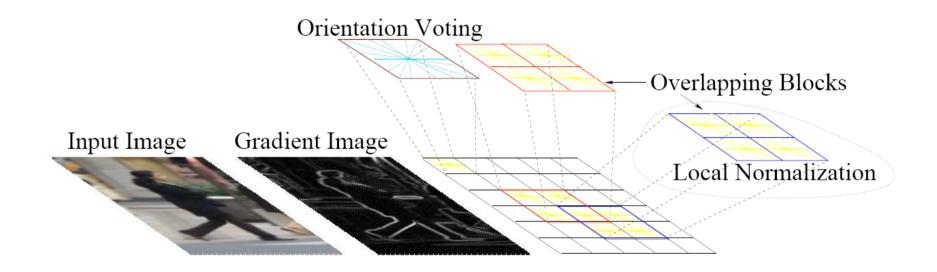
HOG



- tile 64 x 128 pixel window into 8 x 8 pixel cells
- each cell represented by histogram over 8 orientation bins (i.e. angles in range 0-180 degrees)

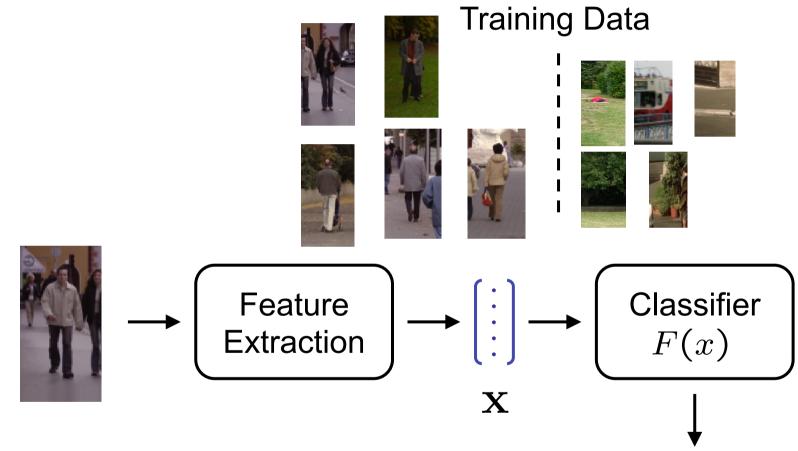


Histogram of Oriented Gradients (HOG) continued



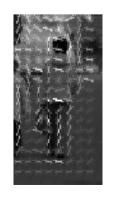
- Adds a second level of overlapping spatial bins re-normalizing orientation histograms over a larger spatial area
- Feature vector dimension (approx) = 16 x 8 (for tiling) x 8 (orientations) x 4 (for blocks) = 4096

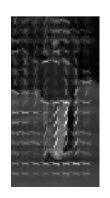
Window (Image) Classification



- HOG Features
- Linear SVM classifier

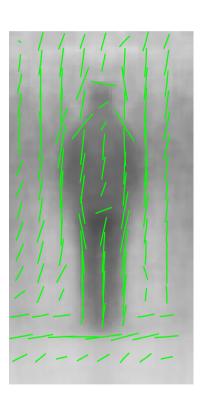
pedestrian/Non-pedestrian $P(c|\mathbf{x}) \propto F(\mathbf{x})$

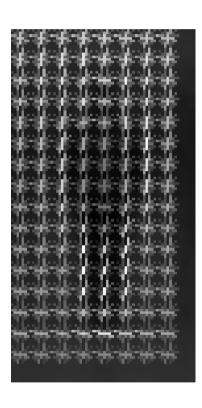






Averaged examples





Classifier: linear support vector machine (linear SVM)

Advantages of linear SVM:

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

- Training (Learning)
 - Very efficient packages for the linear case, e.g. LIBLINEAR for batch training and Pegasos for on-line training.
 - Complexity O(N) for N training points (cf O(N^3) for general SVM)
- Testing (Detection)

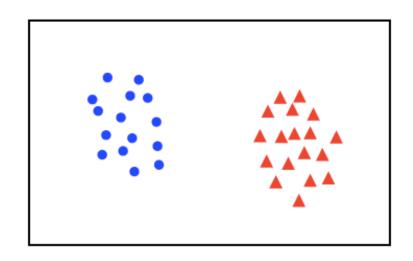
Non-linear
$$f(\mathbf{x}) = \sum_{i}^{S} \alpha_{i} \mathbf{k}(\mathbf{x}_{i}, \mathbf{x}) + b$$
 S = # of support vectors = (worst case) N size of training data
$$f(\mathbf{x}) = \sum_{i}^{S} \alpha_{i} \mathbf{x}_{i}^{T} \mathbf{x} + b$$
 Independent of size of training data

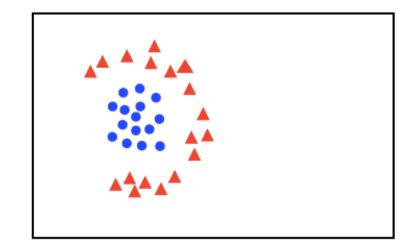
Review: Binary classification

Given training data (\mathbf{x}_i, y_i) for $i = 1 \dots N$, with $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$, learn a classifier $f(\mathbf{x})$ such that

$$f(\mathbf{x}_i) \begin{cases} \ge 0 & y_i = +1 \\ < 0 & y_i = -1 \end{cases}$$

i.e. $y_i f(\mathbf{x}_i) > 0$ for a correct classification.

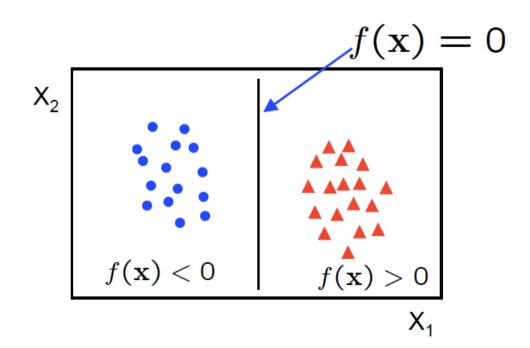




Review: Linear classifiers

A linear classifier has the form

$$f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + b$$

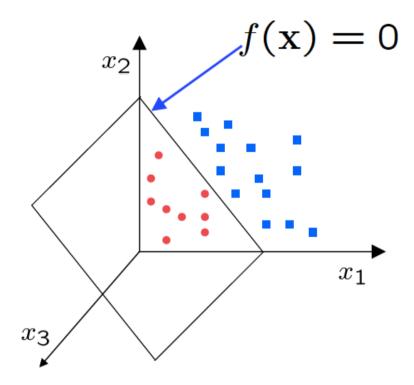


- in 2D the discriminant is a line
- w is the normal to the plane, and b the bias
- W is known as the weight vector

Review: Linear classifiers

A linear classifier has the form

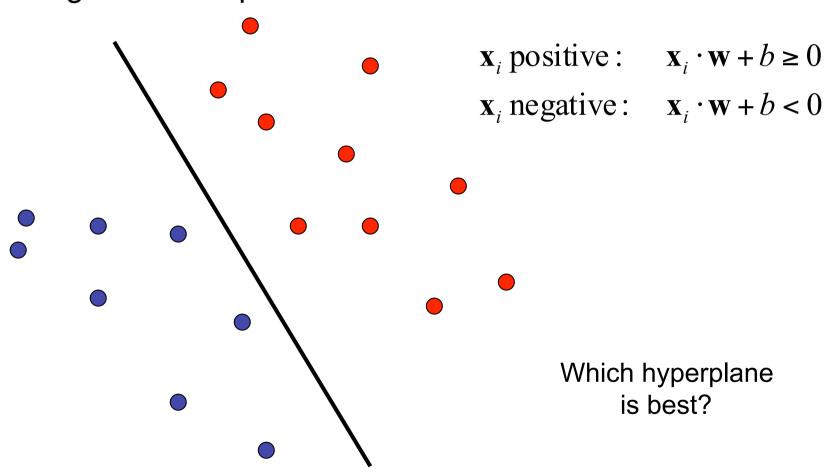
$$f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + b$$



in 3D the discriminant is a plane, and in nD it is a hyperplane

Review: Linear classifiers

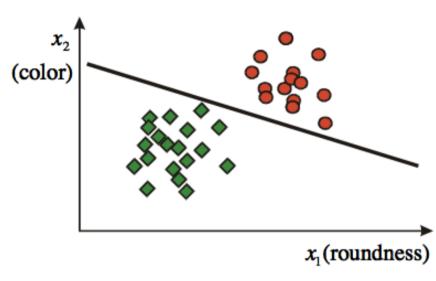
 Find linear function (hyperplane) to separate positive and negative examples

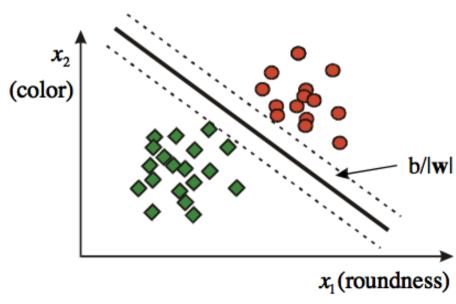


Review: Linear classifiers - margin

Generalization is not good in this case:

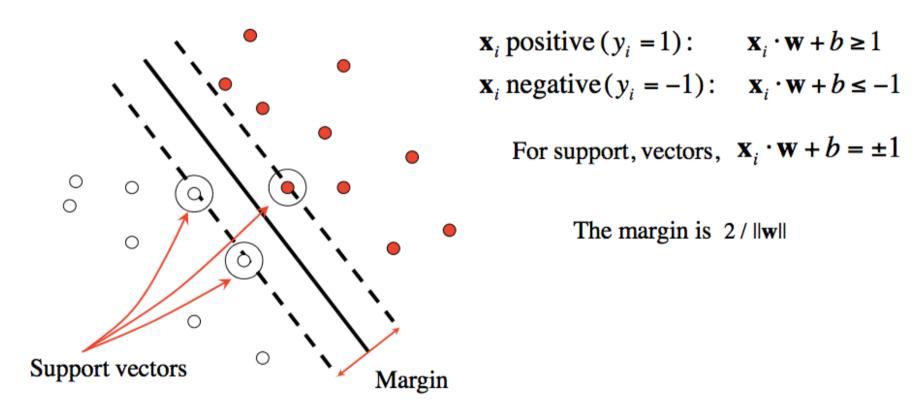
 Better if a margin is introduced:





Support vector machines

 Find a hyperplane that maximizes the margin between positive and negative examples

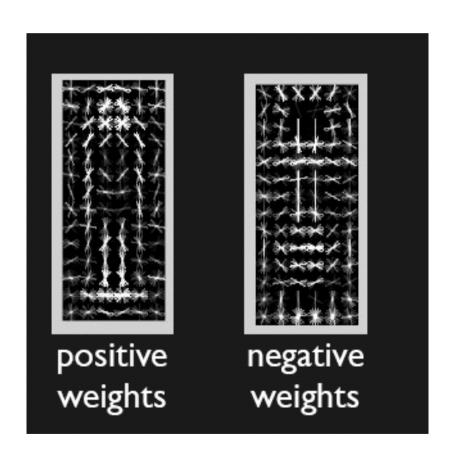


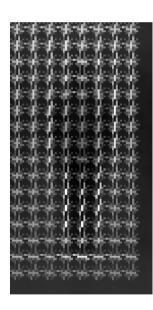
 For more details on SVM please see nice slides at http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf

Dalal and Triggs, CVPR 2005

Learned model

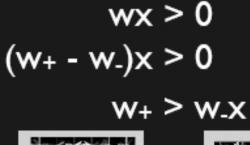
$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$



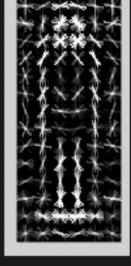


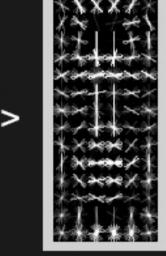
average over positive training data

What do negative weights mean?



pedestrian model





pedestrian background model

Complete system should compete pedestrian/pillar/doorway models

Discriminative models come equipped with own bg

(avoid firing on doorways by penalizing vertical edges)

Slide from Deva Ramanan

Why does HOG + SVM work so well?

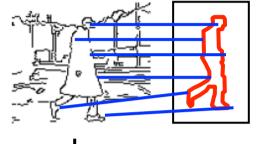
- Similar to SIFT, records spatial arrangement of histogram orientations
- Compare to learning only edges:
 - Complex junctions can be represented
 - Avoids problem of early thresholding
 - Represents also soft internal gradients
- Older methods based on edges have become largely obsolete

 HOG gives fixed length vector for window, suitable for feature vector for SVM

Chamfer Matching

Input

Edges Template



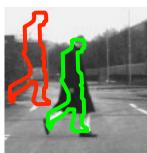
- Match points between template and image
- Measure mean distance
- Template edgel matches <u>nearest</u> image edgel

$$D(T, I) = \frac{1}{|T|} \sum_{\mathbf{p} \in T} \min_{\mathbf{q} \in I} d(\mathbf{p}, \mathbf{q})$$

Distance Transform

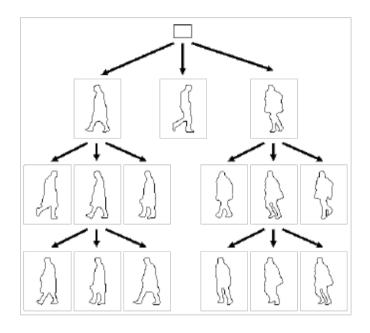
- Distance transform reduces min operation to array lookup
- Computable in linear time

Best match

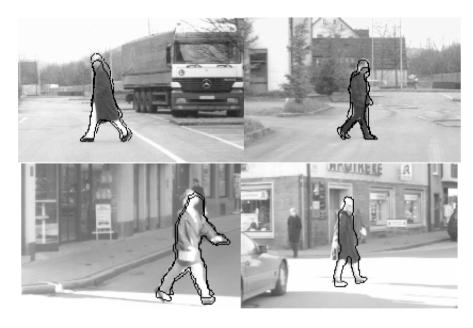


Localize by sliding window search

Chamfer Matching



Hierarchy of Templates



Detections

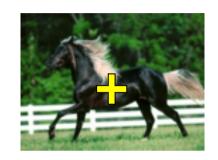
- In practice performs poorly in clutter
- Unoriented edges are not discriminative enough (too easy to find...)

[Gavrila & Philomin, 1999]

Contour-fragment models

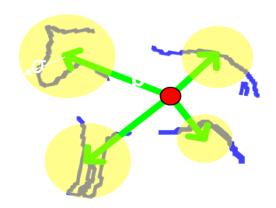
Shotton et al ICCV 05, Opelt et al ECCV 06

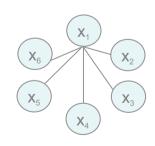
Generalized Hough like representation using contour fragments



Contour fragments learnt from edges of training images

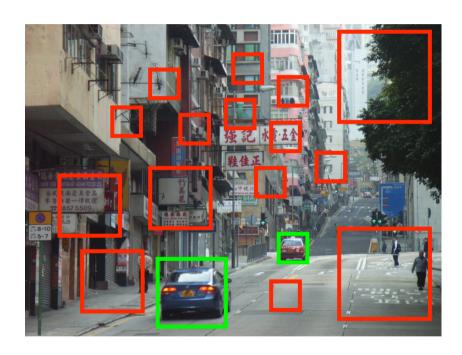
Hough like voting for detection





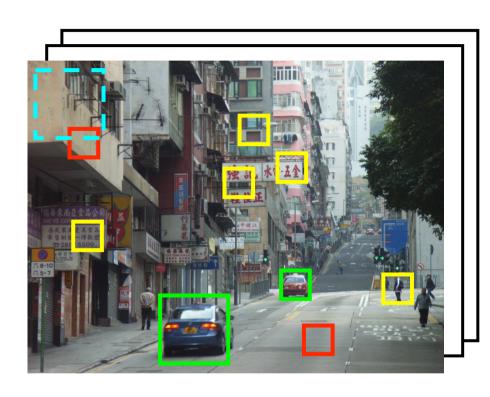
Training a sliding window detector

 Object detection is inherently asymmetric: much more "non-object" than "object" data



- Classifier needs to have very low false positive rate
- Non-object category is very complex need lots of data

Bootstrapping



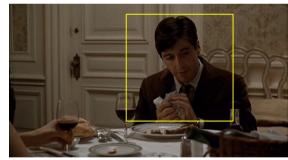
- Pick negative training set at random
- 2. Train classifier
- 3. Run on training data
- 4. Add false positives to training set
- 5. Repeat from 2

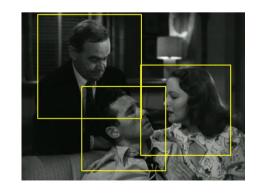
- Collect a finite but diverse set of non-object windows
- Force classifier to concentrate on hard negative examples
- For some classifiers can ensure equivalence to training on entire data set

Example: train an upper body detector

- Training data used for training and validation sets
 - 33 Hollywood2 training movies
 - 1122 frames with upper bodies marked
- First stage training (bootstrapping)
 - 1607 upper body annotations jittered to 32k positive samples
 - 55k negatives sampled from the same set of frames
- Second stage training (retraining)
 - 150k hard negatives found in the training data

