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Image search system for large datasets

Large image dataset
(one million images or more)

ranked image list

Image search
system

* Issues for very large databases
» to reduce the query time

* to reduce the storage requirements
« with minimal loss in retrieval accuracy



Large scale object/scene recognition

Image dataset:
> 1 million images

ranked im

Image search ﬁ g |
system ¢ ?ﬂp f
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« Each image described by approximately 2000 descriptors
— 2 * 10° descriptors to index for one million images!

« Database representation in RAM:
— Size of descriptors : 1 TB, search+memory intractable



Bag 'Of'featu 'eS [Sivic&Zisserman’ 03]
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 Visual Words

— 1 word (index) per local descriptor v

— ' ids in i ' Inverted .
only images |.d.$ |n.|nverted .flle. —
=> 8 GB for a million images, fits in RAM

* Problem
— Matching approximation

v

Re-ranked Geometric ranked image
list verification short-list

[Chum & al. 2007]



Visual words — approximate NN search

« Map descriptors to words by quantizing the feature space
— Quantize via k-means clustering to obtain visual words
— Assign descriptors to closest visual words

« Bag-of-features as approximate nearest neighbor search

Descriptor matching with k-nearest neighbors

f (2, y) = 1 if x is a k-NN of y
JENNUEJ) =9 0 otherwise

Bag-of-features matching function fq(ilfa y) = 5q(:z:),q(y)

where q(x) is a quantizer, i.e., assignment to a visual word and
0, is the Kronecker operator (5, ,=1 iff a=b)



Approximate nearest neighbor search evaluation

*ANN algorithms usually returns a short-list of nearest neighbors
— this short-list is supposed to contain the NN with high probability
— exact search may be performed to re-order this short-list

*Proposed quality evaluation of ANN search: trade-off between
— Accuracy: NN recall = probability that the NN is in this list
against
— Ambiguity removal = proportion of vectors in the short-list

- the lower this proportion, the more information we have about the
vector

- the lower this proportion, the lower the complexity if we perform exact
search on the short-list

*ANN search algorithms usually have some parameters to handle this trade-off



ANN evaluation of bag-of-features

NN recall

*ANN algorithms
U I B B S B B returns a list of
: : : : : potential neighbors

Accuracy: NN recall
= probability that the
NN is in this list

Ambiguity removal.
= proportion of vectors
in the short-list

01 [ i
: In BOF, this trade-off
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rate of points retrieved



20K visual word: false matches




200K visual word: good matches mlssed




Problem with bag-of-features

« The intrinsic matching scheme performed by BOF is weak
— for a “small” visual dictionary: too many false matches
— for a “large” visual dictionary: many true matches are missed

* No good trade-off between “small” and “large” !
— either the Voronoi cells are too big
— or these cells can’t absorb the descriptor noise

— intrinsic approximate nearest neighbor search of BOF is not
sufficient

— Possible solutions
» Soft assignment [Philbin et al. CVPR'08]
» Additional short codes [Jegou et al. ECCV’08]



Hamming Embeddlng [Jegou et al. ECCV'08]

Representation of a descriptor x
— Vector-quantized to g(x) as in standard BOF
+ short binary vector b(x) for an additional localization in the Voronoi cell

Two descriptors x and y match iif

(tf-idf(q(x)))*  if () = q(y)
Jue(er,y) = and i (b(x),b(y)) < ht  h(a,b) Hamming distance
0 otherwise



Hamming Embeddlng [Jegou et al. ECCV'08]

*Nearest neighbors for Hamming distance = those for Euclidean distance
— a metric in the embedded space reduces dimensionality curse effects

Efficiency
— Hamming distance = very few operations

— Fewer random memory accesses: 3 x faster that BOF with same
dictionary size!



Hamming Embedding

-Off-line (given a quantizer)
— draw an orthogonal projection matrix P of size d, x d
— this defines d, random projection directions

— for each Voronoi cell and projection direction, compute the median
value for a learning set

*On-line: compute the binary signature b(x) of a given
descriptor

— project x onto the projection directions as z(x) = (z4,...24,)

— bi(x) = 1 if z(x) is above the learned median value, otherwise 0



Hamming neighborhood
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Trade-off between memory
usage and accuracy

—>More bits yield higher
accuracy

In practice, 64 bits (8 byte)



ANN evaluation of Hamming Embedding

0.7

compared to BOW: at least
10 times less points in the
short-list for the same level
of accuracy

Hamming Embedding

provides a much better
trade-off between recall
and ambiguity removal

NN recall
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240 matches

ts - 20k word vocabulary
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Many matches with the non-corresponding image!



