Reconnaissance d'objets et vision artificielle 2010

Objects and scenes:

Recognizing Multiple Object Classes

Josef Sivic and Ivan Laptev http://www.di.ens.fr/~josef INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d'Informatique, Ecole Normale Supérieure, Paris

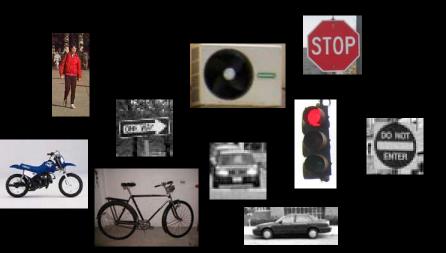
With slides from: A. Torralba, D. Hoiem, D. Ramanan and others.

Multiclass object detection

Zo

2

Context: objects appear in configurations

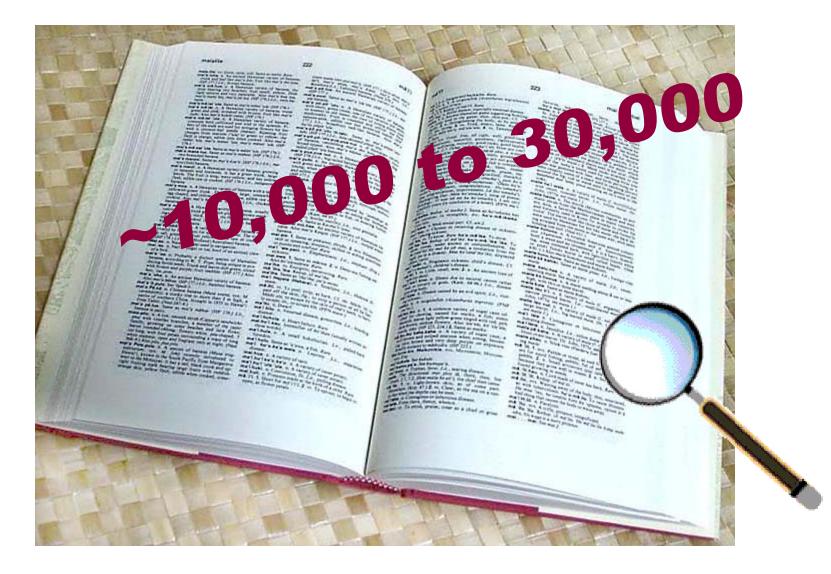


Generalization: objects share parts

How many categories?

How many categories?

How many object categories are there?



Biederman 1987

How many categories?

 Probably this question is not even specific enough to have an answer

Which level of categorization is the right one?

Car is an object composed of:

a few doors, four wheels (not all visible at all times), a roof, front lights, windshield

If you are thinking in buying a car, you might want to be a bit more specific about your categorization level.

Entry-level categories (Jolicoeur, Gluck, Kosslyn 1984)

- Typical member of a basic-level category are categorized at the expected level
- Atypical members tend to be classified at a subordinate level.

o from Coffee Creek Watershed Prese

A bird

An ostrich

We do not need to recognize the exact category

A new class can borrow information from similar categories

So, where is computer vision?

Well...

Multiclass object detection the not so early days

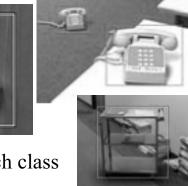
Using a set of independent binary classifiers was a common strategy:

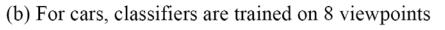
• Viola-Jones extension for dealing with rotations