Training data – positive annotations

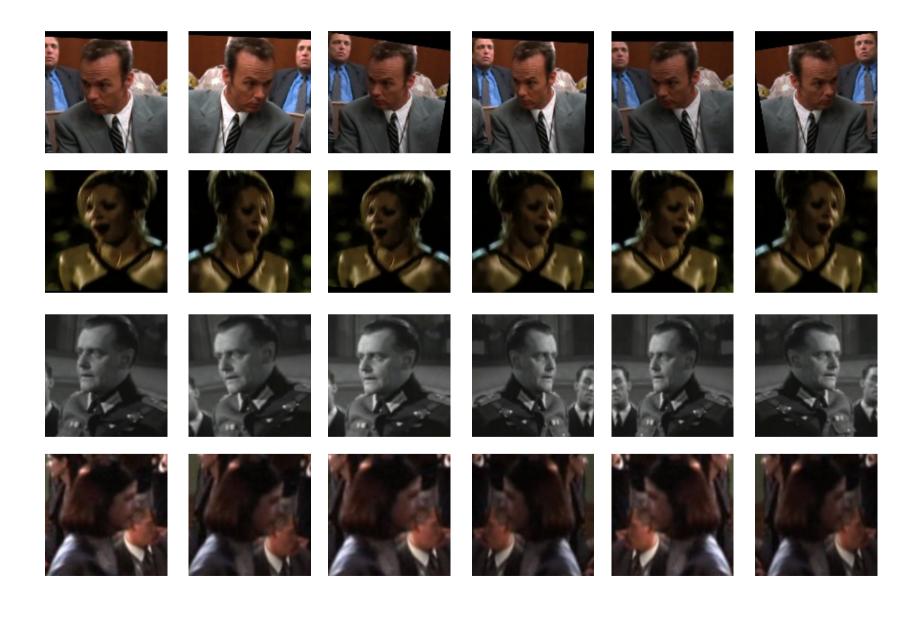




Positive windows

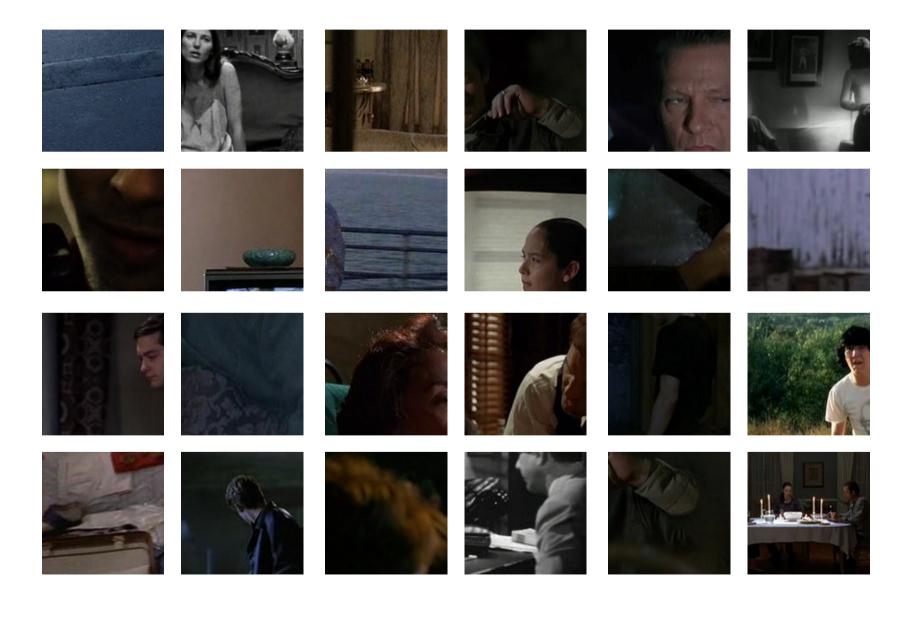
Note: common size and alignment

Jittered positives

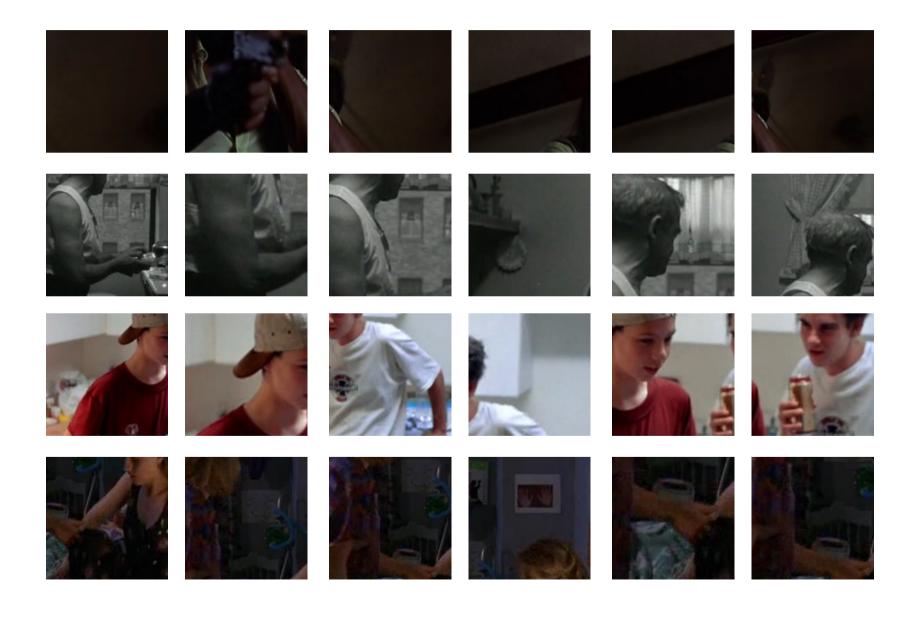


Jittered positives

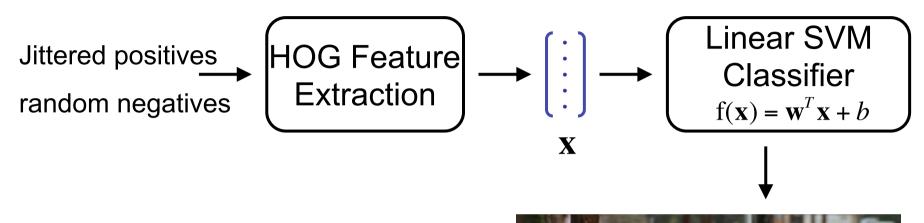
Random negatives



Random negatives



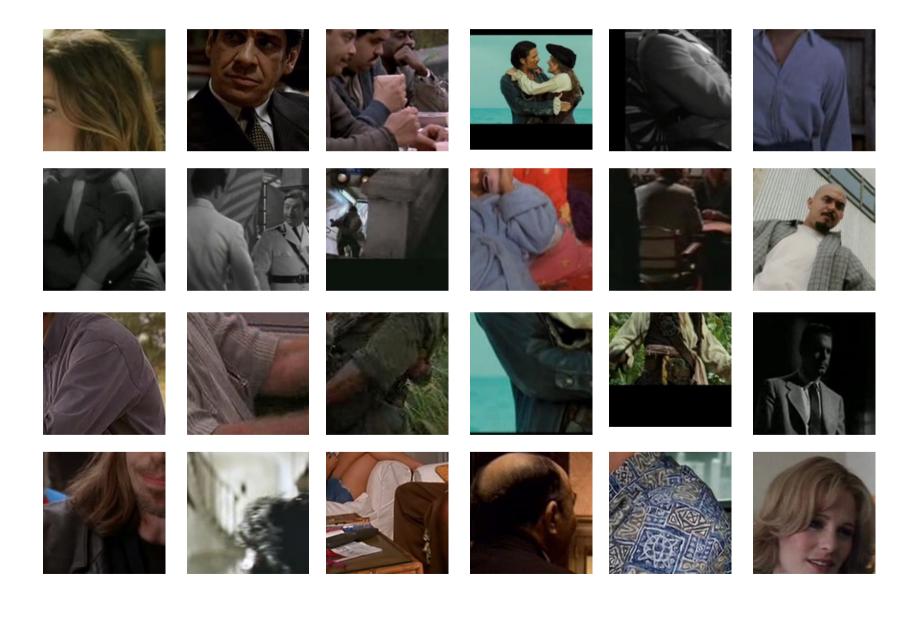
Window (Image) first stage classification



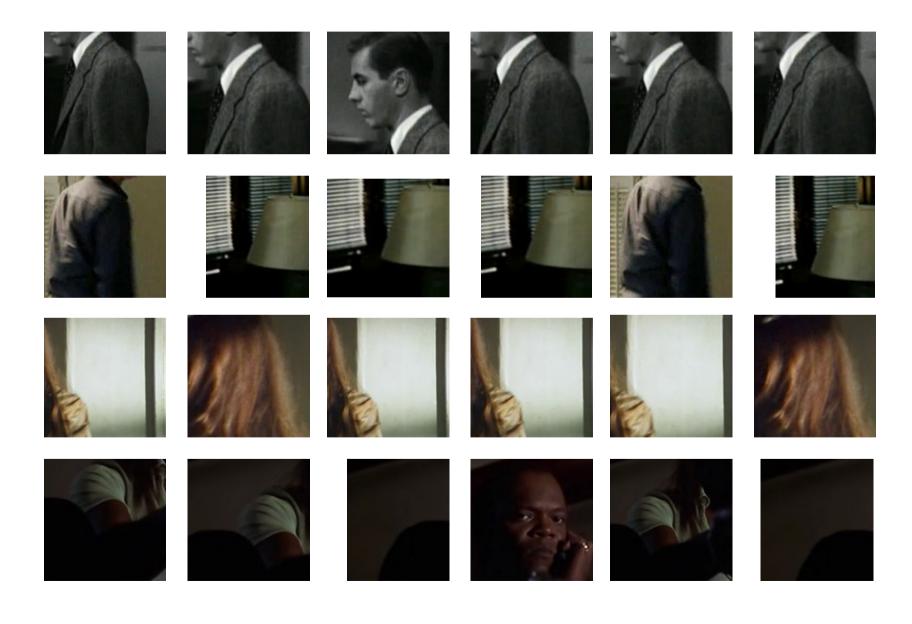
find high scoring false positives detections

- these are the hard negatives for the next round of training
- cost = # training images x inference on each image