Matching points - 200k word vocabulary

69 matches 35 matches

Still many matches with the non-corresponding one



Matching points - 20k word vocabulary + HE

83 matches 8 matches

10x more matches with the corresponding image!



Bag'Of'featU 'eS [Sivic&Zisserman’ 03]
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[Chum & al. 2007]




Geometric verification

Use the position and shape of the underlying features
to improve retrieval quality

Both images have many matches — which 1s correct?



Geometric verification

We can measure spatial consistency between the query
and each result to improve retrieval quality

ATl |

Many spatially consistent Few spatially consistent
matches — correct result matches — nicorrect
result



Geometric verification

Gives localization of the object
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Re-ranking based on geometric verification

* works very well
* but performed on a short-list only (typically, 1000 images)

— for very large datasets, the number of distracting images is so high
that relevant images are not even short-listed!

— weak geometry

1
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Weak geometry consistency

« Weak geometric information used for all images (not only the short-list)

« Each invariant interest region detection has a scale and rotation angle
associated, here characteristic scale and dominant gradient orientation

Scale change 2
Rotation angle ca. 20 degrees

« Each matching pair results in a scale and angle difference

« For the global image scale and rotation changes are roughly consistent



WGC: orientation consistency
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Weak geometry consistency

Integration of the geometric verification into the BOF

— votes for an image in two quantized subspaces, i.e. for angle & scale
— these subspace are show to be roughly independent

— final score: filtering for each parameter (angle and scale)

Only matches that do agree with the main difference of
orientation and scale will be taken into account in the final
score

Re-ranking using full geometric transformation still adds
iInformation in a final stage



INRIA holidays dataset

Evaluation for the INRIA holidays dataset, 1491 images
— 500 query images + 991 annotated true positives
— Most images are holiday photos of friends and family

1 million & 10 million distractor images from Flickr
Vocabulary construction on a different Flickr set
Almost real-time search speed

Evaluation metric: mean average precision (in [0,1], bigger
= better)

— Average over precision/recall curve



Holiday dataset — example queries




Dataset : Venice Channel




Dataset : San Marco square




Example distractors - Flickr




mAP

Experimental evaluation

« Evaluation on our holidays dataset, 500 query images, 1 million distracter

images

« Metric: mean average precision (in [0,1], bigger = better)
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Average query time (4 CPU cores)

Compute descriptors 880 ms
Quantization 600 ms
Search — baseline 620 ms
Search - WGC 2110 ms
Search — HE 200 ms

Search —- HE+WGC 650 ms




Results — Venice Channel




Comparison with the state of the art: Oxford dataset [Philbin et al. CVPR'07]

Evaluation measure:
Mean average precision (mAP)




Comparison with the state of the art: Kentucky dataset [Nister et al. CVPR’06]
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4 images per object

Evaluation measure: among the 4 best retrieval results how
many are correct (ranges from 1 to 4)



Comparison with the state of the art

dataset Oxford Kentucky
distractors 0 100K 0 1M
soft assignment [14] 0.493 0.343
ours 0.615 0.516

soft + geometrical re-ranking [14]| 0.598 0.480

ours + geometrical re-ranking 0.667 0.591
soft + query expansion [14] 0.718 0.605
ours + query expansion 0.747  0.687
hierarchical vocabulary [6] 3.19
CDM [11] 3.61 2.93
ours 3.42 3.10
ours + geometrical re-ranking 3.55  3.40

[14] Philbin et al., CVPR’08; [6] Nister et al., CVPR’06; [10] Harzallah et al., CVPR’07



On-line demonstration

Fle Edit View History Bookmarks Tools Help
[¢| http://bigimbaz.inrialpes.fr

%I INRIA EARVJ

Query

Results from a database of 10 million images

Demo at http://bigimbaz.inrialpes.fr



Towards large-scale image search

 BOF+inverted file can handle up to ~10 millions images
— with a limited number of descriptors per image - RAM: 40GB
— search: 2 seconds

« Web-scale = billions of images
— with 100 M per machine - search: 20 seconds, RAM: 400 GB
— not tractable

« Solution: represent each image by one compressed vector



Recent approaches for very large scale indexing

centroids
Query Set of SIFT  |(Visual words)
image descriptors
¥ l sparse frequency vector

Hessian-Affine Bag-of-features
regions + SIFT descriptors +tf‘-)i:;)fcv3:?g;:?ing —> |:| ] :I:l n

Vector
compression
« Each image is represented by one vector l
(not necessarily a BOF)
Vector
search