- two cascades for each view

• Schneiderman-Kanade multiclass object detection

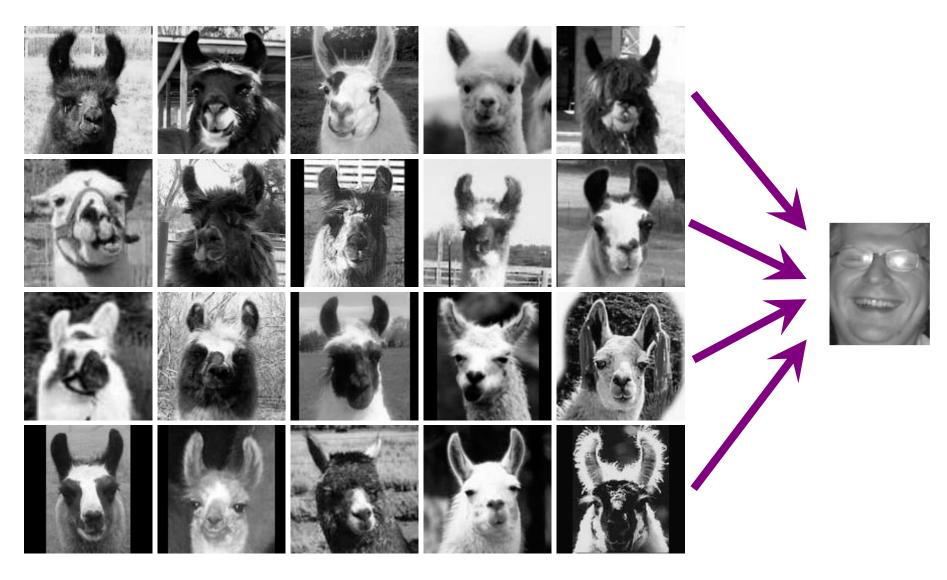
(a) One detector for each class





There is nothing wrong with this approach if you have access to lots of training data and you do not care about efficiency.

Generalizing Across Categories



Can we transfer knowledge from one object category to another? Slide by Erik Sudderth

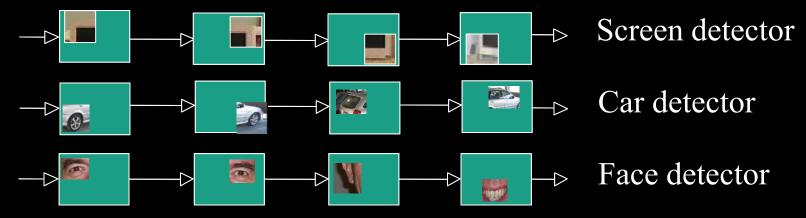
Shared features

• Is learning the object class 1000 easier than learning the first?

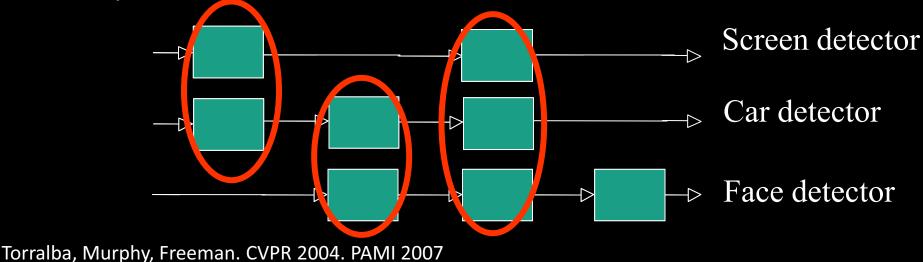
- Can we transfer knowledge from one object to another?
- Are the shared properties interesting by themselves?

Additive models and boosting

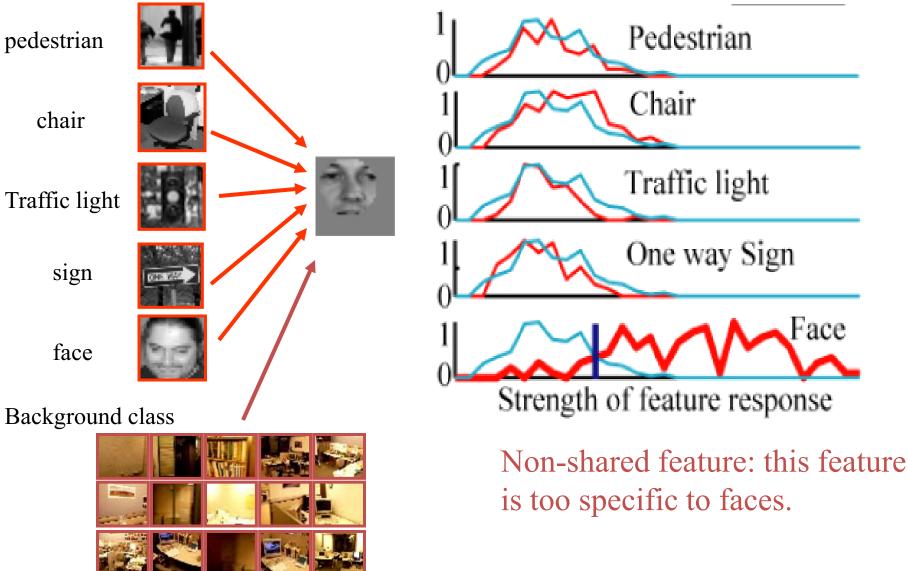
• Independent binary classifiers:



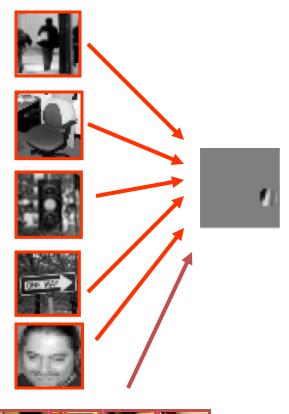
• Binary classifiers that share features:

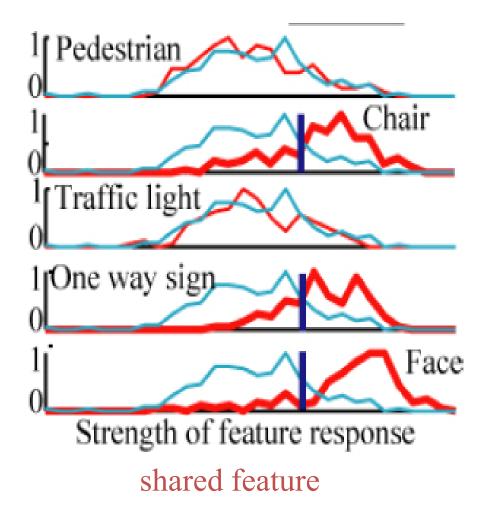


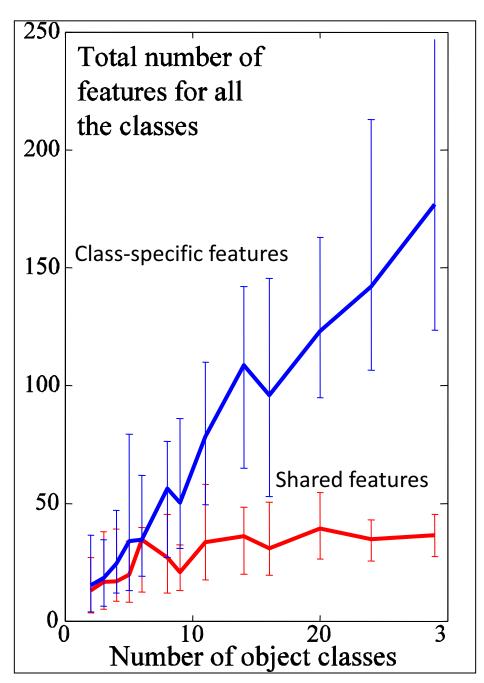
Specific feature



Shared feature







50 training samples/class29 object classes2000 entries in the dictionary

Results averaged on 20 runs

Generalization as a function of object similarities

12 unrelated object classes

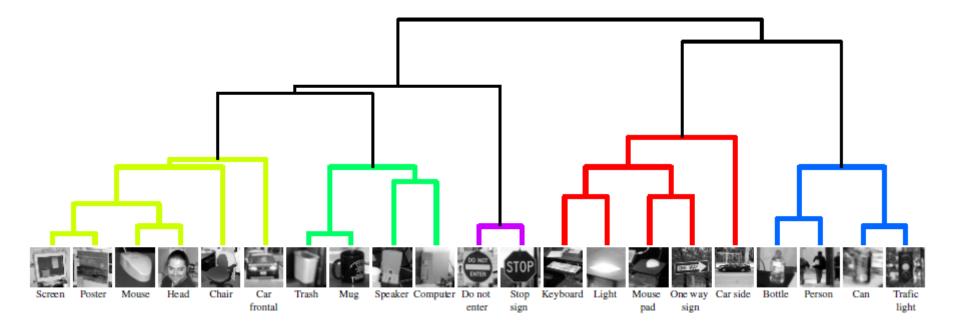
12 viewpoints



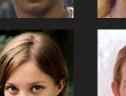
Generic vs. specific features

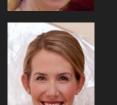


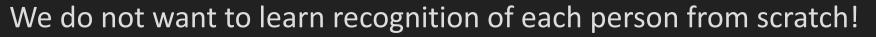
Object clustering according to shared features



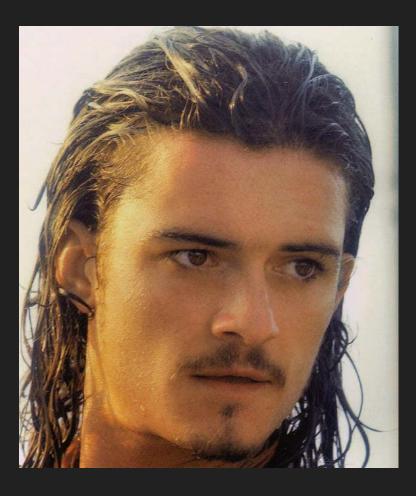
Another multi-class problem: **Face recognition**