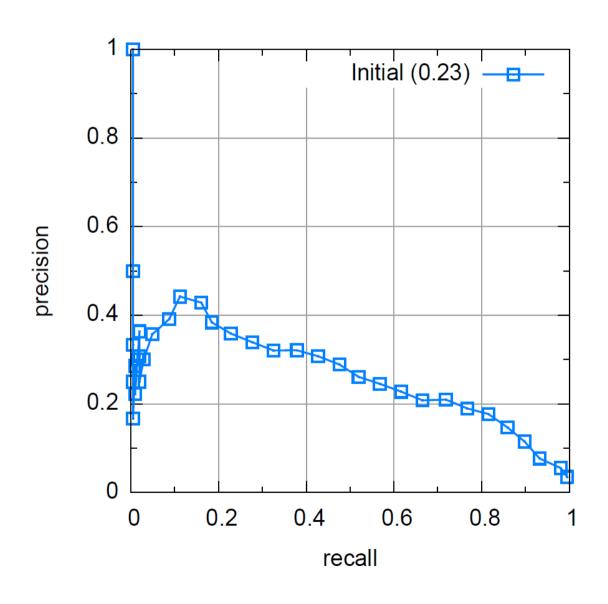
Hard negatives



Hard negatives



First stage performance on validation set

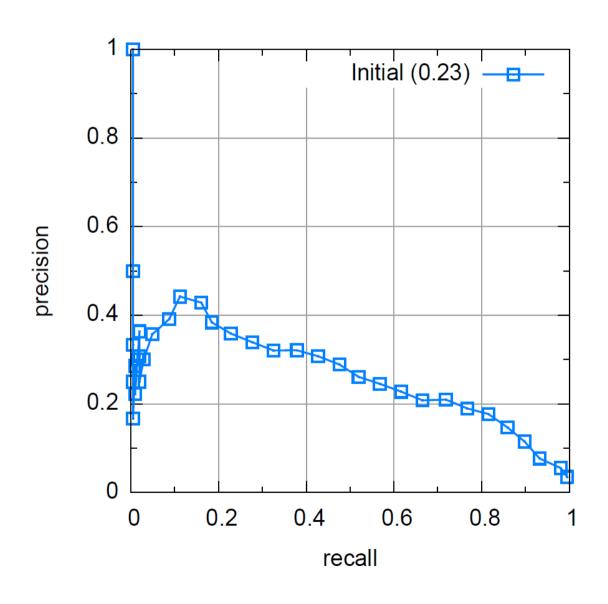


Precision – Recall curve

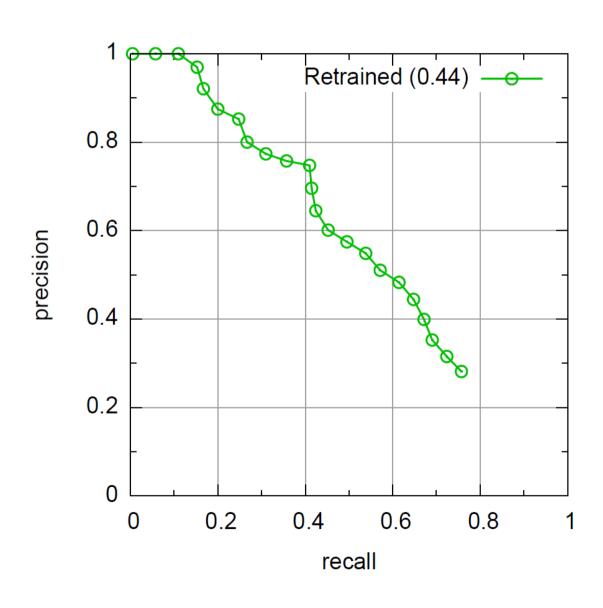
returned correct windows windows Precision: % of returned windows that are correct Recall: % of correct windows that are returned all windows 0.8 classifier score decreasing brecision 0.4 0.6 0.2 0.2 0.4 0.6 0.8

recall

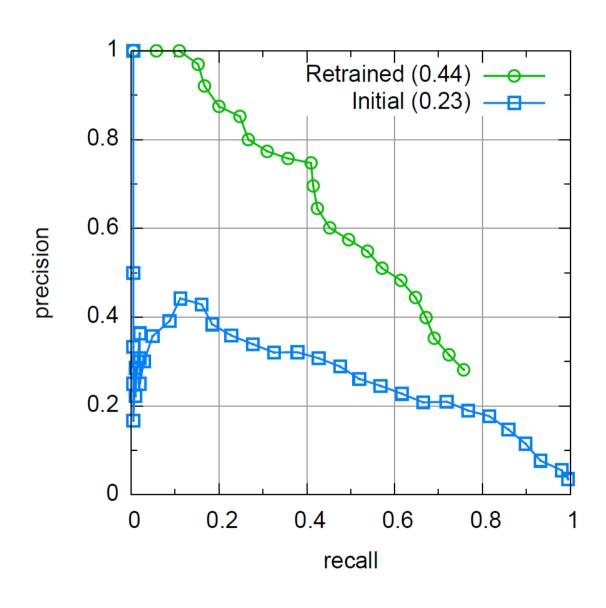
First stage performance on validation set



Performance after retraining

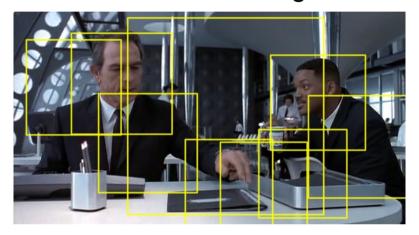


Effects of retraining

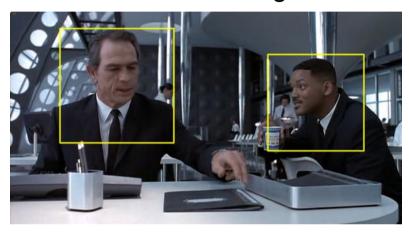


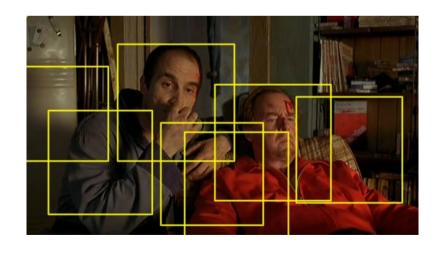
Side by side

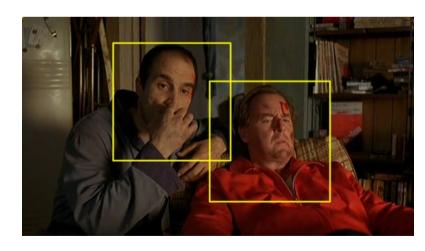
before retraining



after retraining

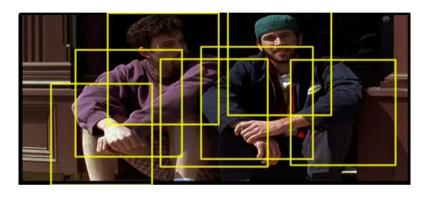




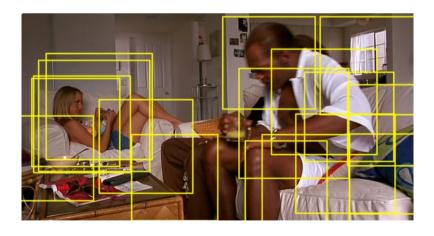


Side by side

before retraining



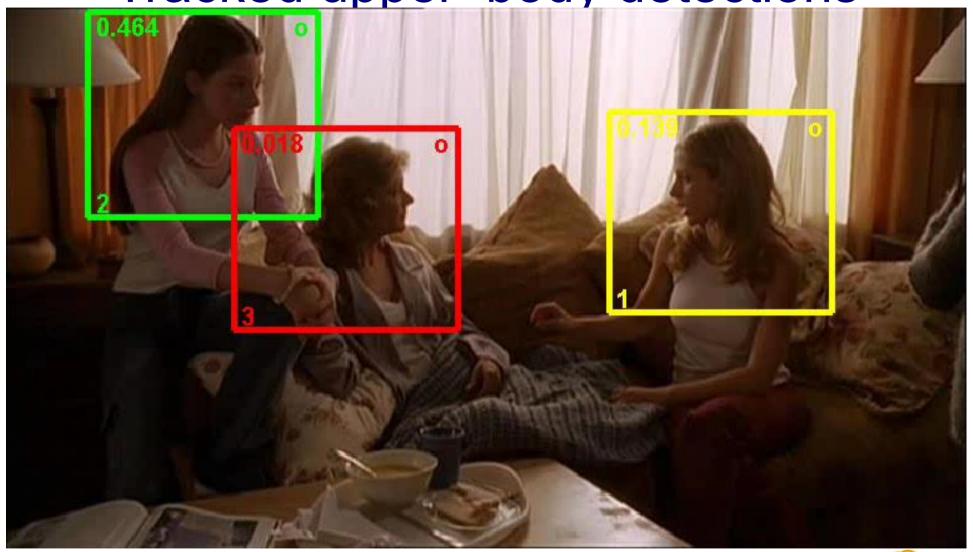
after retraining



Side by side

before retraining after retraining

Tracked upper body detections



Tracked upper body person detections

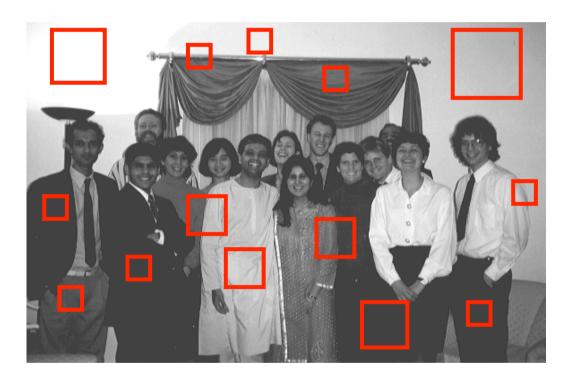
Combined face, upper body and full body detectors "vote" for upper body bounding boxes.

Detections are tracked and smoothed over video.

[Lezama, MVA thesis 2010]

Accelerating Sliding Window Search

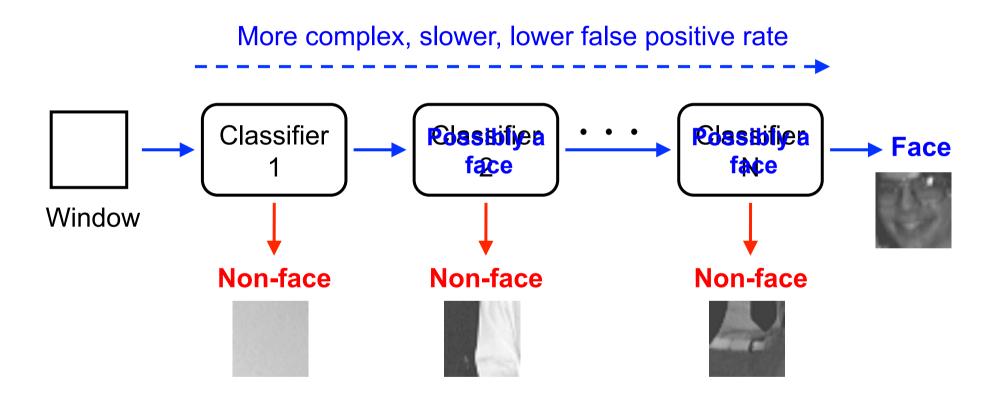
 Sliding window search is slow because so many windows are needed e.g. x × y × scale ≈ 100,000 for a 320×240 image



- Most windows are clearly not the object class of interest
- Can we speed up the search?

Cascaded Classification

Build a sequence of classifiers with increasing complexity



Reject easy non-objects using simpler and faster classifiers

Cascaded Classification

- Slow expensive classifiers only applied to a few windows → significant speed-up
- Controlling classifier complexity/speed:
 - Number of support vectors
 - Number of features
 - Type of SVM kernel

[Romdhani et al, 2001]

[Viola & Jones, 2001]

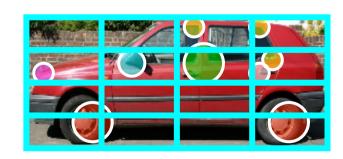
[Vedaldi et al, 2009]

Summary: Sliding Window Detection

 Can convert any image classifier into an object detector by sliding window. Efficient search methods available.

