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•  Image classification: assigning a class label to the image 

Category recognition 

Car: present 
Cow: present 
Bike: not present 
Horse: not present 
… 



•  Image classification: assigning a class label to the image 

Tasks 

Car: present 
Cow: present 
Bike: not present 
Horse: not present 
… 

•  Object localization: define the location and the category 

Car Cow 
Location 

 
Category 

Category recognition 



Difficulties: within object variations 

Variability: Camera position, Illumination,Internal parameters 

Within-object variations 



Difficulties: within-class variations 



Category recognition 

•  Robust image description  
–  Appropriate descriptors for categories 

•  Statistical modeling and machine learning for vision 
–  Use and validation of appropriate techniques 



Why machine learning? 
•  Early approaches: simple features + handcrafted models 
•  Can handle only few images, simples tasks  

L. G. Roberts, Machine Perception of Three Dimensional Solids,  
Ph.D. thesis, MIT Department of Electrical Engineering, 1963.  



Why machine learning? 

•  Early approaches: manual programming of rules 
•  Tedious, limited and does not take into accout the data   

Y. Ohta, T. Kanade, and T. Sakai, “An Analysis System for Scenes Containing objects with Substructures,” International Joint Conference on Pattern Recognition, 1978. 



Why machine learning? 

•  Today lots of data, complex tasks  

Internet images,  
personal photo albums 

Movies, news, sports 

 
•  Instead of trying to encode rules directly, learn them 

from examples of inputs and desired outputs  



Types of learning problems 

•  Supervised 
–  Classification 
–  Regression 

•  Unsupervised 
•  Semi-supervised 
•  Active learning 
•  …. 



Supervised learning 

•  Given training examples of inputs and corresponding 
outputs, produce the “correct” outputs for new inputs 

•  Two main scenarios: 
 
–  Classification: outputs are discrete variables (category labels). 

Learn a decision boundary that separates one class from the other 
 

–  Regression: also known as “curve fitting” or “function 
approximation.” Learn a continuous input-output mapping from 
examples (possibly noisy) 



Unsupervised Learning 

•  Given only unlabeled data as input, learn some sort of 
structure 

•  The objective is often more vague or subjective than in 
supervised learning. This is more an exploratory/descriptive 
data analysis 



Unsupervised Learning 

•  Clustering 
–  Discover groups of “similar” data points 



Unsupervised Learning 

•  Quantization 
–  Map a continuous input to a discrete (more compact) output 

1 
2 

3 



Unsupervised Learning 

•  Dimensionality reduction, manifold learning 
–  Discover a lower-dimensional surface on which the data lives 



Other types of learning 

•  Semi-supervised learning: lots of data is available, but 
only small portion is labeled (e.g. since labeling is 
expensive) 



Other types of learning 

•  Semi-supervised learning: lots of data is available, but 
only small portion is labeled (e.g. since labeling is 
expensive) 
–  Why is learning from labeled and unlabeled data better than 

learning from labeled data alone? 

? 



Other types of learning 

•  Active learning: the learning algorithm can choose its 
own training examples, or ask a “teacher” for an answer 
on selected inputs 



•  Image classification: assigning a class label to the image 

Category recognition 

Car: present 
Cow: present 
Bike: not present 
Horse: not present 
… 

•  Supervised scenario: given a set of training images 



Image classification 
•  Given  

? 

Positive training images containing an object class 

Negative training images that don’t 

A test image as to whether it contains the object class or not 
•  Classify   



Bag-of-features for image classification 

•  Origin: texture recognition 
•  Texture is characterized by the repetition of basic elements or 

textons 
   

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; 
 Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003 



Texture recognition 

Universal texton dictionary 

histogram 

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; 
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003 



Bag-of-features – Origin: bag-of-words (text) 

•  Orderless document representation: frequencies of words 
from a dictionary 

•  Classification to determine document categories 

 
   

Common 
People  

Sculpture 
…  

2 
3  
0 
…  

0 
0  
1 
…  

1 
0 
3 
…  

3 
2 
0 
…  

Bag-of-words 



Bag-of-features for image classification 

Classification 

  SVM 

 Extract regions Compute 
descriptors 

 Find clusters 
and frequencies 

Compute distance 
matrix 

[Nowak,Jurie&Triggs,ECCV’06],  [Zhang,Marszalek,Lazebnik&Schmid,IJCV’07] 



