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Image search system for large datasets  
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•  Issues for very large databases 
•  to reduce the query time 
•  to reduce the storage requirements 
•  with minimal loss in retrieval accuracy 



Large scale object/scene recognition 

•  Each image described by approximately 2000 descriptors 
–  2 * 109 descriptors to index for one million images!  

•  Database representation in RAM:  
–  Size of descriptors : 1 TB, search+memory intractable 
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> 1 million images 

query 



Bag-of-features [Sivic&Zisserman’03] 
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•  Visual Words  
–  1 word (index) per local descriptor  
–  only images ids in inverted file 
⇒ 8 GB for a million images, fits in RAM 
 
 

[Chum & al. 2007] 

•  Problem  
–  Matching approximation 
 
 
 



Visual words – approximate NN search  

•  Map descriptors to words by quantizing the feature space 
–  Quantize via k-means clustering to obtain visual words 
–  Assign descriptors to closest visual words 

•  Bag-of-features as approximate nearest neighbor search  

 
 

        Bag-of-features matching function 
 

  

 
Descriptor matching with k-nearest neighbors 

     where q(x) is a quantizer, i.e., assignment to a visual word and 
  δa,b is the Kronecker operator (δa,b=1 iff a=b) 



Approximate nearest neighbor search evaluation 
• ANN algorithms usually returns a short-list of nearest neighbors 

–  this short-list is supposed to contain the NN with high probability 
–  exact search may be performed to re-order this short-list 

• Proposed quality evaluation of ANN search: trade-off between 
–  Accuracy: NN recall = probability that the NN is in this list 

     against 
–  Ambiguity removal = proportion of vectors in the short-list 

- the lower this proportion, the more information we have about the 
vector  

- the lower this proportion, the lower the complexity if we perform exact 
search on the short-list 

• ANN search algorithms usually have some parameters to handle this trade-off 



ANN evaluation of bag-of-features 
• ANN algorithms 
returns a list of 
potential neighbors 

• Accuracy: NN recall 
= probability that the 
NN is in this list 

• Ambiguity removal:  
= proportion of vectors 
in the short-list 

• In BOF, this trade-off 
is managed by the 
number of clusters k 
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20K visual word: false matches 



200K visual word: good matches missed 



Problem with bag-of-features 

•  The intrinsic matching scheme performed by BOF is weak 
–  for a “small” visual dictionary: too many false matches  
–  for a “large” visual dictionary: many true matches are missed 

•  No good trade-off between “small” and “large” ! 
–  either the Voronoi cells are too big 
–  or these cells can’t absorb the descriptor noise 
→  intrinsic approximate nearest neighbor search of BOF is not 

sufficient 
–  Possible solutions 

   Soft assignment [Philbin et al. CVPR’08] 
  Additional short codes [Jegou et al. ECCV’08] 



Hamming Embedding [Jegou et al. ECCV’08] 

Representation of a descriptor x 
–  Vector-quantized to q(x) as in standard BOF 
+  short binary vector b(x) for an additional localization in the Voronoi cell 

Two descriptors x and y match iif 
        
  

h(a,b)  Hamming distance 

  



Hamming Embedding [Jegou et al. ECCV’08] 

 
• Nearest neighbors for Hamming distance ≈ those for Euclidean distance 
→ a metric in the embedded space reduces dimensionality curse effects 
 
• Efficiency 

–  Hamming distance = very few operations 
–  Fewer random memory accesses: 3 x faster that BOF with same 

dictionary size! 



Hamming Embedding 

 
• Off-line (given a quantizer) 

–  draw an orthogonal projection matrix P of size db × d 
→ this defines db random projection directions 
–  for each Voronoi cell and projection direction, compute the median 

value for a learning set 
 

• On-line: compute the binary signature b(x) of a given 
descriptor 

–  project x onto the projection directions as z(x) = (z1,…zdb)  
–  bi(x) = 1 if zi(x) is above the learned median value, otherwise 0 



Hamming neighborhood 
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 More bits yield higher 
accuracy 

In practice,  64 bits (8 byte) 



ANN evaluation of Hamming Embedding 
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Hamming Embedding 
provides a much better 
trade-off between recall 
and ambiguity removal 



Matching points - 20k word vocabulary 

201 matches 240 matches 

Many matches with the non-corresponding image! 



Matching points - 200k word vocabulary 
69 matches 35 matches 

Still many matches with the non-corresponding one 



Matching points - 20k word vocabulary + HE 

83 matches 8 matches 

10x more matches with the corresponding image! 



Bag-of-features [Sivic&Zisserman’03] 
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[Chum & al. 2007] 



Geometric verification 

Use the position and shape of the underlying features 
to improve retrieval quality 

Both images have many matches – which is correct? 



Geometric verification 

We can measure spatial consistency between the query 
and each result to improve retrieval quality 

Many spatially consistent 
matches – correct result 

Few spatially consistent 
matches – incorrect 

result 



Geometric verification 

 Gives localization of the object 



Re-ranking based on geometric verification 
•  works very well 
•  but performed on a short-list only (typically, 1000 images) 

→  for very large datasets, the number of distracting images is so high 
that relevant images are not even short-listed! 