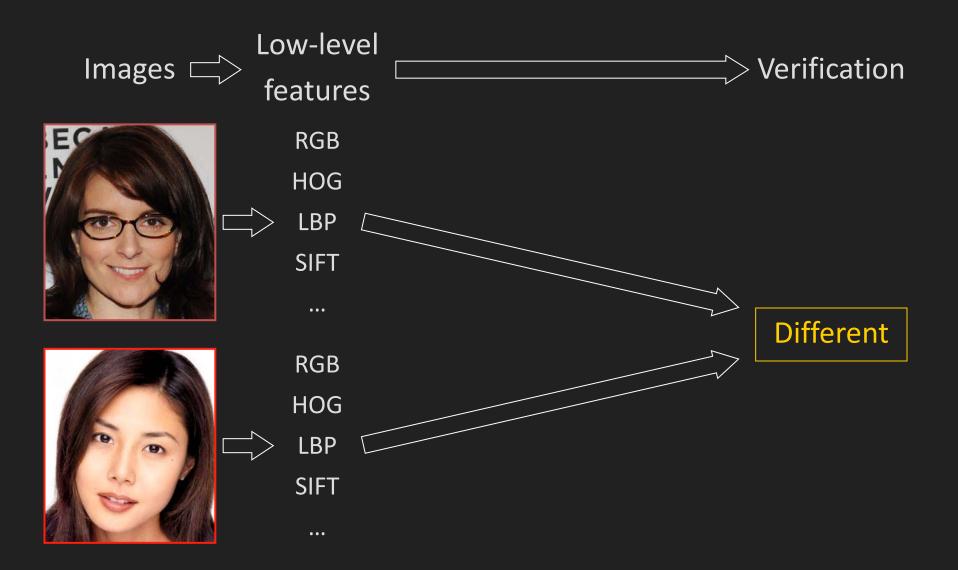




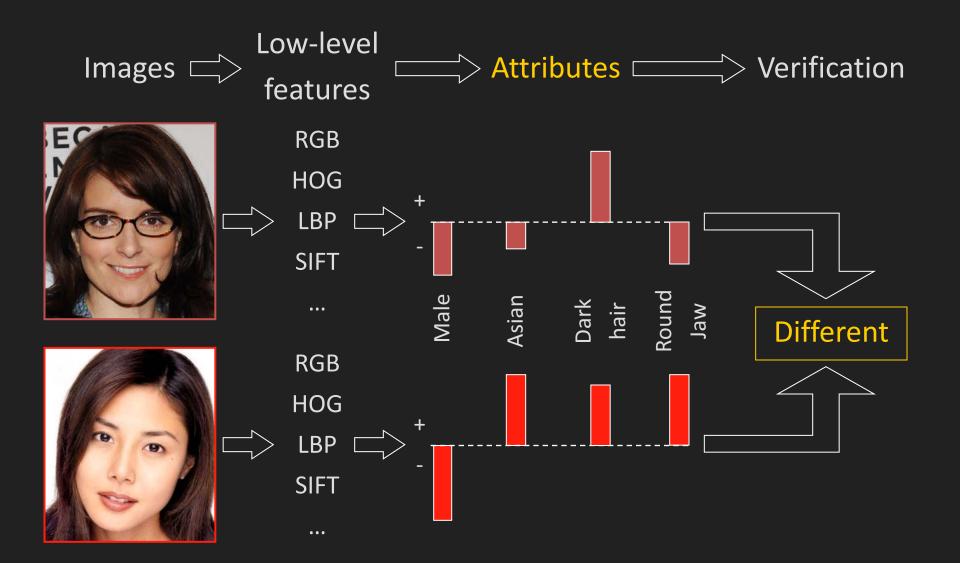
Are these images of the same person?