Bag-of-features for image classification 

Classification 

  SVM 

 Extract regions Compute 
descriptors 

 Find clusters 
and frequencies 

Compute distance 
matrix 

[Nowak,Jurie&Triggs,ECCV’06],  [Zhang,Marszalek,Lazebnik&Schmid,IJCV’07] 

Step 1 Step 2 Step 3 



Step 1: feature extraction 

•  Scale-invariant image regions + SIFT (see lecture 2) 
–  Affine invariant regions give “too” much invariance 
–  Rotation invariance for many realistic collections “too” much 

invariance 

•  Dense descriptors  
–  Improve results in the context of categories (for most categories) 
–  Interest points do not necessarily capture “all” features 

•  Color-based descriptors 

•  Shape-based descriptors  



Dense features  

- Multi-scale dense grid: extraction of small overlapping patches at multiple scales 
- Computation of  the SIFT descriptor  for each grid cells 
- Exp.: Horizontal/vertical step size 6 pixel, scaling factor of 1.2 per level 



Bag-of-features for image classification 

Classification 

  SVM 

 Extract regions Compute 
descriptors 

 Find clusters 
and frequencies 

Compute distance 
matrix 

Step 1 Step 2 Step 3 



Step 2: Quantization 

… 



Step 2:Quantization 

Clustering 



Step 2: Quantization 

Clustering 

Visual vocabulary 



Examples for visual words 

Airplanes 

Motorbikes 

Faces 

Wild Cats 

Leaves 

People 

Bikes 



Step 2: Quantization 

•  Cluster descriptors 
–  K-means  
–  Gaussian mixture model 

•  Assign each visual word to a cluster 
–  Hard or soft assignment  

•  Build frequency histogram 



Gaussian mixture model (GMM) 

•  Mixture of Gaussians: weighted sum of Gaussians  

where 



Hard or soft assignment 

•  K-means  hard assignment  
–  Assign to the closest cluster center  
–  Count number of descriptors assigned to a center 

•  Gaussian mixture model  soft assignment 
–  Estimate distance to all centers 
–  Sum over number of descriptors  

•  Represent image by a frequency histogram  



Image representation 

….. 

fre
qu

en
cy

 

codewords 

•  Each image is represented by a vector, typically 1000-4000 dimension                                                                
•  fine grained – represent model instances 
•  coarse grained – represent object categories 



Bag-of-features for image classification 

Classification 

  SVM 

 Extract regions Compute 
descriptors 

 Find clusters 
and frequencies 

Compute distance 
matrix 

Step 1 Step 2 Step 3 



Step 3: Classification 

•  Learn a decision rule (classifier) assigning bag-of-
features representations of images to different classes 

Zebra 

Non-zebra 

Decision 
boundary 



positive negative 

Train classifier,e.g.SVM 

Vectors are histograms, one from each training image 

Training data 



Classification 

•  Assign input vector to one of two or more classes 
•  Any decision rule divides input space into decision 

regions separated by decision boundaries 



Nearest Neighbor Classifier 

•  Assign label of nearest training data point to each 
test data point  

Voronoi partitioning of feature space  
for 2-category 2-D and 3-D data 

from Duda et al. 



•  For a new point, find the k closest points from training data 
•  Labels of the k points “vote” to classify 
•  Works well provided there is lots of data and the distance function is 

good 

k-Nearest Neighbors	



k = 5 



Linear classifiers 
•  Find linear function (hyperplane) to separate positive and 

negative examples 

0:negative
0:positive

<+⋅

≥+⋅

b
b

ii

ii

wxx
wxx

Which hyperplane 
is best? 



Linear classifiers - margin 

•  Generalization is not  
good in this case: 
 
 
 
 

•  Better if a margin  
is introduced: 
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Support vector machines 
•  Find hyperplane that maximizes the margin between the 

positive and negative examples 

1:1)(negative
1:1)( positive
−≤+⋅−=

≥+⋅=

by
by

iii

iii

wxx
wxx

Margin Support vectors 

For support, vectors,  1±=+⋅ bi wx

The margin is  2 / ||w||  



•  Datasets that are linearly separable work out great: 
 

 
 
 

 
 

 

•  But what if the dataset is just too hard?  
 