→  weak geometry 
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Weak geometry consistency 

•  Weak geometric information used for all images (not only the short-list) 

•  Each invariant interest region detection has a scale and rotation angle 
associated, here characteristic scale and dominant gradient orientation 

 

Scale change 2 
Rotation angle ca. 20 degrees 

•  Each matching pair results in a scale and angle difference 

 •  For the global image scale and rotation changes are roughly consistent 

 



Max = rotation angle between images 

WGC: orientation consistency 



WGC: scale consistency 



Weak geometry consistency 

•  Integration of the geometric verification into the BOF 
–  votes for an image in two quantized subspaces, i.e. for angle & scale  
–  these subspace are show to be roughly independent 
–  final score: filtering for each parameter (angle and scale) 

•  Only matches that do agree with the main difference of 
orientation and scale will be taken into account in the final 
score 

•  Re-ranking using full geometric transformation still adds 
information in a final stage 

 



INRIA holidays dataset 

•  Evaluation for the INRIA holidays dataset, 1491 images 
–  500 query images + 991 annotated true positives 
–  Most images are holiday photos of friends and family  

•  1 million & 10 million distractor images from Flickr 
•  Vocabulary construction on a different Flickr set  
•  Almost real-time search speed 

•  Evaluation metric: mean average precision (in [0,1], bigger 
= better) 
–  Average over precision/recall curve  



Holiday dataset – example queries  



Dataset : Venice Channel 

Query 

Base 4 Base 3 

Base 2 Base 1 



Dataset : San Marco square 

Query Base 1 Base 3 Base 2 

Base 9 Base 8 

Base 4 Base 5 Base 7 Base 6 



Example distractors - Flickr 



Experimental evaluation 

•  Evaluation on our holidays dataset, 500 query images, 1 million distracter 
images 

•  Metric: mean average precision (in [0,1], bigger = better) 

Average query time (4 CPU cores)  

Compute descriptors 880 ms 

Quantization 600 ms 

Search – baseline 620 ms 

Search – WGC 2110 ms 

Search – HE 200 ms 

Search – HE+WGC 650 ms 
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Results – Venice Channel 

Base 1 Flickr 

Flickr Base 4 

Query 



Comparison with the state of the art: Oxford dataset [Philbin et al. CVPR’07] 

Evaluation measure: 
Mean average precision (mAP) 



Comparison with the state of the art: Kentucky dataset [Nister et al. CVPR’06] 

4 images per object  
 
 Evaluation measure: among the 4 best retrieval results how  

        many are correct (ranges from 1 to 4) 



Comparison with the state of the art 

[14] Philbin et al., CVPR’08;       [6] Nister et al., CVPR’06;     [10] Harzallah et al., CVPR’07 



Demo at http://bigimbaz.inrialpes.fr  

On-line demonstration 



Towards large-scale image search 

•  BOF+inverted file can handle up to ~10 millions images 
–  with a limited number of descriptors per image  RAM: 40GB 
–  search: 2 seconds 

•   Web-scale = billions of images 
–  with 100 M per machine  search: 20 seconds, RAM: 400 GB 
–  not tractable  

•  Solution: represent each image by one compressed vector 
 



Recent approaches for very large scale indexing   
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Vector  
search 

•  Each image is represented by  one vector 
(not necessarily a BOF)  

• This vector is compressed to reduce 
storage requirements 



Related work on very large scale image search 

 
 
  Min-hash and geometrical min-hash [Chum et al. 07-09] 
  Compressing the BoF representation (miniBof) [ Jegou et al. 09]  
       these approaches require hundreds of bytes to obtain a “reasonable quality” 
 
 
  GIST descriptors with Spectral Hashing [Weiss et al.’08] 
      very limited invariance to scale/rotation/crop 

 



Global scene context – GIST descriptor  

  The “gist” of a scene: Oliva & Torralba (2001) 

  5 frequency bands and 6 orientations for each image location 
  Tiling of the image to describe the image 



GIST descriptor + spectral hashing  

  The position of the descriptor in the image is encoded in the representation  

Torralba et al. (2003) 

Gist 

  Spectral hashing produces binary codes similar to  spectral clusters 



Related work on very large scale image search 

 
 
  Min-hash and geometrical min-hash [Chum et al. 07-09] 
  Compressing the BoF representation (miniBof) [ Jegou et al. 09]  
       require hundreds of bytes are required to obtain a “reasonable quality” 
 
 
  GIST descriptors with Spectral Hashing [Weiss et al.’08] 
       very limited invariance to scale/rotation/crop 

  Aggregating local descriptors  into a compact image representation [Jegou  
&al.‘10] 

  Efficient object category recognition using classemes [Torresani et al.’10] 
 



Aggregating local descriptors 

•  Set of n local descriptors  1 vector 

•  Popular approach: bag of features, often with SIFT features 

•  Recently improved aggregation schemes 
–  Fisher vector [Perronnin & Dance ‘07] 

–  VLAD descriptor [Jegou, Douze, Schmid, Perez ‘10] 

