
Instance level recognition II: 

Correspondence and efficient visual 

search 

Ivan Laptev 
http://www.di.ens.fr/~laptev 

INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 

Laboratoire d’Informatique, Ecole Normale Supérieure, Paris 

 

With slides from: O. Chum, K. Grauman, S. Lazebnik, B. Leibe, D. Lowe, J. 

Philbin, J. Ponce, D. Nister, C. Schmid, N. Snavely, A. Zisserman 

Computer Vision and Object Recognition 2012 



Announcements 

Class web-page: 

http://www.di.ens.fr/willow/teaching/recvis12 

 

 

Assignment 1 is due to next Tuesday, Oct 23, 2012! 

http://www.di.ens.fr/willow/teaching/recvis12/assignment1 

 

 

Matlab tutorial on-line: 

http://www.di.ens.fr/willow/teaching/recvis12/matlab-tut.zip 

 

http://www.di.ens.fr/willow/teaching/recvis12
http://www.di.ens.fr/willow/teaching/recvis12
http://www.di.ens.fr/willow/teaching/recvis10/assignment2/
http://www.di.ens.fr/willow/teaching/recvis10/assignment2/
http://www.di.ens.fr/willow/teaching/recvis10/assignment2/
http://www.di.ens.fr/willow/teaching/recvis10/assignment2/


Instance-level recognition 

Last time: 

• Local invariant features (last lecture – C.Schmid)  

 

Today: 

• Correspondence, matching and recognition with local 

features, efficient visual search (I. Laptev) 

 

Next week: 

• Very large scale visual indexing – (C. Schmid) 



Outline 

Part 1. Image matching and recognition with local features 

 - Correspondence 

 - Semi-local and global geometric relations 

 - Robust estimation – RANSAC and Hough Transform 

 

Part 2. Going large-scale 

 - Approximate nearest neighbour matching 

 - Bag-of-visual-words representation 

 - Efficient visual search and extensions 

 - Beyond bag-of-visual-words representations 

 - Applications 

 

 

 

 



Outline 

Part 1. Image matching and recognition with local features 

 - Correspondence 

 - Semi-local and global geometric relations 

 - Robust estimation – RANSAC and Hough Transform 

 

 

 



Image matching and recognition with local features 

The goal: establish correspondence between two or more 

images 

 

 

 

 

 

 

 

 

 

Image points x and x’ are in correspondence if they are 

projections of the same 3D scene point X. 
Images courtesy A. Zisserman 



x



x'



XP 
P

/ 



Example I: Wide baseline matching 

Establish correspondence between two (or more) images. 

 

Useful in visual geometry: Camera calibration, 3D 

reconstruction, Structure and motion estimation, … 

Scale/affine – invariant regions: SIFT, Harris-Laplace, etc. 



Example II: Object recognition 

[D. Lowe, 1999] 

Establish correspondence between the target image and 

(multiple) images in the model database. 

Target 

image 

Model 

database 



Find these landmarks  ...in these images and 1M more 

Example III: Visual search 

Given a query image, find images depicting the same place / 

object in a large unordered image collection. 



Establish correspondence between the query image and all 

images from the database depicting the same object / scene. 

Query image 

Database image(s) 



Why is it difficult? 

Want to establish correspondence despite possibly large 
changes in scale, viewpoint, lighting and partial occlusion 

Viewpoint Scale 

Lighting Occlusion 

… and the image collection can be very large (e.g. 1M images) 



Approach 

Pre-processing (last lecture): 

• Detect local features. 

• Extract descriptor for each feature. 

 

 

Matching: 

1. Establish tentative (putative) correspondences based on 

local appearance of individual features (their descriptors).  

 

2. Verify matches based on semi-local / global geometric 

relations. 



Example I: Two images -“Where is the Graffiti?” 

object 



Step 1. Establish tentative correspondence 

Establish tentative correspondences between object model image and target 

image by nearest neighbour matching on SIFT vectors 

128D descriptor 

space 
Model (query) image  Target image  

Need to solve some variant of the “nearest neighbor problem” for all feature vectors,                       

                    , in the query image: 

 

 

 

where,                      ,  are features in the target image. 

