
Instance level recognition IV:
Very large databases

Cordelia Schmid
LEAR – INRIA Grenoble

Visual search

…

change in viewing angle

Matches

22 correct matches

Image search system for large datasets

Image search
system

ranked image list

Large image dataset
 (one million images or more)

query

•  Issues for very large databases
•  to reduce the query time
•  to reduce the storage requirements
•  with minimal loss in retrieval accuracy

Large scale object/scene recognition

•  Each image described by approximately 2000 descriptors
–  2 * 109 descriptors to index for one million images!

•  Database representation in RAM:
–  Size of descriptors : 1 TB, search+memory intractable

Image search
system

ranked image list

Image dataset:
> 1 million images

query

Bag-of-features [Sivic&Zisserman’03]

Harris-Hessian-Laplace
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

querying

sparse frequency vector

centroids
(visual words)

Inverted
file

ranked image
short-list

Set of SIFT
descriptors

Query
image

Geometric
verification

Re-ranked
list

•  Visual Words
–  1 word (index) per local descriptor
–  only images ids in inverted file
⇒ 8 GB for a million images, fits in RAM

[Chum & al. 2007]

•  Problem
–  Matching approximation

Visual words – approximate NN search

•  Map descriptors to words by quantizing the feature space
–  Quantize via k-means clustering to obtain visual words
–  Assign descriptors to closest visual words

•  Bag-of-features as approximate nearest neighbor search

 Bag-of-features matching function

Descriptor matching with k-nearest neighbors

 where q(x) is a quantizer, i.e., assignment to a visual word and
 δa,b is the Kronecker operator (δa,b=1 iff a=b)

Approximate nearest neighbor search evaluation
• ANN algorithms usually returns a short-list of nearest neighbors

–  this short-list is supposed to contain the NN with high probability
–  exact search may be performed to re-order this short-list

• Proposed quality evaluation of ANN search: trade-off between
–  Accuracy: NN recall = probability that the NN is in this list

 against
–  Ambiguity removal = proportion of vectors in the short-list

- the lower this proportion, the more information we have about the
vector

- the lower this proportion, the lower the complexity if we perform exact
search on the short-list

• ANN search algorithms usually have some parameters to handle this trade-off

ANN evaluation of bag-of-features
• ANN algorithms
returns a list of
potential neighbors

• Accuracy: NN recall
= probability that the
NN is in this list

• Ambiguity removal:
= proportion of vectors
in the short-list

• In BOF, this trade-off
is managed by the
number of clusters k

N
N

 re
ca

ll

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1
rate of points retrieved

 k=100
 200

 500
 1000

 2000
 5000

 10000
 20000

 30000
 50000

BOW

20K visual word: false matches

200K visual word: good matches missed

Problem with bag-of-features

•  The intrinsic matching scheme performed by BOF is weak
–  for a “small” visual dictionary: too many false matches
–  for a “large” visual dictionary: many true matches are missed

•  No good trade-off between “small” and “large” !
–  either the Voronoi cells are too big
–  or these cells can’t absorb the descriptor noise
→  intrinsic approximate nearest neighbor search of BOF is not

sufficient
–  Possible solutions

  Soft assignment [Philbin et al. CVPR’08]
  Additional short codes [Jegou et al. ECCV’08]

Hamming Embedding [Jegou et al. ECCV’08]

Representation of a descriptor x
–  Vector-quantized to q(x) as in standard BOF
+ short binary vector b(x) for an additional localization in the Voronoi cell

Two descriptors x and y match iif

h(a,b) Hamming distance

Hamming Embedding [Jegou et al. ECCV’08]

• Nearest neighbors for Hamming distance ≈ those for Euclidean distance
→ a metric in the embedded space reduces dimensionality curse effects

• Efficiency

–  Hamming distance = very few operations
–  Fewer random memory accesses: 3 x faster that BOF with same

dictionary size!