 Requirements for invariance are reduced by searching over e.g. translation and scale

 Spatial correspondence can be "engineered in" by spatial tiling



Outline

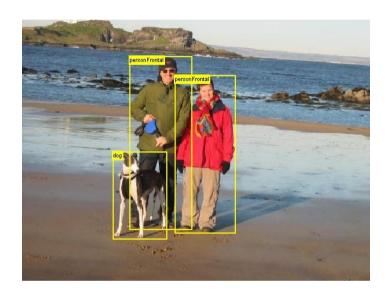
- 1. Sliding window detectors
- 2. Features and adding spatial information
- 3. HOG + linear SVM classifier
- 4. Two state of the art algorithms and PASCAL VOC
 - VOC challenge
 - Vedaldi et al multiple kernels and features, cascade
 - Felzenswalb et al multiple parts, latent SVM
- 5. The future and challenges

The PASCAL Visual Object Classes (VOC) Dataset and Challenge

Mark Everingham
Luc Van Gool
Chris Williams
John Winn
Andrew Zisserman

The PASCAL VOC Challenge

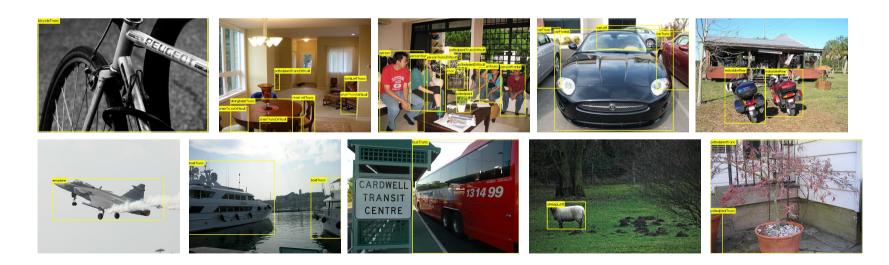
- Challenge in visual object recognition funded by PASCAL network of excellence
- Publicly available dataset of annotated images



- Main competitions in classification (is there an X in this image), detection (where are the X's), and segmentation (which pixels belong to X)
- "Taster competitions" in 2-D human "pose estimation" (2007-present) and static action classes
- Standard evaluation protocol (software supplied)

Dataset Content

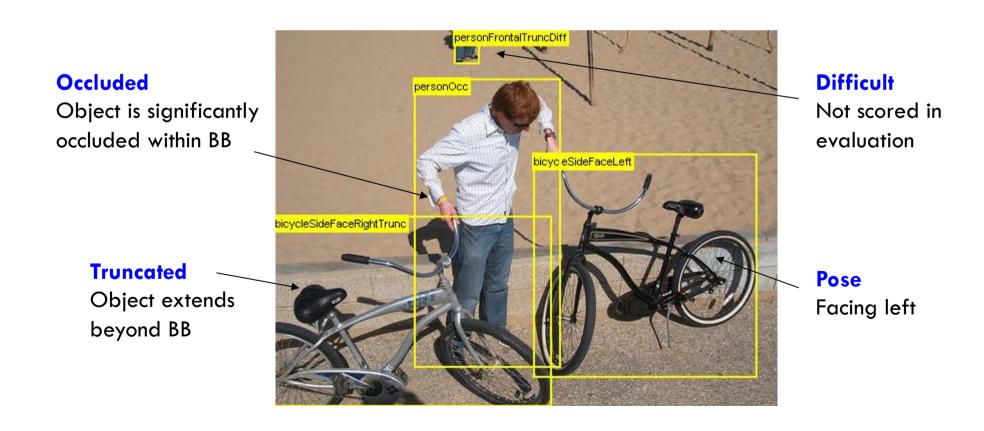
- 20 classes: aeroplane, bicycle, boat, bottle, bus, car, cat, chair, cow, dining table, dog, horse, motorbike, person, potted plant, sheep, train, TV
- Real images downloaded from flickr, not filtered for "quality"



• Complex scenes, scale, pose, lighting, occlusion, ...

Annotation

- Complete annotation of all objects
- Annotated in one session with written guidelines



Examples

Aeroplane Bottle Bicycle Bird Boat Chair Car Cat Cow Bus TRANSIT CENTRE

Examples

Dining Table

Dog

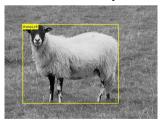
Horse

Motorbike

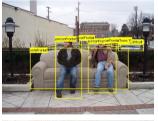
Person

Potted Plant

Sheep



Sofa



Train

TV/Monitor

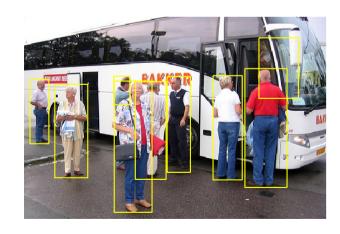
Main Challenge Tasks

Classification

- Is there a dog in this image?
- Evaluation by precision/recall

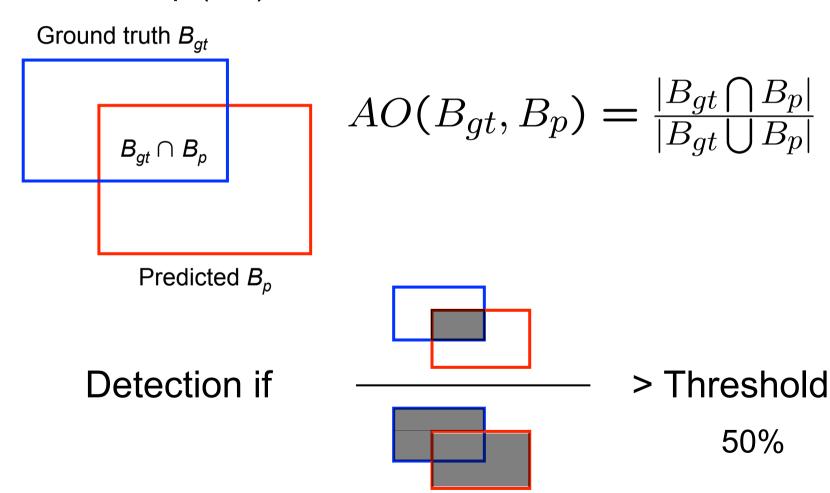
Detection

- Localize all the people (if any) in this image
- Evaluation by precision/recall based on bounding box overlap



Detection: Evaluation of Bounding Boxes

Area of Overlap (AO) Measure



Dataset Statistics

	train		val		trainval		test	
	lmages	Objects	lmages	Objects	lmages	Objects	I mages	Objects
Aeroplane	201	267	206	266	407	533		
Bicycle	167	232	181	236	348	468		
Bird	262	381	243	379	505	760		
Boat	170	270	155	267	325	537		
Bottle	220	394	200	393	420	787		
Bus	132	179	126	186	258	365		
Car	372	664	358	653	730	1,317		
Cat	266	308	277	314	543	622		
Chair	338	716	330	713	668	1,429		
Cow	86	164	86	172	172	336		
Diningtable	140	153	131	153	271	306		
Dog	316	391	333	392	649	783		
Horse	161	237	167	245	328	482		
Motorbike	171	235	167	234	338	469		
Person	1,333	2,819	1,446	2,996	2,779	5,815		
Pottedplant	166	311	166	316	332	627		
Sheep	67	163	64	175	131	338		
Sofa	155	172	153	175	308	347		
Train	164	190	160	191	324	381		
Tymonitor	180	259	173	257	353	516		
Total	3,473	8,505	3,581	8,713	7,054	17,218	6,650	16,82

