Class webpage: http://www.di.ens.fr/willow/teaching/recvis12/

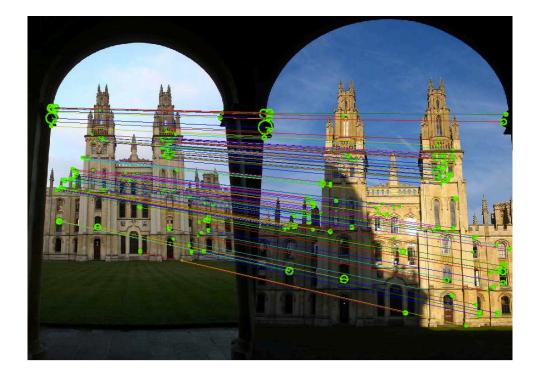
Time schedule:

4	0 05	
1	Sep 25	Introduction (J. Ponce);
2	Oct 2	Instance-level recognition I Local invariant features (C. Schmid)
		Assignments:
		Assignment 1 out
	Oct 0	NO LECTURE
	Oct 9	
3	Oct 16	Instance-level recognition II. – Camera geometry, correspondence, efficient visual search (I. Laptev)
4	Oct 23	Instance-level recognition III Very large scale image indexing (C. Schmid)
		Bag-of-feature models for category-level recognition (C. Schmid)
		Assignments
		Assignments: Assignment 1 due
		Assignment 2 out
5	Oct 30	Sparse coding and dictionary learning for image analysis (J. Ponce)
		Category-level localization I. (J. Sivic)
		Assignments:
		Topic suggestions for the final project are out
6	Nov 6	Neural networks; Optimization methods
		Assignments:
		Assignment 2 due
		Final project proposal due
		Assignment 3 out
7	Nov 13	Category-level localization II Efficient fitting of pictorial structures; Human pose estimation (J. Sivic)
8	Nov 20	Motion and human actions (I. Laptev)
		Assignments:
		Assignment 3 due
9	Nov 27	Face detection and recognition, segmentation (C. Schmid)
10	Dec 4	Scenes and objects (J. Sivic)
11	Dec 11	Final project presentations and evaluation (I. Laptev, J. Sivic)
	Dec 12	

Object recognition and computer vision 2012

Class webpage:

http://www.di.ens.fr/willow/teaching/recvis12/

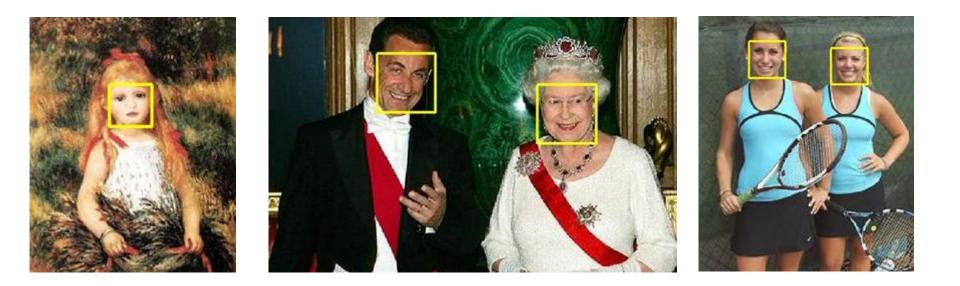

Grading:

- 3 programming assignments (50%)
 - Instance-level recognition
 - Image classification
 - Basic face detector
- Final project (50%)

More independent work, resulting in the report and a class presentation.

Assignment I: Instance level recognition

- Part I: Sparse features for matching specific objects in images
- Part II: Affine co-variant detectors
- Part III: Towards large scale retrieval
- Part IV: Large scale retrieval


Assignment II: Image Classification

- Part 1: Training and testing an Image Classifier
- Part 2: Training an Image Classifier for Retrieval using Google images

Assignment III: Basic face detector

- Part 1: Prepare training data
- Part 2: Learn SVM face classifier
- Part 3: Apply and evaluate SVM classifier for detection

Final project

- Select the topic + write project proposal
- Present the work in the class
- Write project report

- Can be done individually or as a group
- The proposed project topics are from the recent top-conference pulications in computer vision, see example topics from 2011 here: <u>http://www.di.ens.fr/willow/teaching/recvis11/finalproject/</u>
- Student-defined projects are welcome
- Final project can be joint with another MVA course

Matlab tutorial

Possible dates

- Sept 27 (Thursday) 15:00-17:00
- Sept 28 (Friday) 10:00-12:00
- Sept 28 (Friday) 15:00-17:00
- Oct 1 (Monday) 10:00-12:00

The tutorial will be at INRIA/Willow, 23 av. d'Italie, Paris

Come if you have no/limited experience with Matlab.

Research

Both WILLOW (J. Ponce, I. Laptev, J. Sivic) and LEAR (C. Schmid) groups are active in computer vision and visual recognition research.

http://www.di.ens.fr/willow/ http://lear.inrialpes.fr/

with close links to SIERRA – machine learning (F. Bach) http://www.di.ens.fr/sierra/

There will be master internships available. Talk to us if you are interested.