*This vector is compressed to reduce
storage requirements

Re-r?nked Geometric ranked in_1age
list verification short-list

%I INRIA



Related work on very large scale image search

Min-hash and geometrical min-hash [Chum et al. 07-09]
Compressing the BoF representation (miniBof) [ Jegou et al. 09]
—> these approaches require hundreds of bytes to obtain a “reasonable quality”

GIST descriptors with Spectral Hashing [Weiss et al.’08]
- very limited invariance to scale/rotation/crop



Global scene context — GIST descriptor

e The “gist” of a scene: Oliva & Torralba (2001)

>
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C
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L

e 5 frequency bands and 6 orientations for each image location
e Tiling of the image to describe the image



GIST descriptor + spectral hashing

e The position of the descriptor in the image is encoded in the representation

Gist

Torralba et al. (2003)

e Spectral hashing produces binary codes similar to spectral clusters



Related work on very large scale image search

Min-hash and geometrical min-hash [Chum et al. 07-09]
Compressing the BoF representation (miniBof) [ Jegou et al. 09]
—> require hundreds of bytes are required to obtain a “reasonable quality”

GIST descriptors with Spectral Hashing [Weiss et al.’08]
—> very limited invariance to scale/rotation/crop

Aggregating local descriptors into a compact image representation [Jegou
&al. “10]

Efficient object category recognition using classemes [Torresani et al.” 10]



Aggregating local descriptors

Set of n local descriptors - 1 vector

Popular approach: bag of features, often with SIFT features

Recently improved aggregation schemes
— Fisher vector [Perronnin & Dance ‘07]

— VLAD descriptor [Jegou, Douze, Schmid, Perez ‘10]
— Supervector [Zhou et al. “10]

— Sparse coding [Wang et al. 10, Boureau et al.’10]

Use in very large-scale retrieval and classification



Aggregating local descriptors

e Most popular approach: BoF representation [Sivic & Zisserman 03]
sparse vector
highly dimensional

— significant dimensionality reduction introduces loss

e Vector of locally aggregated descriptors (VLAD) [Jegou et al. 10]
non sparse vector
fast to compute
excellent results with a small vector dimensionality

e Fisher vector [Perronnin & Dance 07]
probabilistic version of VLAD
initially used for image classification
comparable or improved performance over VLAD for image retrieval



VLAD : vector of locally aggregated descriptors

e Determine a vector quantifier (k-means)
» output: k centroids (visual words): c,,...,C,...C,
» centroid ¢, has dimension d

e Fora givenimage
» assign each descriptor to closest center ¢
» accumulate (sum) descriptors per cell
Vii= vt (X-g)
e VLAD (dimension D = k x d) o

e The vector is square-root + L2-normalized C.

e Alternative: Fisher vector

o

[Jegou, Douze, Schmid, Perez, CVPR’10]



VLADs for corresponding images
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SIFT-like representation per centroid (+ components: blue, - components: red)

e good coincidence of energy & orientations



Fisher vector

e Use a Gaussian Mixture Model as vocabulary
e Statistical measure of the descriptors of the image w.r.t the GMM
e Derivative of likelihood w.r.t. GMM parameters

GMM parameters:

w; weight

1323 mean

oF] co-variance
(diagonal)

Translated cluster —
large derivative on [t; for this
component

[Perronnin & Dance 07]



Fisher vector

FV formulas:

vt(1) = soft-assignment of patch 7 to Gaussian i
Fisher Vector = concatenation of per-Gaussian gradient vectors

For image retrieval in our experiments:
- only deviation wrt mean, dim: K*D [K number of Gaussians, D dim of descriptor]
- variance does not improve for comparable vector length



VLAD/Fisher/BOF performance and dimensionality reduction

e We compare Fisher, VLAD and BoF on INRIA Holidays Dataset (AP %)
e Dimension is reduced to D’ dimensions with PCA

Descriptor K D Holidays (mAP)
D'=D —D'=2048 — D'=512 — D'=128 — D'=64 — D'=32
BOW 1000 1000 40.1 43.5 44.4 43.4 40.8
20000 20000 43.7 41.8 44.9 45.2 444 41.8
Fisher (u) 16 1024 54.0 54.6 52.3 49.9 46.6
64 4096 59.5 60.7 61.0 56.5 52.0 48.0
256 16384 62.5 62.6 57.0 53.8 50.6 48.6
VLAD 16 1024 52.0 52.7 52.6 50.5 47.7
64 4096 55.6 57.6 59.8 55.7 52.3 48.4
256 16384 58.7 62.1 56.7 54.2 51.3 48.1
GIST 960 36.5

e Observations:
» Fisher, VLAD better than BoF for a given descriptor size
» Choose a small D if output dimension D’ is small
» Performance of GIST not competitive