Can take a long time if many target images are considered. 



Problem with matching on local descriptors alone 

• too much individual invariance 

• each region can affine deform independently (by different amounts) 

• Locally appearance can be ambiguous 

 

 

Solution: use semi-local and global spatial relations to verify matches. 



Initial matches 

Nearest-neighbor 

search based on 

appearance descriptors 

alone. 

After spatial 

verification 

Example I: Two images -“Where is the Graffiti?” 



Step 2: Spatial verification (now) 

a. Semi-local constraints 

 Constraints on spatially close-by matches 

 

b. Global geometric relations 

 Require a consistent global relationship between all 

matches  



Semi-local constraints: Example I. – neighbourhood consensus 

[Schmid&Mohr, PAMI 1997] 



Semi-local constraints: 

Example I. – 

neighbourhood 

consensus 

[Schaffalitzky & 

Zisserman, CIVR 

2004] 

Original images 

Tentative matches 

After neighbourhood consensus 



Semi-local constraints: Example II.  

[Ferrari et al., IJCV 2005] 

Model image 

Matched image 

Matched image 



Geometric verification with global constraints 

• All matches must be consistent with a global geometric 

relation / transformation. 

 

• Need to simultaneously (i) estimate the geometric 

relation / transformation and (ii) the set of consistent 

matches 

Tentative matches Matches consistent with an affine 

transformation 



Epipolar geometry (not considered here) 

In general, two views of a 3D scene are related by the epipolar 

constraint. 

 

 

 

 

 

 

 

 

 

 

• A point in one view “generates” an epipolar line in the other view 

• The corresponding point lies on this line. 
Slide credit: A. Zisserman 

epipolar line 

? 

baseline 

epipole C  / C 



Epipolar geometry is a consequence of the coplanarity of the camera 

centres and scene point 

x x  / 

X 

C C  / 

The camera centres, corresponding points and scene point lie 

in a single plane, known as the epipolar plane 

Epipolar geometry (not considered here) 

Slide credit: A. Zisserman 



Epipolar geometry (not considered here) 

Algebraically, the epipolar constraint can be expressed as 

 

 

 

 

 

 

 

where 

•  x, x’ are homogeneous coordinates (3-vectors) of 

corresponding image points. 

 

• F is a 3x3, rank 2 homogeneous matrix with 7 degrees of 

freedom, called the fundamental matrix. 

 
Slide credit: A. Zisserman 

x x  / 

X 

C C  / 



3D constraint: example (not considered here) 

• Matches must be consistent with a 3D model 

[Lazebnik, Rothganger, Schmid, Ponce, CVPR’03] 

3 (out of 20) images 

used to build the 3D 

model 

Recovered 3D model 

Recovered pose Object recognized in a previously 

unseen pose 



With a given 3D model (set of known X’s) and a set of 

measured image points x, the goal is to find camera 

matrix P and a set of geometrically consistent 

correspondences  x    X. 

3D constraint: example (not considered here) 

x 

X 

C 

P 



2D transformation models 

Similarity 

(translation,  

scale, rotation) 

 

 

Affine 

 

 

Projective 

(homography) 

 

  



Example: estimating 2D affine transformation 

• Simple fitting procedure (linear least squares) 

• Approximates viewpoint changes for roughly planar 

objects and roughly orthographic cameras 

• Can be used to initialize fitting for more complex models 



Example: estimating 2D affine transformation 

• Simple fitting procedure (linear least squares) 

• Approximates viewpoint changes for roughly planar 

objects and roughly orthographic cameras 

• Can be used to initialize fitting for more complex models 

 

Matches consistent with an affine transformation 



Fitting an affine transformation 

Assume we know the correspondences, how do we get the 

transformation? 
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Fitting an affine transformation 

Linear system with six unknowns 

Each match gives us two linearly independent 

equations: need at least three to solve for the 

transformation parameters 
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But in practice many point matches are incorrect (outliers) 



Dealing with outliers 

The set of putative matches may contain a high percentage 

(e.g. 90%) of outliers 

 

How do we fit a geometric transformation to a small subset 

of all possible matches? 