Hamming Embedding

• Off-line (given a quantizer)

–  draw an orthogonal projection matrix P of size db × d
→ this defines db random projection directions
–  for each Voronoi cell and projection direction, compute the median

value for a learning set

• On-line: compute the binary signature b(x) of a given
descriptor

–  project x onto the projection directions as z(x) = (z1,…zdb)
–  bi(x) = 1 if zi(x) is above the learned median value, otherwise 0

Hamming neighborhood

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

ra
te

 o
f 5

-N
N

 re
tri

ev
ed

 (r
ec

al
l)

rate of cell points retrieved

8 bits
16 bits
32 bits
64 bits

128 bits

Trade-off between memory
usage and accuracy

 More bits yield higher
accuracy

In practice, 64 bits (8 byte)

ANN evaluation of Hamming Embedding
 0.7

N
N

 re
ca

ll

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1
rate of points retrieved

k=100
200

 500
1000

 2000
 5000

10000
 20000

 30000
 50000

ht=16

18

20
22

HE+BOW
BOW

32 28
24 compared to BOW: at least

10 times less points in the
short-list for the same level
of accuracy

Hamming Embedding
provides a much better
trade-off between recall
and ambiguity removal

Matching points - 20k word vocabulary

201 matches 240 matches

Many matches with the non-corresponding image!

Matching points - 200k word vocabulary
69 matches 35 matches

Still many matches with the non-corresponding one

Matching points - 20k word vocabulary + HE

83 matches 8 matches

10x more matches with the corresponding image!

Bag-of-features [Sivic&Zisserman’03]

Harris-Hessian-Laplace
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

querying

sparse frequency vector

centroids
(visual words)

Inverted
file

ranked image
short-list

Set of SIFT
descriptors

Query
image

Geometric
verification

Re-ranked
list

[Chum & al. 2007]

Geometric verification

Use the position and shape of the underlying features
to improve retrieval quality

Both images have many matches – which is correct?

Geometric verification

We can measure spatial consistency between the query
and each result to improve retrieval quality

Many spatially consistent
matches – correct result

Few spatially consistent
matches – incorrect

result

Geometric verification

 Gives localization of the object

Re-ranking based on geometric verification
•  works very well
•  but performed on a short-list only (typically, 1000 images)

→  for very large datasets, the number of distracting images is so high
that relevant images are not even short-listed!

→  weak geometry

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1000 10000 100000 1000000 dataset size

ra
te

 o
f r

el
ev

an
t i

m
ag

es
 sh

or
t-l

is
te

d 20 images
100 images
1000 images

short-list size:

Weak geometry consistency

•  Weak geometric information used for all images (not only the short-list)

•  Each invariant interest region detection has a scale and rotation angle
associated, here characteristic scale and dominant gradient orientation

Scale change 2
Rotation angle ca. 20 degrees

•  Each matching pair results in a scale and angle difference

 •  For the global image scale and rotation changes are roughly consistent

Max = rotation angle between images

WGC: orientation consistency

WGC: scale consistency

Weak geometry consistency

•  Integration of the geometric verification into the BOF
–  votes for an image in two quantized subspaces, i.e. for angle & scale
–  these subspace are show to be roughly independent
–  final score: filtering for each parameter (angle and scale)

•  Only matches that do agree with the main difference of
orientation and scale will be taken into account in the final
score

•  Re-ranking using full geometric transformation still adds
information in a final stage

INRIA holidays dataset

•  Evaluation for the INRIA holidays dataset, 1491 images
–  500 query images + 991 annotated true positives
–  Most images are holiday photos of friends and family

•  1 million & 10 million distractor images from Flickr
•  Vocabulary construction on a different Flickr set
•  Almost real-time search speed

•  Evaluation metric: mean average precision (in [0,1], bigger
= better)
–  Average over precision/recall curve

Holiday dataset – example queries

Dataset : Venice Channel

Query

Base 4 Base 3

Base 2 Base 1

Dataset : San Marco square

Query Base 1 Base 3 Base 2

Base 9 Base 8

Base 4 Base 5 Base 7 Base 6

Example distractors - Flickr

Experimental evaluation

•  Evaluation on our holidays dataset, 500 query images, 1 million distracter
images