[Jegou, Perronnin, Douze, Sanchez, Perez, Schmid, PAMI’'12]



Compact image representation

e Aim: improving the tradeoff between

» search speed
» memory usage
» search quality

e Approach: joint optimization of three stages

» local descriptor aggregation
» dimension reduction

» indexing algorithm

Image representation
VLAD / Fisher

PCA +
PQ codes

(Non) — exhaustive
search




mAP

Optimizing the dimension reduction and quantization together
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Results on Holidays dataset:

- there exists an optimal D’

- 16 byte best results for k=64

- 320 byte best results for k=256

Fisher vectors undergoes two approximations

» mean square error from PCA projection

» mean square error from quantization

Given k and bytes/image, choose D’ minimizing their sum

| I I I
I Fisher, K=16, ADC 16x8 ——— |
Fisher, K=64, ADC 16x8 ——

i Fisher, K=256, ADC 16x8 ——— |
Fisher, K=16, ADC 256x10 -
Fisher, K=64, ADC 256x10 -

... . fisherK=256,ADC256x10 '
16 64 256 1024 4096

D,



Results on the Holidays dataset with various quantization parameters

ADC parameters
8x8 16x8 32x10 128x10
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Product quantization for nearest neighbor search

e Vector split into m subvectors: ¥y — [yﬂ e \ym}

e Subvectors are quantized separately by quantizers ¢(v) = [a1(y1)] - - - |¢m (Ym)]
where each q; is learned by k-means with a limited number of centroids

e Example: y = 128-dim vector split in 8 subvectors of dimension 16
» each subvector is quantized with 256 centroids -> 8 bit
» very large codebook 256”8 ~ 1.8x10*9

16 components

Y1 Yo Y3 Yq4 Ys Y6 Y7 Ys
HOBNOEEOENOENOEBEOBNOENO
centroids

q:(y) q2(¥2) q3(y3) d4(Y4) qs(Ys) d6(Ys) q7(y,) qs(Ys)

\_Y._}
8 bits

= 8 subvectors x 8 bits = 64-bit quantization index

[Jegou, Douze, Schmid, PAMI’11]



Comparison to the state of the art

Method bytes UKB  Holidays
BOW, K=20,000 10364 2.87 43.7
BOW, K=200,000 12886 2.81 54.0
miniBOF [12] 20 2.07 25.5

80  2.72 40.3

160  2.83 42.6
FV K=64, spectral hashing 128 bits 16 2.57 39.4
VLAD, K=16, ADC 16x8 [23] 16 2.88 46.0
VLAD, K=64, ADC 32x10 [23] 40  3.10 49.5
FV K=8, binarized [22] 65 2.79 46.0
FV K=64, binarized [22] 520  3.21 57.4
FV K=64, ADC 16x8 (D’=96) 16 3.10 50.6
FV K=256, ADC 256x10 (D'=2048) 320  3.47 63.4

[12] H. Jégou, M. Douze, and C. Schmid, “Packing bag-of-features,” in

ICCV, September 2009.

[22] FE. Perronnin, Y. Liu, J. Sanchez, and H. Poirier, “Large-scale image
retrieval with compressed Fisher vectors,” in CVPR, June 2010.

[23] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local
descriptors into a compact image representation,” in CVPR, June 2010.




Large scale experiments (10 million images)

e Exhaustive search of VLADs, D’ =64
» 4.77s

e With the product quantizer
» Exhaustive search with ADC: 0.29s
» Non-exhaustive search with IVFADC: 0.014s

IVFADC -- Combination with an inverted file

Inverted file structure

Database indexing

inverted list Li
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Large scale experiments (10 million images)

o
E __ . Timings
\E-\ \N.""-._ :
. P e Y IVFADC: 0.02s
) S E——
| - BOW, K=200k —+— |
Fisher K=64, D=4096 ---x---
10 | Fisher K=64, PCA D'=96 ---©--- ~7~ b
Fisher K=64, IVFADC 64/8192, 16x8 -~ g
. Fisher K=256, IVFADC 64/8192, 256x10 - |
1000 10K 100k 1M 10M

Database size



Conclusion

e Competitive search accuracy with a few dozen bytes per indexed image

e Tested on 220 million video frames
» extrapolation for 1 billion images: 20GB RAM, query < 1s on 8 cores

e Code on-line available Software for Fisher computation and PQ-codes
http://lear.inrialpes.fr/software