Prior approaches



Approach: attributes

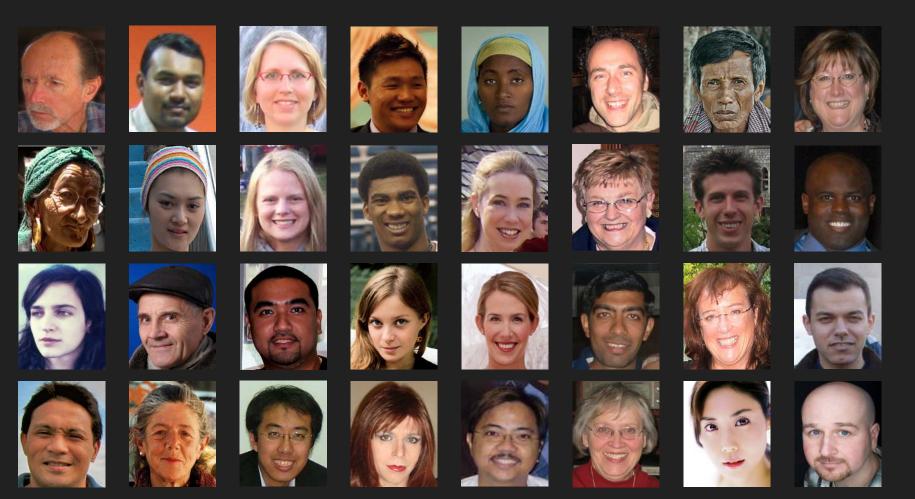


Attributes can define categories

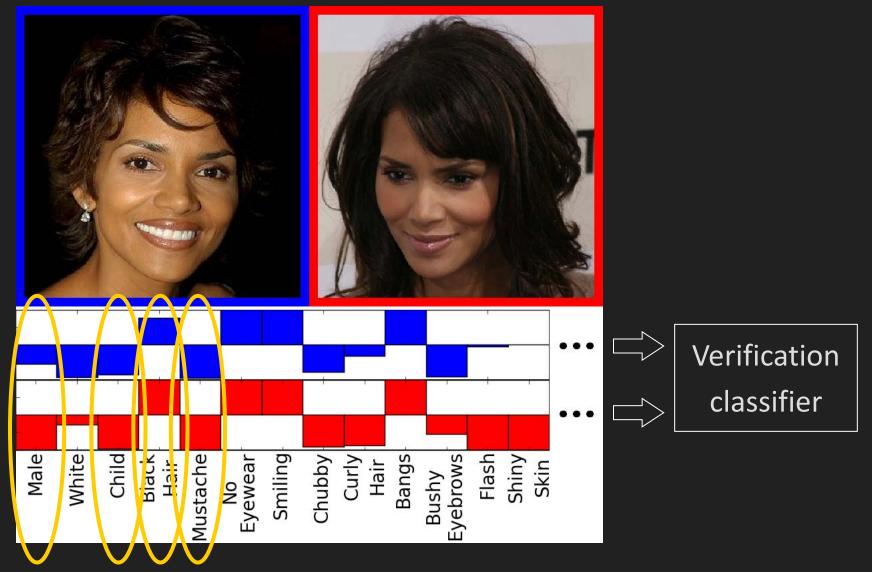
CaucasianMiddle-agedFemaleEyeglassesDark hair