 

Possible strategies: 

• RANSAC 

• Hough transform 



Strategy 1: RANSAC 

RANSAC loop (Fischler & Bolles, 1981): 

 

• Randomly select a seed group of matches 

 

• Compute transformation from seed group 

 

• Find inliers to this transformation 

 

• If the number of inliers is sufficiently large, re-compute 
least-squares estimate of transformation on all of the 
inliers 
 

• Keep the transformation with the largest number of 
inliers 



Example: Robust line estimation - RANSAC 

Fit a line to 2D data containing outliers 

There are two problems 

1. a line fit which minimizes perpendicular distance 

2. a classification into inliers (valid points)  and outliers 

Solution: use robust statistical estimation algorithm RANSAC 

(RANdom Sample Consensus) [Fishler & Bolles, 1981] 
Slide credit: A. Zisserman 



Repeat 

1. Select random sample of 2 points 

2. Compute the line through these points 

3. Measure support (number of points within threshold 

distance of the line) 

Choose the line with the largest number of inliers 

• Compute least squares fit of line to inliers (regression) 

RANSAC robust line estimation 

Slide credit: A. Zisserman 



Slide credit: O. Chum 



Slide credit: O. Chum 



Slide credit: O. Chum 



Slide credit: O. Chum 



Slide credit: O. Chum 



Slide credit: O. Chum 



Slide credit: O. Chum 



Slide credit: O. Chum 



Slide credit: O. Chum 



Repeat 

1. Select 3 point to point correspondences 

2. Compute H (2x2 matrix) + t (2x1) vector for translation  

3. Measure support (number of inliers within threshold 

distance, i.e. d2
transfer < t) 

 

 

 

 

 

Choose the (H,t) with the largest number of inliers 

(Re-estimate (H,t) from all inliers) 

Algorithm summary – RANSAC robust estimation of 

2D affine transformation 



How many samples? 

 Number of samples N 

• Choose N so that, with probability p, at least one random 

sample is free from outliers  

• e.g.:  

> p=0.99  

> outlier ratio: e 

   pe
Ns

 111

Source: M. Pollefeys 

Probability a randomly picked 

point is an inlier 

Probability of all points in a 

sample (of size s) are inliers  



How many samples? 

 Number of samples N 

• Choose N so that, with probability p, at least one random 

sample is free from outliers  

• e.g.:  

> p=0.99  

> outlier ratio: e 

    s
epN  11log/1log

   pe
Ns

 111

proportion of outliers e 

s 5% 10% 20% 30% 40% 50% 90% 

1 2 2 3 4 5 6 43 

2 2 3 5 7 11 17 458 

3 3 4 7 11 19 35 4603 

4 3 5 9 17 34 72 4.6e4 

5 4 6 12 26 57 146 4.6e5 

6 4 7 16 37 97 293 4.6e6 

7 4 8 20 54 163 588 4.6e7 

8 5 9 26 78 272 1177 4.6e8 

Source: M. Pollefeys 

Probability that all N samples (of 

size s) are corrupted (contain an 

outlier) 

Probability of at least one point 

in a sample (of size s) is an 

outlier 



Example: line fitting 

p = 0.99 

s = ?  

e = ? 

 

N = ? 

 

Source: M. Pollefeys 



Example: line fitting 

p = 0.99 

s = 2  

e = 2/10 = 0.2 

 

N = 5 

 

proportion of outliers e 

s 5% 10% 20% 30% 40% 50% 90% 

1 2 2 3 4 5 6 43 

2 2 3 5 7 11 17 458 

3 3 4 7 11 19 35 4603 

4 3 5 9 17 34 72 4.6e4 

5 4 6 12 26 57 146 4.6e5 

6 4 7 16 37 97 293 4.6e6 

7 4 8 20 54 163 588 4.6e7 

8 5 9 26 78 272 1177 4.6e8 

Source: M. Pollefeys 

Compare with 

exhaustively trying 

all point pairs: 

= 10*9 / 2 = 45 
10 

 2 



1. Reduce the proportion of outliers. 

2. Reduce the sample size  

• use simpler model (e.g. similarity instead of affine tnf.) 