•  We can map it to a higher-dimensional space: 

0 x 

0 x 

0 x 

x2 

Nonlinear SVMs 



Φ:  x → φ(x) 

Nonlinear SVMs 

•  General idea: the original input space can always be 
mapped to some higher-dimensional feature space 
where the training set is separable: 



Nonlinear SVMs 

•  The kernel trick: instead of explicitly computing the lifting 
transformation φ(x), define a kernel function K such that 
 

         K(xi , xjj) = φ(xi ) · φ(xj) 

•  This gives a nonlinear decision boundary in the original 
feature space: 

bKy
i

iii +∑ ),( xxα



Kernels for bags of features 

•  Hellinger kernel 
 
 
•  Histogram intersection kernel 

 
 

•  Generalized Gaussian kernel 
 

•  D can be Euclidean distance, χ2 distance etc.  
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Combining features 

• SVM with multi-channel chi-square kernel  

 
●  Channel c is a combination of detector, descriptor 

●                 is the chi-square distance between histograms 

 
●      is the mean value of the distances between all training sample 

●  Extension: learning of the weights, for example with Multiple 
Kernel Learning (MKL) 
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J. Zhang, M. Marszalek, S. Lazebnik and C. Schmid. Local features and kernels for 
classification of texture and object categories: a comprehensive study, IJCV 2007.  



Multi-class SVMs 

•  Various direct formulations exist, but they are not widely 
used in practice. It is more common to obtain multi-class 
SVMs by combining two-class SVMs in various ways.  

•  One versus all:   
–  Training: learn an SVM for each class versus the others  
–  Testing:  apply each SVM to test example and assign to it the 

class of the SVM that returns the highest decision value 

•  One versus one: 
–  Training: learn an SVM for each pair of classes  
–  Testing: each learned SVM “votes”  for a class to assign to the 

test example  



Why does SVM learning work? 

•  Learns foreground and background visual words 

foreground words – high weight 

background words – low weight 



Localization according to visual word probability 

foreground word more probable  

background word more probable  

Illustration 



Illustration 
A linear SVM trained from positive and negative window descriptors  

A few of the highest weighed descriptor vector dimensions (= 'PAS + tile') 

+  lie on object boundary (= local shape structures common to many training exemplars) 



Bag-of-features for image classification 

•  Excellent results in the presence of background clutter 
 
 
 
 
 
 
 
 

bikes books building cars people phones trees 



Books- misclassified into faces, faces, buildings 

Buildings- misclassified into faces, trees, trees 

Cars- misclassified into buildings, phones, phones  

Examples for misclassified images 



Bag of visual words summary  

•   Advantages: 
–  largely unaffected by position and orientation of object in image 
–  fixed length vector irrespective of number of detections 
–  very successful in classifying images according to the objects they 

contain 
 
 

•   Disadvantages: 
–  no explicit use of configuration of visual word positions 
–  poor at localizing objects within an image 



Evaluation of image classification 

•  PASCAL VOC  [05-10] datasets 

•   PASCAL VOC 2007 
–  Training and test dataset available 
–  Used to report state-of-the-art results  
–  Collected January 2007 from Flickr 
–  500 000 images downloaded and random subset selected 
–  20 classes 
–  Class labels per image + bounding boxes 
–  5011 training images, 4952 test images  

•  Evaluation measure: average precision  



PASCAL 2007 dataset 



PASCAL 2007 dataset 



Evaluation 



Results for PASCAL 2007 

•  Winner of PASCAL 2007 [Marszalek et al.] : mAP 59.4 
–  Combination of several different channels (dense + interest points, 

SIFT + color descriptors, spatial grids) 
–  Non-linear SVM with Gaussian kernel  
 

•  Multiple kernel learning [Yang et al. 2009] : mAP 62.2 
–  Combination of several features 
–  Group-based MKL approach 

•  Combining object localization and classification [Harzallah 
et al.’09] : mAP 63.5 
–  Use detection results to improve classification 



Spatial pyramid matching 

•  Add spatial information to the bag-of-features 

•  Perform matching in 2D image space 

[Lazebnik, Schmid & Ponce, CVPR 2006] 



Related work  

Szummer & Picard (1997) Lowe (1999, 2004) Torralba et al. (2003) 