Some attributes may be irrelevant

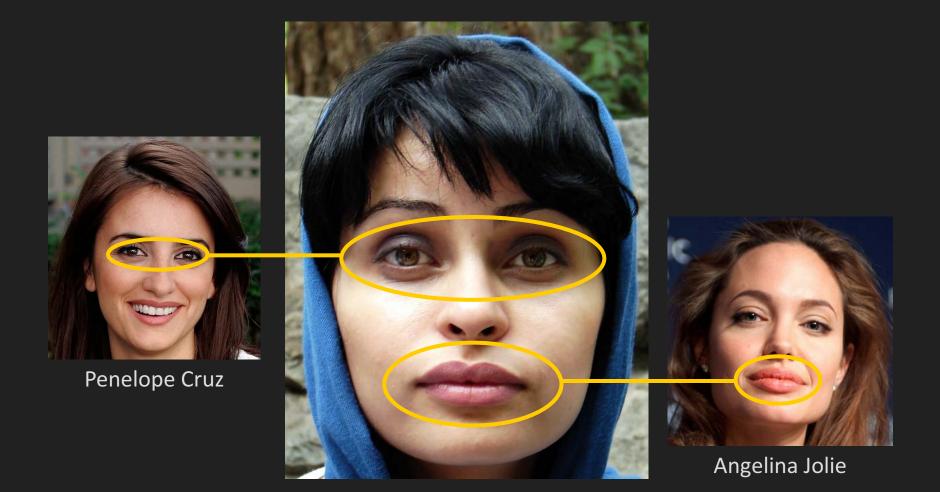
Teeth showing Tilted head Outside



Using attributes to perform verification



Describe faces using similes

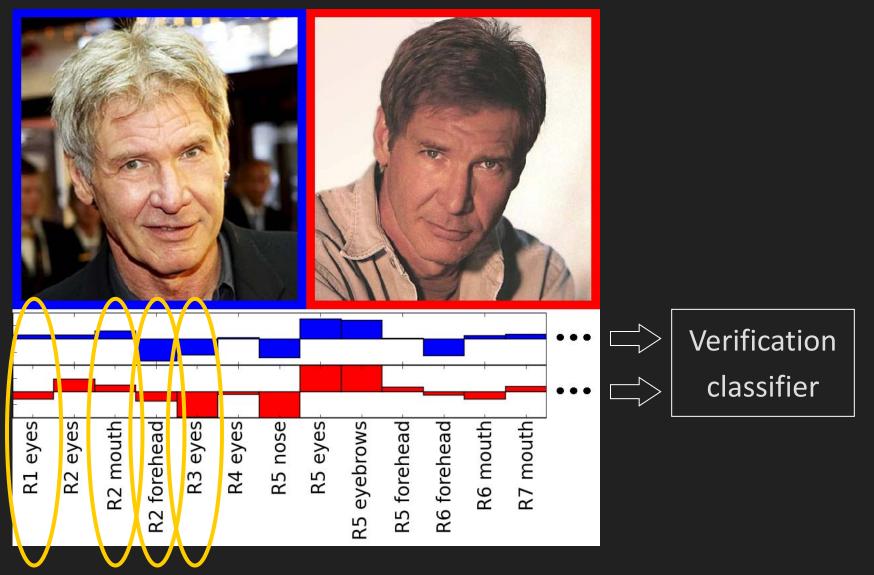


Training simile classifiers

Images of Penelope Cruz 's eyes

Images of other people 's eyes

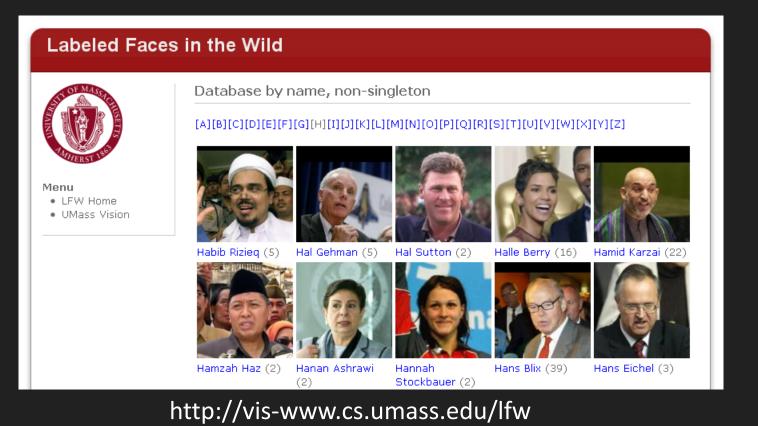
Using simile classifiers for verification



Experimental evaluation

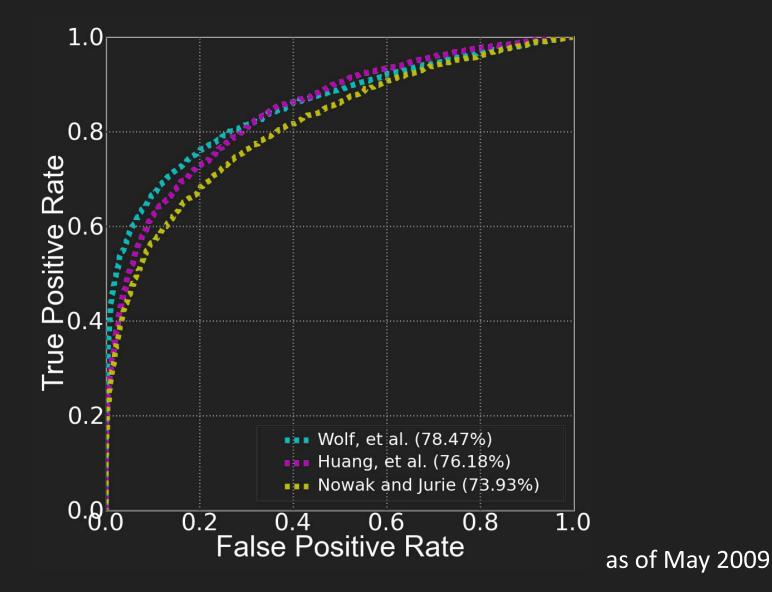
LFW Image-Restricted Benchmark:

- 6,000 face pairs (3,000 same, 3,000 different)
- 10-fold cross-validation

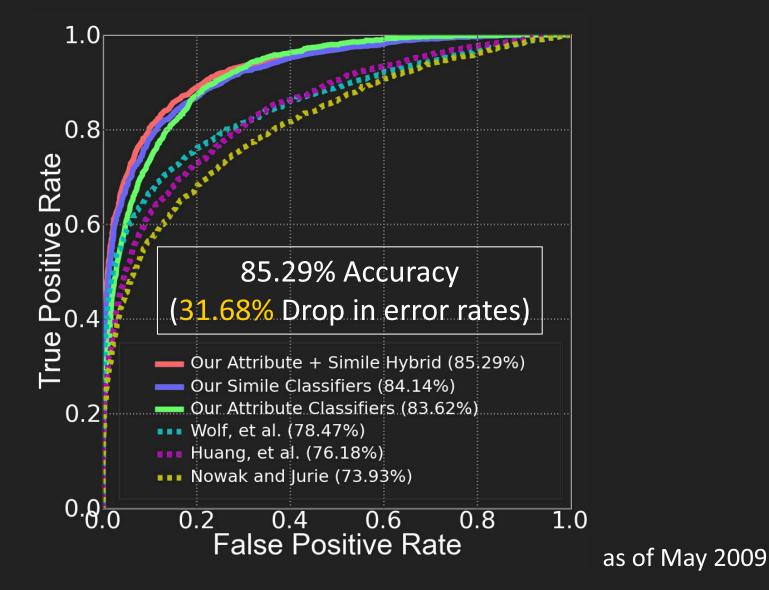


N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar ICCV 2009

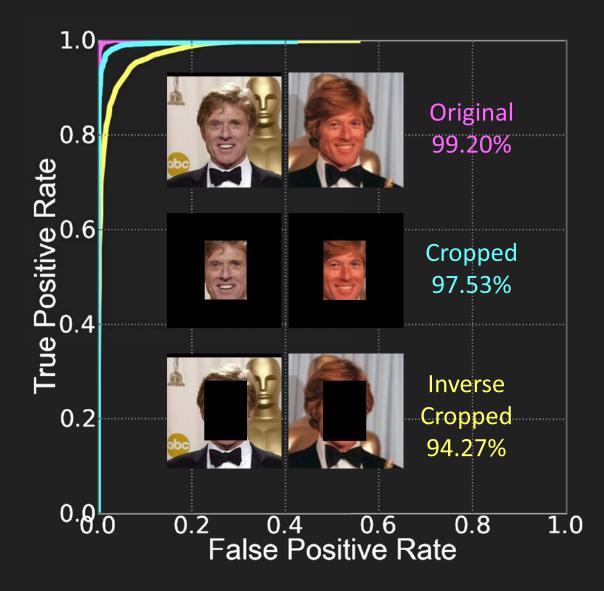
Previous state-of-the-art on LFW



Kumar et al. 2009 on LFW



Human face verification performance

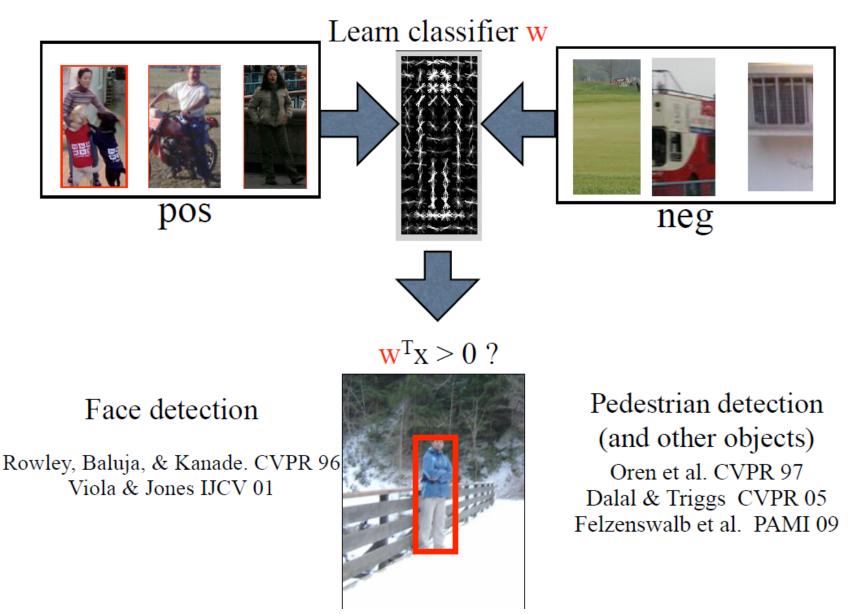


What about multiple objects in the same image?