True Positives - Bicycle

UoCTTI_LSVM-MDPM

OXFORD_MKL

NECUIUC_CLS-DTCT

False Positives - Bicycle

UoCTTI_LSVM-MDPM

OXFORD_MKL

NECUIUC_CLS-DTCT

True Positives – TV/monitor

OXFORD_MKL

UoCTTI_LSVM-MDPM

LEAR_CHI-SVM-SIFT-HOG-CLS

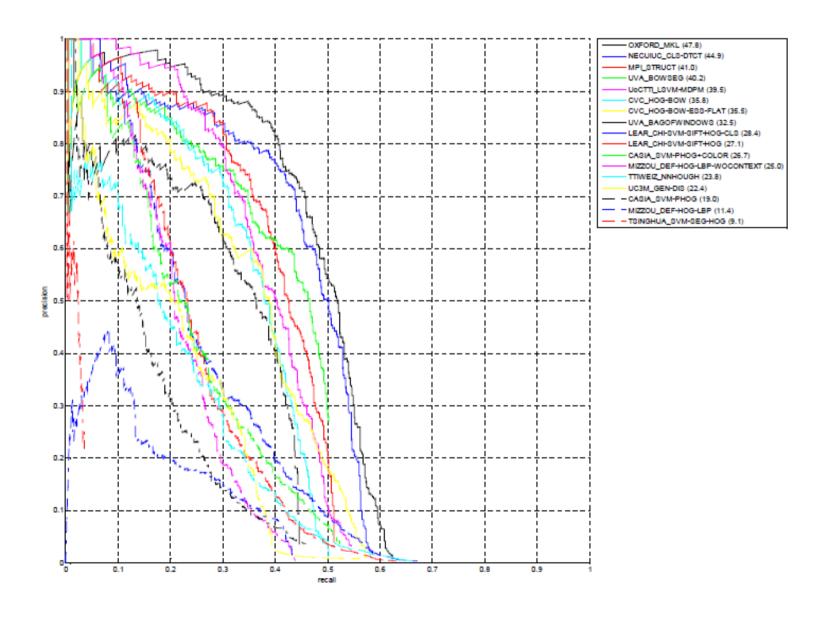
False Positives – TV/monitor

OXFORD_MKL

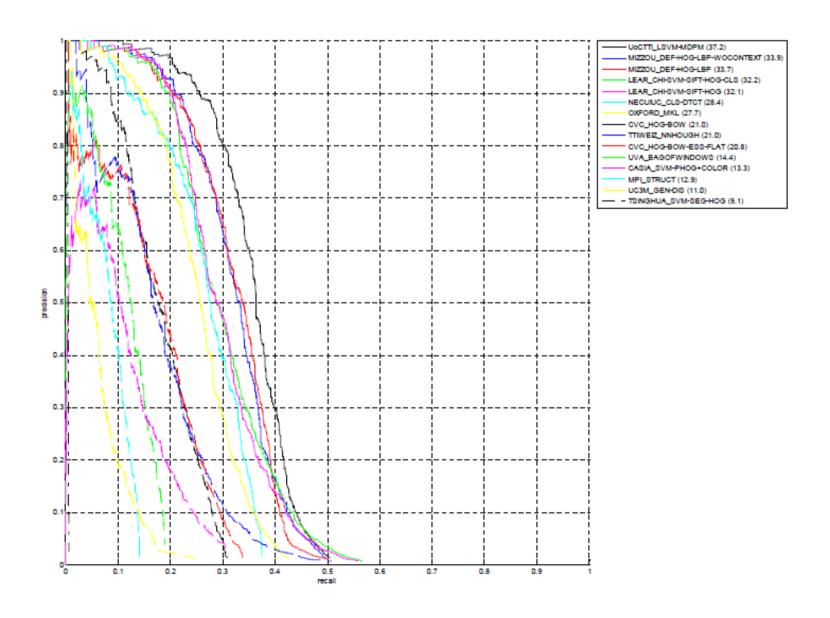
UoCTTI_LSVM-MDPM

LEAR_CHI-SVM-SIFT-HOG-CLS

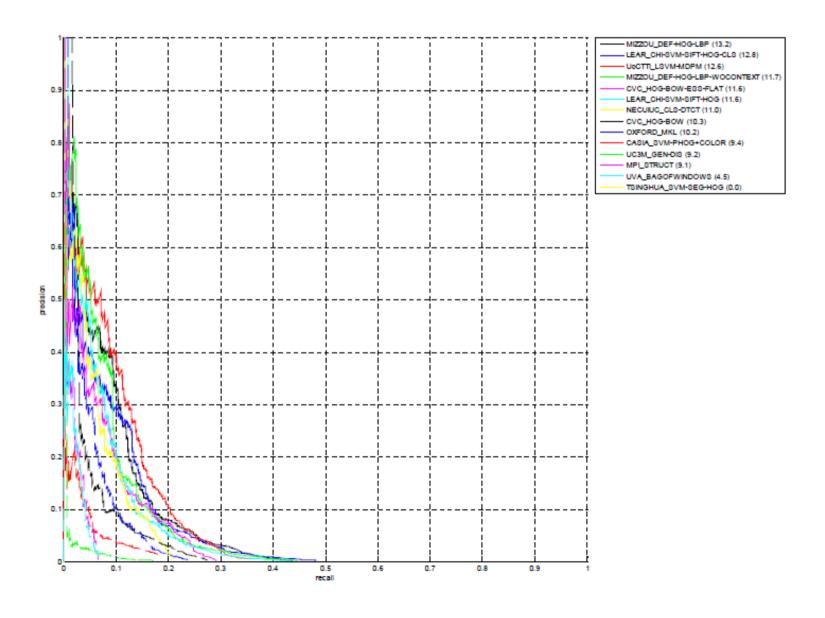
Precision/Recall - Aeroplane



Precision/Recall - Car

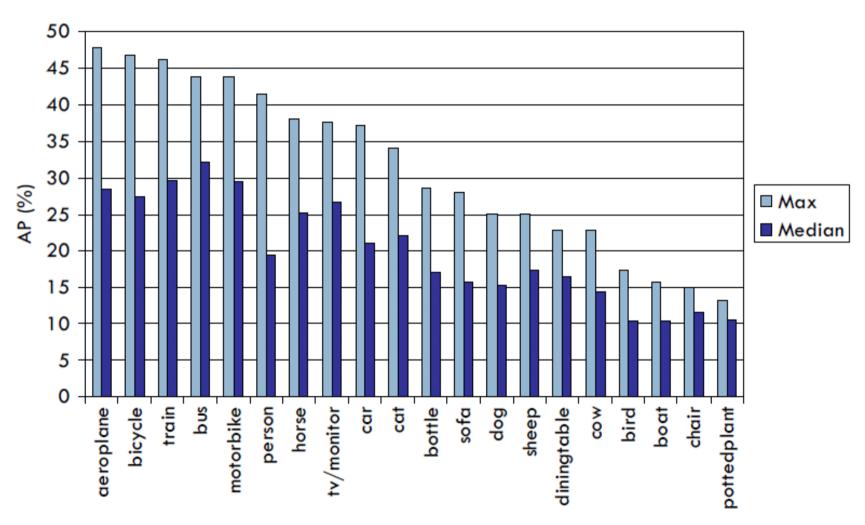


Precision/Recall - Potted plant



AP by Class

Detection



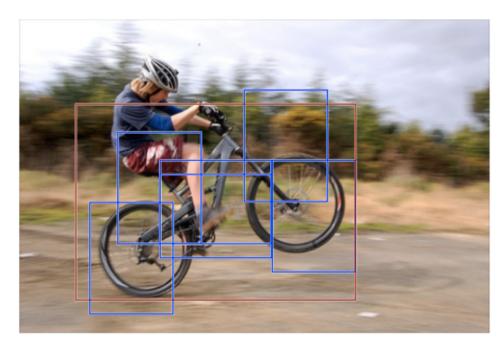
Wide variety of methods: sliding window, combination with whole image classifiers, segmentation based

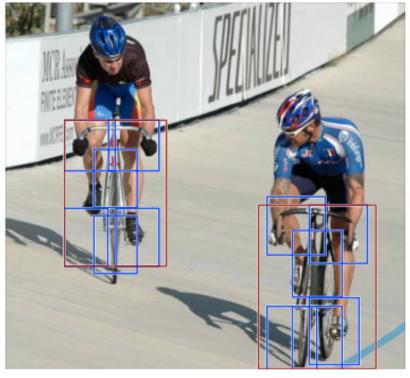
Object Detection with Discriminatively Trained Part Based Models

Pedro F. Felzenszwalb, David Mcallester, Deva Ramanan, Ross Girshick PAMI 2010

Matlab code available online: http://www.cs.brown.edu/~pff/latent/

Approach

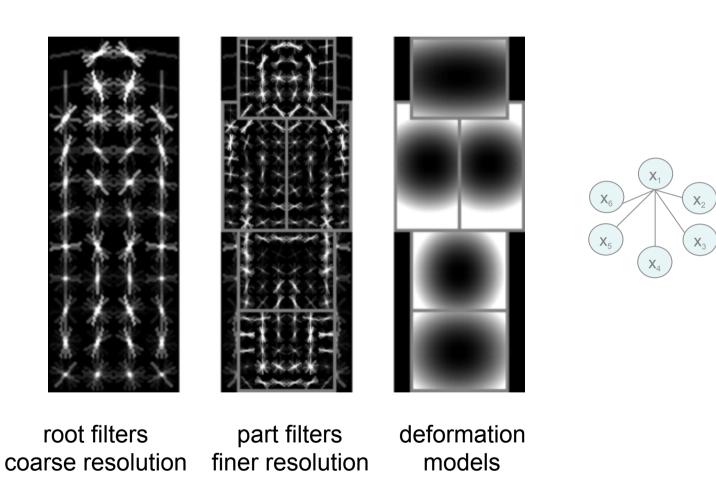




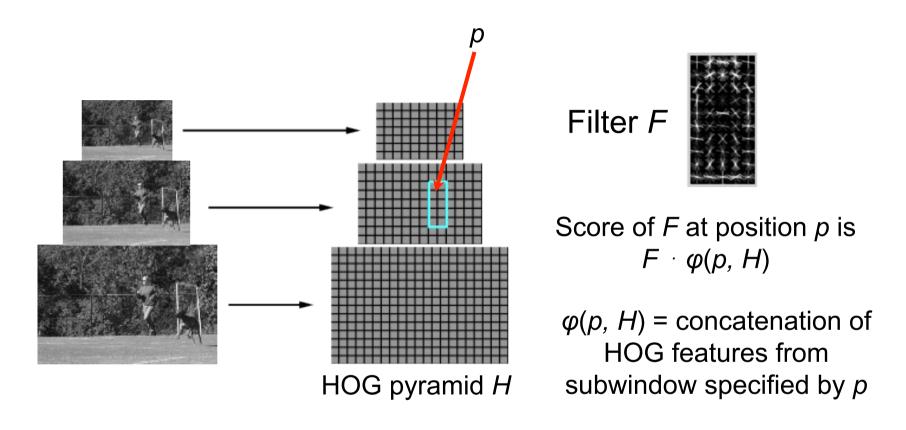
- Mixture of deformable part-based models
 - One component per "aspect" e.g. front/side view
- Each component has global template + deformable parts
- Discriminative training from bounding boxes alone