Gist SIFT 

Similar approaches: 
Subblock description [Szummer & Picard, 1997] 
SIFT [Lowe, 1999] 
GIST [Torralba et al., 2003] 



     Locally orderless 
representation at 
several levels of 
spatial resolution 

level 0 

Spatial pyramid representation 



Spatial pyramid representation 

level 0 level 1 

     Locally orderless 
representation at 
several levels of 
spatial resolution 



Spatial pyramid representation 

level 0 level 1 level 2 

     Locally orderless 
representation at 
several levels of 
spatial resolution 



Pyramid match kernel 

•  Weighted sum of histogram intersections at multiple 
resolutions (linear in the number of features instead of 
cubic) 

optimal partial 
matching between sets 

of features 



Spatial pyramid matching 

•  Combination of spatial levels with pyramid match kernel 
[Grauman & Darell’05] 

•  Intersect histograms, more weight to finer grids 



Scene dataset [Labzenik et al.’06] 

Suburb Bedroom Kitchen Living room Office 

Coast Forest Mountain Open country Highway Inside city Tall building Street 

Store Industrial 

4385 images 
15 categories 

 



Scene classification 

L Single-level Pyramid 

0(1x1) 72.2±0.6 
1(2x2) 77.9±0.6 79.0 ±0.5 
2(4x4) 79.4±0.3 81.1 ±0.3 
3(8x8) 77.2±0.4 80.7 ±0.3 



Retrieval examples 



Category classification – CalTech101 

L Single-level Pyramid 

0(1x1) 41.2±1.2 
1(2x2) 55.9±0.9 57.0 ±0.8 
2(4x4) 63.6±0.9 64.6 ±0.8 
3(8x8) 60.3±0.9 64.6 ±0.7 

Bag-of-features approach by Zhang et al.’07: 54 % 



CalTech101 

Easiest and hardest classes 

•  Sources of difficulty: 
–  Lack of texture 
–  Camouflage 
–  Thin, articulated limbs 
–  Highly deformable shape 



Evaluation BoF – spatial  

(SH, Lap, MSD) x (SIFT,SIFTC)  
 spatial layout 

AP 

 1 0.53 

2x2 0.52 

3x1 0.52 

1,2x2,3x1 0.54 

Image classification results on PASCAL’07 train/val set 

Spatial layout not dominant for PASCAL’07 dataset 
Combination improves average results, i.e., it is appropriate for 
some classes  



Evaluation BoF - spatial 

1 3x1 
Sheep 0.339 0.256 

Bird 0.539 0.484 

DiningTable 0.455 0.502 

Train 0.724 0.745 

Image classification results on PASCAL’07 train/val set 
for individual categories 

Results are category dependent! 
 Combination helps somewhat 



Discussion 

•  Summary 
–  Spatial pyramid representation: appearance of local 

image patches + coarse global position information 
–  Substantial improvement over bag of features 
–  Depends on the similarity of  image layout 

•  Extensions 
–  Flexible, object-centered grid 



Recent extensions 

•  Linear Spatial Pyramid Matching Using Sparse Coding for 
Image Classification. J. Yang et al., CVPR’09. 
–  Local coordinate coding,  linear SVM, excellent results in 2009 

PASCAL challenge  

•  Learning Mid-level features for recognition, Y. Boureau et al., 
CVPR’10.  
–  Use of sparse coding techniques and max pooling 



Recent extensions 

•  Efficient Additive Kernels via Explicit Feature Maps, A. 
Vedaldi and Zisserman, CVPR’10. 
–  approximation by linear kernels  

•  Improving the Fisher Kernel for Large-Scale Image 
Classification, Perronnin et al., ECCV’10   
–  More discriminative descriptor, power normalization, linear SVM  

 



20 
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Fisher vector image representation 

•  Mixture of Gaussian/ k-means stores nr of 
points per cell 

 
 