•  Metric: mean average precision (in [0,1], bigger = better)

Average query time (4 CPU cores)

Compute descriptors 880 ms

Quantization 600 ms

Search – baseline 620 ms

Search – WGC 2110 ms

Search – HE 200 ms

Search – HE+WGC 650 ms
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1000000 100000 10000 1000

m
A

P

database size

baseline
WGC

HE
WGC+HE

+re-ranking

Results – Venice Channel

Base 1 Flickr

Flickr Base 4

Query

Comparison with the state of the art: Oxford dataset [Philbin et al. CVPR’07]

Evaluation measure:
Mean average precision (mAP)

Comparison with the state of the art: Kentucky dataset [Nister et al. CVPR’06]

4 images per object

 Evaluation measure: among the 4 best retrieval results how

 many are correct (ranges from 1 to 4)

Comparison with the state of the art

[14] Philbin et al., CVPR’08; [6] Nister et al., CVPR’06; [10] Harzallah et al., CVPR’07

Demo at http://bigimbaz.inrialpes.fr

On-line demonstration

Towards large-scale image search

•  BOF+inverted file can handle up to ~10 millions images
–  with a limited number of descriptors per image  RAM: 40GB
–  search: 2 seconds

•  Web-scale = billions of images
–  with 100 M per machine  search: 20 seconds, RAM: 400 GB
–  not tractable

•  Solution: represent each image by one compressed vector

Recent approaches for very large scale indexing

Hessian-Affine
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

Vector
compression

sparse frequency vector

centroids
(visual words)

ranked image
short-list

Set of SIFT
descriptors

Query
image

Geometric
verification

Re-ranked
list

Vector
search

•  Each image is represented by one vector
(not necessarily a BOF)

• This vector is compressed to reduce
storage requirements

Related work on very large scale image search

  Min-hash and geometrical min-hash [Chum et al. 07-09]
  Compressing the BoF representation (miniBof) [Jegou et al. 09]
  these approaches require hundreds of bytes to obtain a “reasonable quality”

  GIST descriptors with Spectral Hashing [Weiss et al.’08]
  very limited invariance to scale/rotation/crop

Global scene context – GIST descriptor

  The “gist” of a scene: Oliva & Torralba (2001)

  5 frequency bands and 6 orientations for each image location
  Tiling of the image to describe the image

GIST descriptor + spectral hashing

  The position of the descriptor in the image is encoded in the representation

Torralba et al. (2003)

Gist

  Spectral hashing produces binary codes similar to spectral clusters

Related work on very large scale image search

  Min-hash and geometrical min-hash [Chum et al. 07-09]
  Compressing the BoF representation (miniBof) [Jegou et al. 09]
  require hundreds of bytes are required to obtain a “reasonable quality”

  GIST descriptors with Spectral Hashing [Weiss et al.’08]
  very limited invariance to scale/rotation/crop

  Aggregating local descriptors into a compact image representation [Jegou
&al.‘10]

  Efficient object category recognition using classemes [Torresani et al.’10]

Aggregating local descriptors

•  Set of n local descriptors  1 vector

•  Popular approach: bag of features, often with SIFT features

•  Recently improved aggregation schemes
–  Fisher vector [Perronnin & Dance ‘07]

–  VLAD descriptor [Jegou, Douze, Schmid, Perez ‘10]

–  Supervector [Zhou et al. ‘10]

–  Sparse coding [Wang et al. ’10, Boureau et al.’10]

•  Use in very large-scale retrieval and classification

Aggregating local descriptors

  Most popular approach: BoF representation [Sivic & Zisserman 03]

►  sparse vector
►  highly dimensional

→ significant dimensionality reduction introduces loss

  Vector of locally aggregated descriptors (VLAD) [Jegou et al. 10]

►  non sparse vector
►  fast to compute
►  excellent results with a small vector dimensionality

  Fisher vector [Perronnin & Dance 07]