Example Model

One component of person model



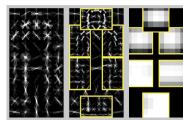
Starting Point: HOG Filter

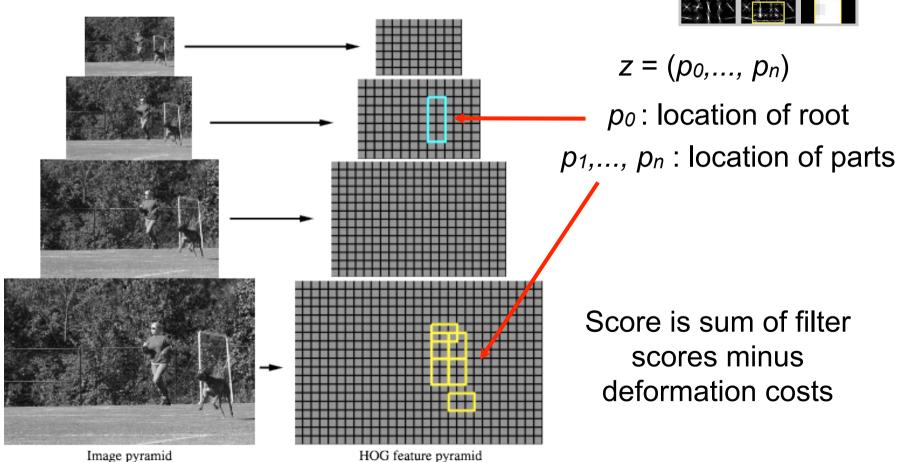


- Search: sliding window over position and scale
- Feature extraction: HOG Descriptor
- Classifier: Linear SVM

Object Hypothesis

- Position of root + each part
- Each part: HOG filter (at higher resolution)



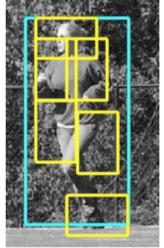


Score of a Hypothesis

Appearance term

Spatial prior

$$\operatorname{score}(p_0,\ldots,p_n) = \sum_{i=0}^n F_i \cdot \phi(H,p_i) - \sum_{i=1}^n d_i \cdot (dx_i^2,dy_i^2)$$
 displacements deformation parameters



$$score(z) = \beta \cdot \Psi(H,z)$$

$$concatenation of filters concatenation of and deformation parameters part displacement features$$

Linear classifier applied to feature subset defined by hypothesis

Part Detection

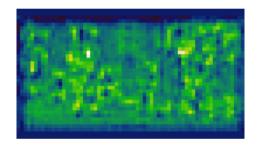
head filter

input image

Response of filter in I-th pyramid level

$$R_l(x,y) = F \cdot \phi(H,(x,y,l))$$

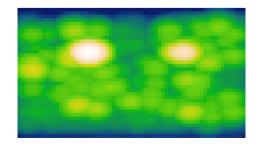
cross-correlation



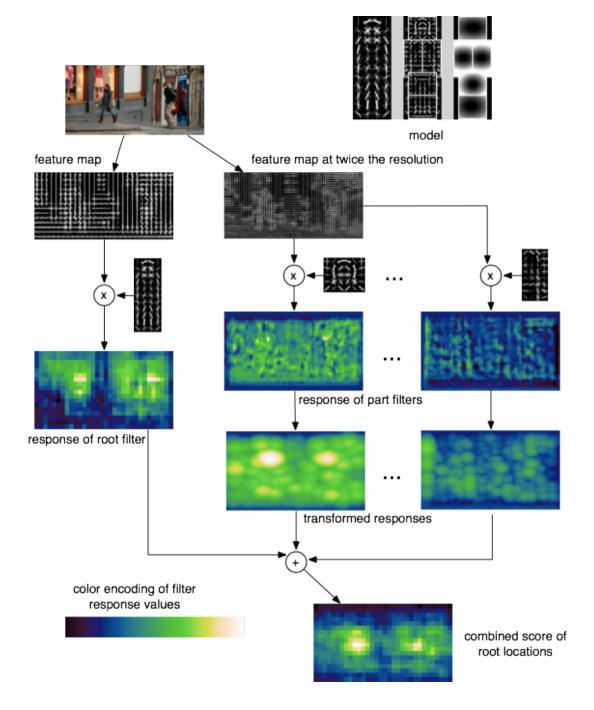
Transformed response

$$D_l(x,y) = \max_{dx,dy} \left(R_l(x+dx,y+dy) - d_i \cdot (dx^2,dy^2) \right)$$

max-convolution, computed in linear time (spreading, local max, etc)

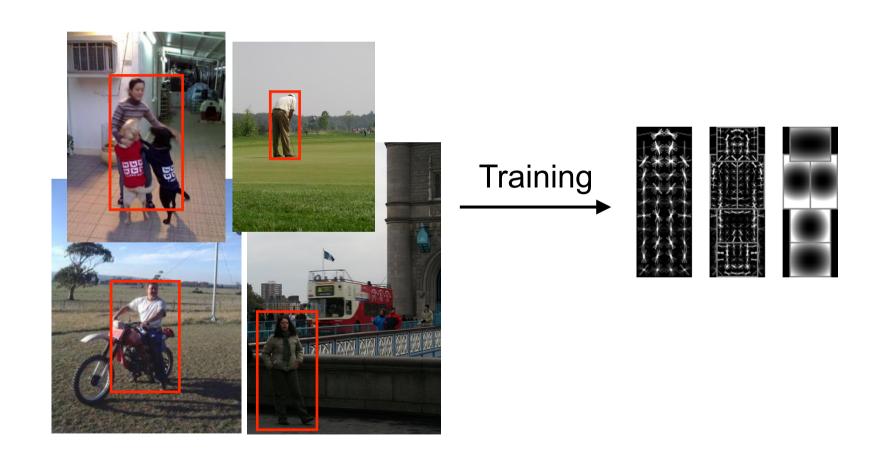


System

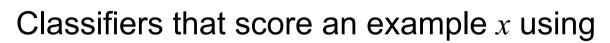


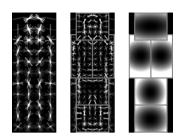
Training

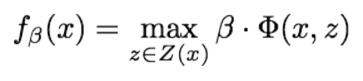
- Training data = images + bounding boxes
- Need to learn: model structure, filters, deformation costs

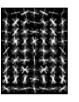


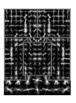
Latent SVM (MI-SVM)

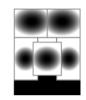












β are model parametersz are latent values

- Which component?
- Where are the parts?

Training data
$$D = (\langle x_1, y_1 \rangle, \dots, \langle x_n, y_n \rangle)$$
 $y_i \in \{-1, 1\}$

We would like to find β such that: $y_i f_{\beta}(x_i) > 0$

Minimize Regularizer "Hinge loss" on one training example
$$L_D(\beta) = \frac{1}{2}||\beta||^2 + C\sum_{i=1}^n \max(0,1-y_if_\beta(x_i))$$
 SVM objective

Latent SVM Training

$$L_D(\beta) = \frac{1}{2}||\beta||^2 + C\sum_{i=1}^n \max(0, 1 - y_i f_{\beta}(x_i))$$

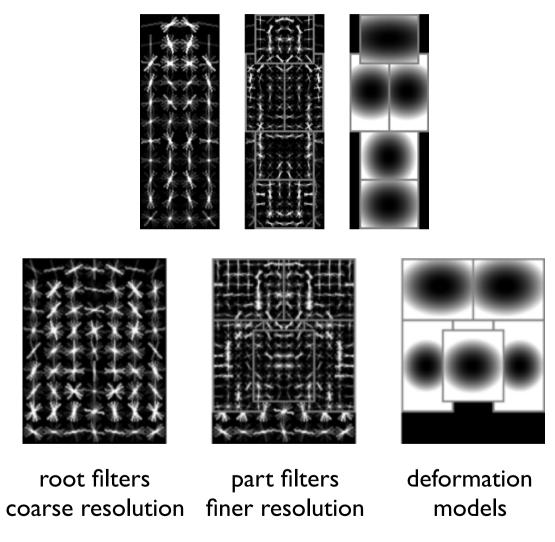
- Convex if we fix z for positive examples
- Optimization:
 - Initialize β and iterate:
- nitialize β and iterate:

 Pick best z for each positive example

 Alternation strategy
 - Optimize β with z fixed

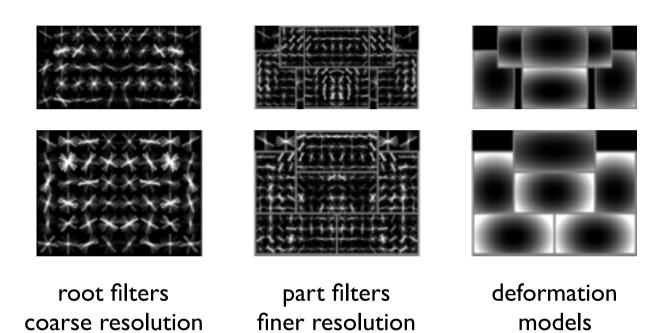
- Local minimum: needs good initialization
 - Parts initialized heuristically from root