• use local information (e.g. a region to region 

correspondence is equivalent to (up to) 3 point to point 

correspondences). 

 

 

     

How to reduce the number of samples needed? 

proportion of outliers e 

s 5% 10% 20% 30% 40% 50% 90% 

1 2 2 3 4 5 6 43 

2 2 3 5 7 11 17 458 

3 3 4 7 11 19 35 4603 

4 3 5 9 17 34 72 4.6e4 

5 4 6 12 26 57 146 4.6e5 

6 4 7 16 37 97 293 4.6e6 

7 4 8 20 54 163 588 4.6e7 

8 5 9 26 78 272 1177 4.6e8 

Number of samples N 

Region to region 

correspondence 



RANSAC (references) 

M. Fischler and R. Bolles, “Random Sample Consensus: A Paradigm for Model Fitting 

with Applications to Image Analysis and Automated Cartography,” Comm. ACM, 1981 

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed., 2004. 

 

 

Extensions: 

B. Tordoff and D. Murray, “Guided Sampling and Consensus for Motion Estimation, 

ECCV’03 

D. Nister, “Preemptive RANSAC for Live Structure and Motion Estimation, ICCV’03  

Chum, O.; Matas, J. and Obdrzalek, S.: Enhancing RANSAC by Generalized Model 

Optimization, ACCV’04 

Chum, O.; and Matas, J.: Matching with PROSAC - Progressive Sample Consensus , 

CVPR 2005 

Philbin, J., Chum, O., Isard, M., Sivic, J. and Zisserman, A.: Object retrieval with large 

vocabularies and fast spatial matching, CVPR’07 

Chum, O. and Matas. J.: Optimal Randomized RANSAC, PAMI’08 

 

 

 

 

 

 



Strategy 2: Hough Transform 

• Origin: Detection of straight lines in cluttered images 

• Can be generalized to arbitrary shapes 

• Can extract feature groupings from cluttered images in 

linear time. 

• Illustrate on extracting sets of local features consistent 

with a similarity transformation. 



Hough transform for object recognition 

Suppose our features are scale- and rotation-covariant 

• Then a single feature match provides an alignment hypothesis 

(translation, scale, orientation) 

David G. Lowe. “Distinctive image features from scale-

invariant keypoints”, IJCV 60 (2), pp. 91-110, 2004.  

model 

Target image 



Hough transform for object recognition 

Suppose our features are scale- and rotation-covariant 

• Then a single feature match provides an alignment hypothesis 

(translation, scale, orientation) 

• Of course, a hypothesis obtained from a single match is unreliable 

• Solution: Coarsely quantize the transformation space. Let each 

match vote for its hypothesis in the quantized space. 

model 

David G. Lowe. “Distinctive image features from scale-

invariant keypoints”, IJCV 60 (2), pp. 91-110, 2004.  



Basic algorithm outline 

1. Initialize accumulator H  
to all zeros 

2. For each tentative match  
     compute transformation  
           hypothesis: tx, ty, s, θ  
     H(tx,ty,s,θ) = H(tx,ty,s,θ) + 1 
    end 
end 

3. Find all bins (tx,ty,s,θ) where H(tx,ty,s,θ) has at least 
three votes 

 

• Correct matches will consistently vote for the same 
transformation while mismatches will spread votes. 

• Cost: Linear scan through the matches (step 2), 
followed by a linear scan through the accumulator 
(step 3). 

tx 

ty  

H: 4D-accumulator array 

(only 2-d shown here) 



Hough transform details (D. Lowe’s system) 

Training phase: For each model feature, record 2D 

location, scale, and orientation of model (relative to 

normalized feature frame) 

Test phase: Let each match between a test and a model 

feature vote in a 4D Hough space 

• Use broad bin sizes of 30 degrees for orientation, a factor 

of 2 for scale, and 0.25 times image size for location 

• Vote for two closest bins in each dimension 

Find all bins with at least three votes and perform 

geometric verification  

• Estimate least squares affine transformation  

• Use stricter thresholds on transformation residual 

• Search for additional features that agree with the 

alignment 



Hough transform in object recognition (references) 

 P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High 

Energy Accelerators and Instrumentation, 1959 

D. Lowe, “Distinctive image features from scale-invariant keypoints”, IJCV 60 (2), 2004. 

H. Jegou, M. Douze, C. Schmid, Hamming embedding and weak geometric consistency 

for large scale image search, ECCV’2008 

 

Extensions (object category detection): 

B. Leibe, A. Leonardis, and B. Schiele., Combined Object Categorization and 

Segmentation with an Implicit Shape Model, in ECCV'04 Workshop on Statistical 

Learning in Computer Vision, Prague, May 2004. 