–  Supervector [Zhou et al. ‘10] 

–  Sparse coding [Wang et al. ’10, Boureau et al.’10] 

•  Use in very large-scale retrieval and classification 



Aggregating local descriptors 

 
  Most popular approach: BoF representation [Sivic & Zisserman 03] 

►  sparse vector 
►  highly dimensional 

→ significant dimensionality reduction introduces loss 
 

  Vector of locally aggregated descriptors (VLAD) [Jegou et al. 10] 

►  non sparse vector 
►  fast to compute  
►  excellent results with a small vector dimensionality 

  Fisher vector [Perronnin & Dance 07] 

►  probabilistic version of VLAD 
►  initially used for image classification 
►  comparable or improved performance over VLAD for image retrieval 



VLAD : vector of locally aggregated descriptors 

 
  Determine a vector quantifier (k-means) 

►  output: k centroids (visual words): c1,…,ci,…ck 

►  centroid ci has dimension d 
 
  For a given image  

►  assign each descriptor to closest center ci 
►  accumulate (sum) descriptors per cell 

  vi := vi + (x - ci) 

  VLAD (dimension D = k x d) 
 
  The vector is square-root + L2-normalized 

  Alternative: Fisher vector 

ci 

x 

 [Jegou, Douze, Schmid, Perez, CVPR’10]  



VLADs for corresponding images 

 SIFT-like representation per centroid (+ components: blue, - components: red) 
 
  good coincidence of energy & orientations 

  v1           v2          v3 ... 



Translated cluster →  
large derivative on        for this 

component 

Fisher vector 

  Use a Gaussian Mixture Model as vocabulary  
  Statistical measure of the descriptors of the image w.r.t the GMM 
  Derivative of likelihood w.r.t. GMM parameters 
 
 

 
 

GMM parameters: 

           weight 

             mean 

              co-variance 

(diagonal) 

   

          

[Perronnin & Dance 07] 



Fisher vector 

For image retrieval in our experiments: 
 - only deviation wrt mean, dim: K*D [K number of Gaussians, D dim of descriptor]  

-  variance does not improve for comparable vector length 



VLAD/Fisher/BOF performance and dimensionality reduction 

  We compare Fisher, VLAD and BoF on INRIA Holidays Dataset (mAP %) 
  Dimension is reduced to D’ dimensions with PCA 

 
 
 
 
 
 
 
 
 
  Observations: 

►  Fisher, VLAD better than BoF for a given descriptor size 
►  Choose a small D if output dimension D’ is small 
►  Performance of GIST not competitive  

  [Jegou, Perronnin, Douze, Sanchez, Perez, Schmid, PAMI’12]  

GIST                             960        36.5    



Compact image representation 

  Aim: improving the tradeoff between 
►  search speed 
►  memory usage 
►  search quality 

 
  Approach: joint optimization of three stages 

►  local descriptor aggregation 
►  dimension reduction 
►  indexing algorithm 
 

Image representation 
VLAD / Fisher 

PCA +  
PQ codes 

(Non) – exhaustive  
search 



Optimizing the dimension reduction and quantization together 

  Fisher vectors undergoes two approximations 
►  mean square error from PCA projection 
►  mean square error from quantization 

  Given k and bytes/image, choose D’ minimizing their sum 
 
 
 
 
 
 
 
 

Results on Holidays dataset: 
 - there exists an optimal D’ 
 - 16 byte best results for k=64 
 - 320 byte best results for k=256 



Results on the Holidays dataset with various quantization parameters  



  Vector split into m subvectors: 

  Subvectors are quantized separately by quantizers 
where each     is learned by k-means with a limited number of centroids 

 
  Example: y = 128-dim vector split in 8 subvectors of dimension 16 

►  each subvector is quantized with 256 centroids  -> 8 bit  
►  very large codebook 256^8 ~ 1.8x10^19 

Product quantization for nearest neighbor search 

8 bits 

16 components 

⇒ 8 subvectors x 8 bits = 64-bit quantization index 

y1 y2 y3 y4 y5 y6 y7 y8 

q1 q2 q3 q4 q5 q6 q7 q8 

q1(y1) q2(y2) q3(y3) q4(y4) q5(y5) q6(y6) q7(y7) q8(y8) 

256 
centroids 

 [Jegou, Douze, Schmid, PAMI’11]  



Comparison to the state of the art 



Large scale experiments (10 million images) 

  Exhaustive search of VLADs, D’=64 
►  4.77s 

 
  With the product quantizer 

►  Exhaustive search with ADC:  0.29s   
►  Non-exhaustive search with IVFADC:  0.014s   
               
                 IVFADC  -- Combination with an inverted file  

 



Large scale experiments (10 million images) 

IVFADC:  0.02s 

Timings 



Conclusion  

  Competitive search accuracy with a few dozen bytes per indexed image 
 
 
 
  Tested on 220 million video frames 

►  extrapolation for 1 billion images: 20GB RAM, query < 1s on 8 cores 
 
 
 

  Code on-line available Software for Fisher computation and PQ-codes 
►  http://lear.inrialpes.fr/software 

 