Person Model



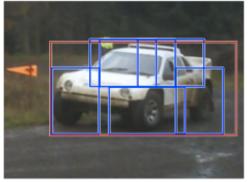
Handles partial occlusion/truncation

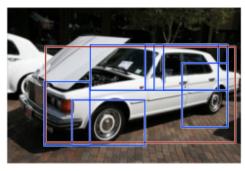
Car Model



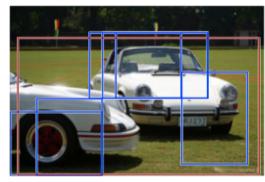
Car Detections

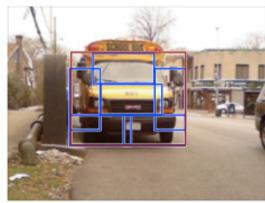
high scoring true positives





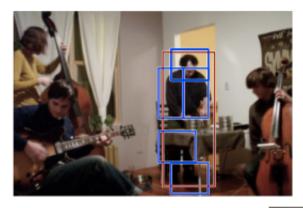
high scoring false positives

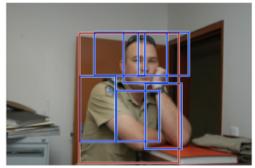


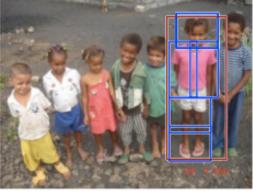


Person Detections

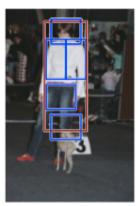
high scoring true positives



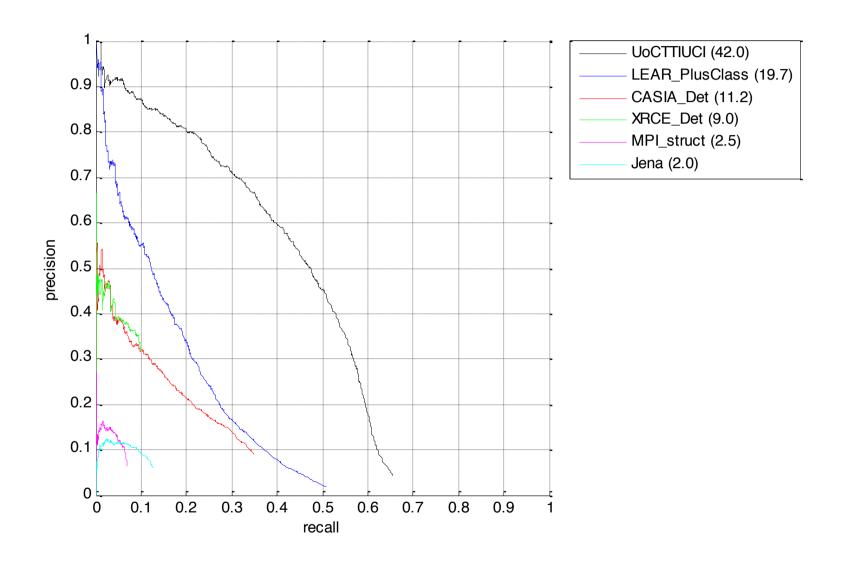




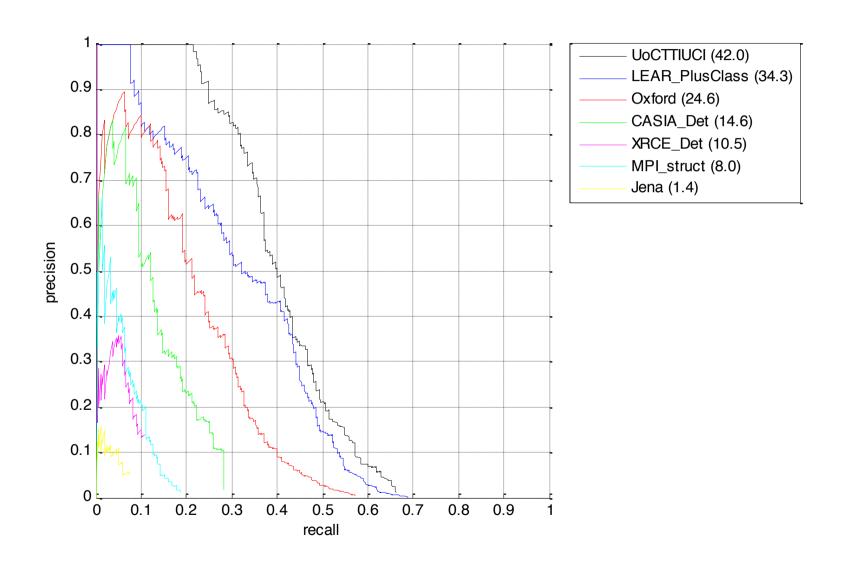
high scoring false positives (not enough overlap)



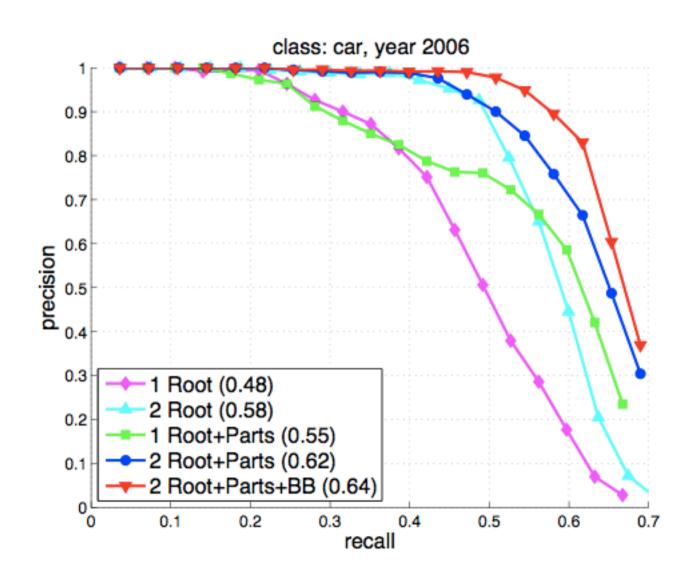
Precision/Recall: VOC2008 Person



Precision/Recall: VOC2008 Bicycle

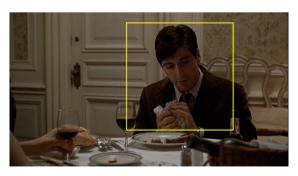


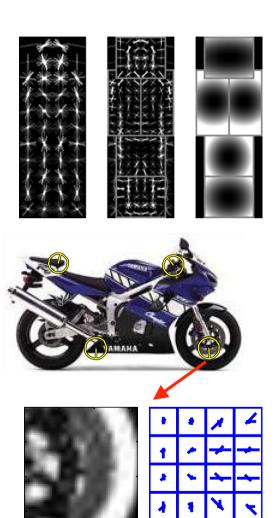
Comparison of Models



Summary

- Multiple features and multiple kernels boost performance
- Discriminative learning of model with latent variables for single feature (HOG):
 - Latent variables can learn best alignment in the ROI training annotation
 - Parts can be thought of as local SIFT vectors
 - Some similarities to Implicit Shape Model/
 Constellation models but with discriminative/
 careful training throughout





NB: Code available for latent model!

Outline

1. Sliding window detectors

2. Features and adding spatial information

3. HOG + linear SVM classifier

4. Two state of the art algorithms and PASCAL VOC

5. The future and challenges

Current Research Challenges

- Context (See class on scenes and objects on Dec 3).
 - from scene properties: GIST, BoW, stuff
 - from other objects
 - from geometry of scene, e.g. Hoiem et al CVPR 06
- Occlusion/truncation
 - Winn & Shotton, Layout Consistent Random Field, CVPR 06
 - Vedaldi & Zisserman, NIPS 09
 - Yang et al, Layered Object Detection, CVPR 10
- 3D
 - Zhu&Ramanan, CVPR'12 (view-based representation of faces)
- Scaling up thousands of classes
 - Torralba et al, feature sharing
 - ImageNet
- Weak and noisy supervision

Final projects

- The final project amounts to 50% of the final grade.
- You will have the opportunity to choose your own research topic and to work on a method recently published at a topquality computer vision conference (ECCV, ICCV, CVPR) or journal (IJCV, TPAMI).
- Your task will be to:
 - (i) read and understand the research paper,
 - (ii) implement (a part of) the paper, and
 - (iii) perform qualitative/quantitative experimental evaluation.

Final projects II.

- We will provide a list of interesting topics.
- If you would like to work on another topic (not from the list below), which you may have seen during the class or elsewhere, please consult the topic with the class instructors (I. Laptev and J. Sivic).
- You may work alone or in a group of 2-3 people. If working in a group, we expect a more substantial project, and an equal contribution from each student in the group.

Final projects III – evaluation and due dates

- **Project proposal** (due on Nov 9th). You will submit a 1-page project proposal indicating (i) your chosen topic, (ii) the plan of work, i.e. what are you going to implement, what data you are going to use, what experiments you are going to do, (iii) if working in a group, who are the members of the group and how you plan to share the work. *The project proposal will represent 10% of the final project grade.*
- **Project report** (due on Dec 23rd). You will write a short report (<3 pages) summarizing your work. *The report will represent 70% of the final project grade.*
- **Project presentation** (on Dec 11 or Dec 12). You will present your work in the class on Dec 11 or Dec 12. *The project presentation will represent 20% of the final project grade.*

Final projects IV.

Re-using other's people code:

You can re-use other people's code. However, you should clearly indicate in your report/presentation, what is your own code and what was provided by others (don't forget to indicate the source).

We expect projects balanced between implementation / experimental evaluation. For example, if you implement a difficult algorithm from scratch, only few qualitative experimental results may suffice. On the other hand, if you completely use someone else's implementation, we expect a strong quantitative experimental evaluation with analysis of the obtained results and comparison with baseline methods.

Example topics

Please see

http://www.di.ens.fr/willow/teaching/recvis12/finalproject/

Your own chosen topic:

You can also choose your own topic, e.g. based on a paper, which has been discussed in the class. Please validate the topic with the course instructors (I. Laptev or J. Sivic) first. You can discuss the topic with the course instructors after the class or email to Ivan.Laptev@ens.fr or Josef.Sivic@ens.fr.

Example of a topic defined by students

- Defined their own problem
- Collected data (their own and the Internet)
- Applied visual representations and classification/detection techniques from the class.

Computer Vision Recognizing playing instrument

Pierre-Adrien Nadal, Axel Barrau

December 24, 2011

Joint projects with other classes

- For example with the "Introduction to graphical models" class (F. Bach and G. Obozinski).
- The joint project between two classes is expected to be more substantial and will have a strong machine learning as well as computer vision component. Please contact the instructors of both courses if you are interested in the joint project. We will discuss and adjust the requirements from each course depending on the size of the group.
- The project should have strong "computer vision" and "graphical models" components.

Example

Activity forecasting

- Paper: Activity forecasting. Kris M. Kitani, Brian D. Ziebart, Drew Bagnell and Martial Hebert, European Conference on Computer Vision (ECCV 2012).
- Page: http://www.cs.cmu.edu/~kkitaniActivityForecasting.html
- This topic is particularly suitable for someone taking also the "Reinforcement learning" class by Remi Munos.

Fig. 1. Given a single pedestrian detection, our proposed approach forecasts plausible paths and destinations from noisy vision-input