•  Fisher vector adds 1st & 2nd order moments 

–  More precise description of regions 
assigned to cluster 

–  Fewer clusters needed for same accuracy 
–  Per cluster store: mean and variance of 

data in cell 
–  Representation 2D times larger, at same 

computational cost 
–  High dimensional, robust representation  

20 

3 

5 
8 10 

Fisher vector image representation 



Fisher vector image representation 



Relation to BOF 



Large-scale image classification 

•  Image classification: assigning a class label to the image 

Car: present 
Cow: present 
Bike: not present 
Horse: not present 
… 

•  What makes it large-scale? 
–  number of images 
–  number of classes 
–  dimensionality of descriptor 

has 14M images from 22k classes 



Large-scale image classification 

•  Image descriptors 
–  Fisher vector (high dimensional) 
–  Normalization: square-rooting or latent MOG+ L2 normalization 
    [Image categorization using Fisher kernels of non-iid image 

models, Cinbis, Verbeek, Schmid, CVPR’12]  [Perronnin’10] 

•  Classification approach 
–  Linear classifiers  
–  One versus rest classifier 
–  Stochastic gradient descent optimization 
    [Towards good practice in large-scale learning for image 

classification, Perronnin, Akata, Harchaoui, Schmid, CVPR’12]  



Evaluation image description 

•  Comparing on PASCAL VOC’07 linear classifiers with 
–  Fisher vector  
–  Sqrt transformation of Fisher vector 
–  Latent GMM of Fisher vector 

•  Sqrt transform + latent MOG 
models lead to improvement 

•  State-of-the-art performance 
obtained with linear classifier 



Evaluation image description  

Fisher versus BOF vector + linear classifier on Pascal Voc’07  

• Fisher improves over BOF 
• Fisher comparable to BOF + 
   non-linear classifier 
• Limited gain due to SPM  
  on PASCAL 
• Sqrt helps for Fisher and BOF 



Large-scale image classification 

•  Classification approach 
–  One-versus-rest classifiers 
–  stochastic gradient descent  (SGD) 
–  At each step choose a sample at random and update the 

parameters using a sample-wise estimate of the regularized risk 

•  Data reweighting 
–  When some classes are significantly more populated than others, 

rebalancing positive and negative examples 
–  Empirical risk with reweighting  

Natural rebalancing, same weight to positive and negatives 



Experimental results 

•  Datasets 
–  ImageNet Large Scale Visual Recognition Challenge 2010 (ILSVRC) 

•  1000 classes and 1.4M images 
–  ImageNet10K dataset 

•  10184 classes and ~ 9 M images 



Experimental results 

•  Features: dense SIFT, reduced to 64 dim with PCA 

•  Fisher vectors 
–  256 Gaussians, using mean and variance  
–  Spatial pyramid with 4 regions 
–  Approx. 130K dimensions (4x [2x64x256]) 
–  Normalization: square-rooting and L2 norm 

•  BOF: dim 1024 + R=4 
–   4960 dimensions   
–  Normalization: square-rooting and L2 norm 



Importance of re-weighting 

•  Significant impact on accuracy 
•  For very high dimensions little impact 

•  Plain lines correspond to w-OVR, 
dashed one to u-OVR 

•  ß is number of negatives samples 
for each positive, β=1 natural 
rebalancing 

•  Results for ILSVRC 2010 



One-versus-rest works 

•  256 Gaussian Fisher vector + SP with R=4 (dim 130k)  
•  BOF dim=1024 + SP with R=4 (dim 4000) 
•  Results for ILSVRC 2010 
•  FV >> BOF 



Impact of the image signature size 
•  Fisher vector (no SP) for varying number of Gaussians + 

different classification methods, ILSVRC 2010 

•  Performance improves for higher dimensional vectors 



Large-scale experiment on ImageNet10k 

16.7 

•  Significant gain by data re-weighting, even for high-
dimensional Fisher vectors  

•  w-OVR > u-OVR  
•  Improves over state of the art: 6.4% [Deng et. al] and 

WAR [Weston et al.]  
 



Large-scale experiment on ImageNet10k 

•  Illustration of results obtained with w-OVR and 130K-dim 
Fisher vectors, ImageNet10K top-1 accuracy   



Conclusion 

•  Stochastic training: learning with SGD is well-suited for 
large-scale datasets  

•  One-versus-rest: a flexible option for large-scale image 
classification 

•  Class imbalance: optimize the imbalance parameter in 
one-versus-rest strategy is a must for competitive 
performance 



Conclusion 

•  State-of-the-art performance for large-scale image 
classification 

•  Code on-line available at http://lear.inrialpes.fr/software 

•  Future work 
–  Beyond a single representation of the entire image 
–  Take into account the hierarchical structure 