►  probabilistic version of VLAD
►  initially used for image classification
►  comparable or improved performance over VLAD for image retrieval

VLAD : vector of locally aggregated descriptors

  Determine a vector quantifier (k-means)

►  output: k centroids (visual words): c1,…,ci,…ck

►  centroid ci has dimension d

  For a given image

►  assign each descriptor to closest center ci
►  accumulate (sum) descriptors per cell

 vi := vi + (x - ci)

  VLAD (dimension D = k x d)

  The vector is square-root + L2-normalized

  Alternative: Fisher vector

ci

x

 [Jegou, Douze, Schmid, Perez, CVPR’10]

VLADs for corresponding images

 SIFT-like representation per centroid (+ components: blue, - components: red)

  good coincidence of energy & orientations

 v1 v2 v3 ...

Translated cluster →
large derivative on for this

component

Fisher vector

  Use a Gaussian Mixture Model as vocabulary
  Statistical measure of the descriptors of the image w.r.t the GMM
  Derivative of likelihood w.r.t. GMM parameters

GMM parameters:

 weight

 mean

 co-variance

(diagonal)

[Perronnin & Dance 07]

Fisher vector

For image retrieval in our experiments:
 - only deviation wrt mean, dim: K*D [K number of Gaussians, D dim of descriptor]

-  variance does not improve for comparable vector length

VLAD/Fisher/BOF performance and dimensionality reduction

  We compare Fisher, VLAD and BoF on INRIA Holidays Dataset (mAP %)
  Dimension is reduced to D’ dimensions with PCA

  Observations:

►  Fisher, VLAD better than BoF for a given descriptor size
►  Choose a small D if output dimension D’ is small
►  Performance of GIST not competitive

 [Jegou, Perronnin, Douze, Sanchez, Perez, Schmid, PAMI’12]

GIST 960 36.5

Compact image representation

  Aim: improving the tradeoff between
►  search speed
►  memory usage
►  search quality

  Approach: joint optimization of three stages

►  local descriptor aggregation
►  dimension reduction
►  indexing algorithm

Image representation
VLAD / Fisher

PCA +
PQ codes

(Non) – exhaustive
search

Optimizing the dimension reduction and quantization together

  Fisher vectors undergoes two approximations
►  mean square error from PCA projection
►  mean square error from quantization

  Given k and bytes/image, choose D’ minimizing their sum

Results on Holidays dataset:
 - there exists an optimal D’
 - 16 byte best results for k=64
 - 320 byte best results for k=256

Results on the Holidays dataset with various quantization parameters

  Vector split into m subvectors:

  Subvectors are quantized separately by quantizers
where each is learned by k-means with a limited number of centroids

  Example: y = 128-dim vector split in 8 subvectors of dimension 16

►  each subvector is quantized with 256 centroids -> 8 bit
►  very large codebook 256^8 ~ 1.8x10^19

Product quantization for nearest neighbor search

8 bits

16 components

⇒ 8 subvectors x 8 bits = 64-bit quantization index

y1 y2 y3 y4 y5 y6 y7 y8

q1 q2 q3 q4 q5 q6 q7 q8

q1(y1) q2(y2) q3(y3) q4(y4) q5(y5) q6(y6) q7(y7) q8(y8)

256
centroids

 [Jegou, Douze, Schmid, PAMI’11]

Comparison to the state of the art

Large scale experiments (10 million images)

  Exhaustive search of VLADs, D’=64
►  4.77s

  With the product quantizer

►  Exhaustive search with ADC: 0.29s
►  Non-exhaustive search with IVFADC: 0.014s

 IVFADC -- Combination with an inverted file

Large scale experiments (10 million images)

IVFADC: 0.02s

Timings

Conclusion

  Competitive search accuracy with a few dozen bytes per indexed image

  Tested on 220 million video frames

►  extrapolation for 1 billion images: 20GB RAM, query < 1s on 8 cores

  Code on-line available Software for Fisher computation and PQ-codes
►  http://lear.inrialpes.fr/software