S. Maji and J. Malik, Object Detection Using a Max-Margin Hough Tranform, CVPR’2009 

A. Lehmann, B. Leibe, L. Van Gool. Fast PRISM: Branch and Bound Hough Transform  

for Object Class Detection, IJCV (to appear), 2010. 

O. Barinova, V. Lempitsky, P. Kohli, On the Detection of Multiple Object Instances using 

Hough Transforms, CVPR, 2010 



Slide credit: K. Grauman, B. Leibe 

Comparison 

Hough Transform 

Advantages 

• Can handle high percentage of 

outliers (>95%) 

• Extracts groupings from clutter in 

linear time 
 

Disadvantages 

• Quantization issues 

• Only practical for small number of 

dimensions (up to 4) 

 

Improvements available 

• Probabilistic Extensions 

• Continuous Voting Space 

• Can be generalized to arbitrary 

shapes and objects 

RANSAC 

Advantages 

• General method suited to large range 

of problems 

• Easy to implement 

• “Independent” of number of dimensions 
 

Disadvantages 

• Basic version only handles moderate 

number of outliers (<50%) 

 

 

Many variants available, e.g. 

• PROSAC: Progressive RANSAC 
[Chum05] 

• Preemptive RANSAC [Nister05] 
[Leibe08] 



Beyond affine transformations 

What is the transformation between two views of a planar 

surface? 

 

 

 

 

 

What is the transformation between images from two 

cameras that share the same center? 



Beyond affine transformations 

Homography: plane projective transformation 

(transformation taking a quad to another arbitrary quad) 



Case I: Plane projective transformations 

Slide credit: A. Zisserman 



Case II: Cameras rotating about their centre 

image plane 1 

image plane 2 

• The two image planes are related by a homography H 

• H depends only on the relation between the image 

planes and camera centre, C, not on the 3D structure  

P = K [ I | 0 ]   P’ = K’ [ R | 0 ] 

H = K’ R K^(-1) 



Fitting a homography 

Recall: homogenenous coordinates 

Converting to homogenenous 

image coordinates 

Converting from homogenenous 

image coordinates 



Fitting a homography 

Recall: homogenenous coordinates 

 

 

 

 

 

 

 

Equation for homography: 

Converting to homogenenous 

image coordinates 

Converting from homogenenous 

image coordinates 
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Fitting a homography 

Equation for homography: 
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Direct linear transform 

H has 8 degrees of freedom (9 parameters, but scale is 
arbitrary) 

One match gives us two linearly independent equations 

Four matches needed for a minimal solution (null space 
of 8x9 matrix) 

More than four: homogeneous least squares 
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Application: Panorama stitching 

Images courtesy of A. Zisserman.  



Recognizing panoramas 

M. Brown and D. Lowe,  “Recognizing panoramas”, ICCV 2003.  

Given contents of a camera memory card, automatically figure out 

which pictures go together and stitch them together into panoramas 



1. Estimate homography (RANSAC) 



1. Estimate homography (RANSAC) 



1. Estimate homography (RANSAC) 



2. Find connected sets of images 



2. Find connected sets of images 



2. Find connected sets of images 



3. Stitch and blend the panoramas 



Results 



M. Brown, D. Lowe, B. Hearn, J. Beis 



Summary 

Beyond local point matching: 

• Semi-local relations 

• Global geometric relations: 

• Epipolar constraint 

• Similarity / Affine / Homography 

• Algorithms: 

• RANSAC 

• Hough transform 

Finding correspondences in images is useful for 

• Image matching, panorama stitching 

• Object recognition 

• Large scale image search: Next part of the lecture 