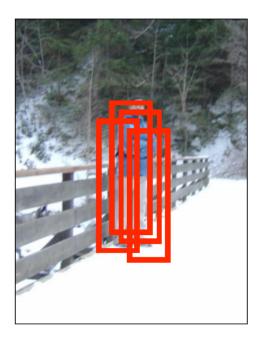


Multiclass object detection

Scanning-window pattern classification

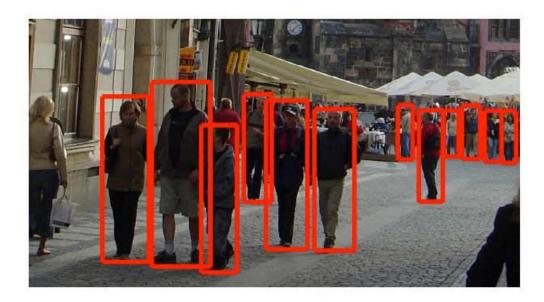


Non-maxima suppression (NMS)



We need to suppress overlapping detections Many heuristics (mode finding, greedy selection)

NMS in cluttered scenes

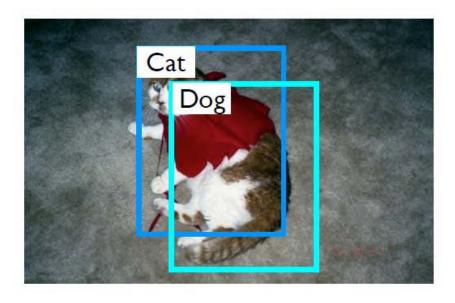


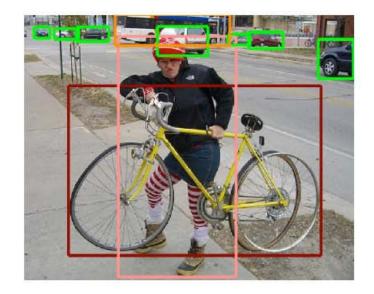
NMS should exploit spatial statistics of objects in real scenes

Is there a principled way to learn how to perform NMS?

Inter-class NMS

Mutual exclusion: two objects cannot occupy the same 3D volume





May not be a strict constraint due to porous or transparent objects

Taxonomy of spatial interactions

	within-class between-cla	
negative	NMS	mutual exclusion
positive	textures of objects	spatial cueing

Most past work focuses on positive interactions, heuristically performing NMS & mutual exclusion.

Our contribution: a model for all of the above

Our inspiration: Torralba, Murphy, & Freeman NIPS 04 Kumar & Hebert ICCV 05 He, Zemel, & Carreira-Perpinan CVPR 05 Galleguillos, Rabinovich & Belongie CVPR 08 Hoeim, Efros, & Hebert IJCV 08 Object detection as

Classification

x = image window $y \in \{0,1\}$

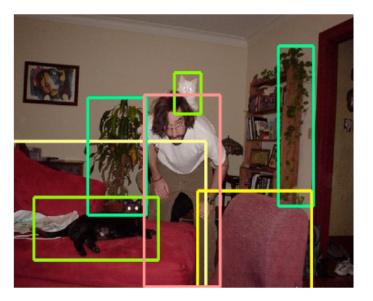
C. Desai, D. Ramanan, C. Fowlkes ICCV 2009

Object detection as a structured labeling task

Classification

 $x = image window \\ y \in \{0,1\}$

Structured, sparse label



X = entire imageY = [...4...3...2.7..1..]

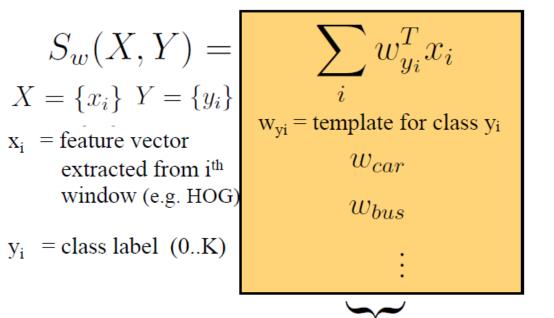
C. Desai, D. Ramanan, C. Fowlkes ICCV 2009

Global scoring function

 $S_w(X, Y)$ $\bigwedge_{X = \{x_i\} Y = \{y_i\}}$

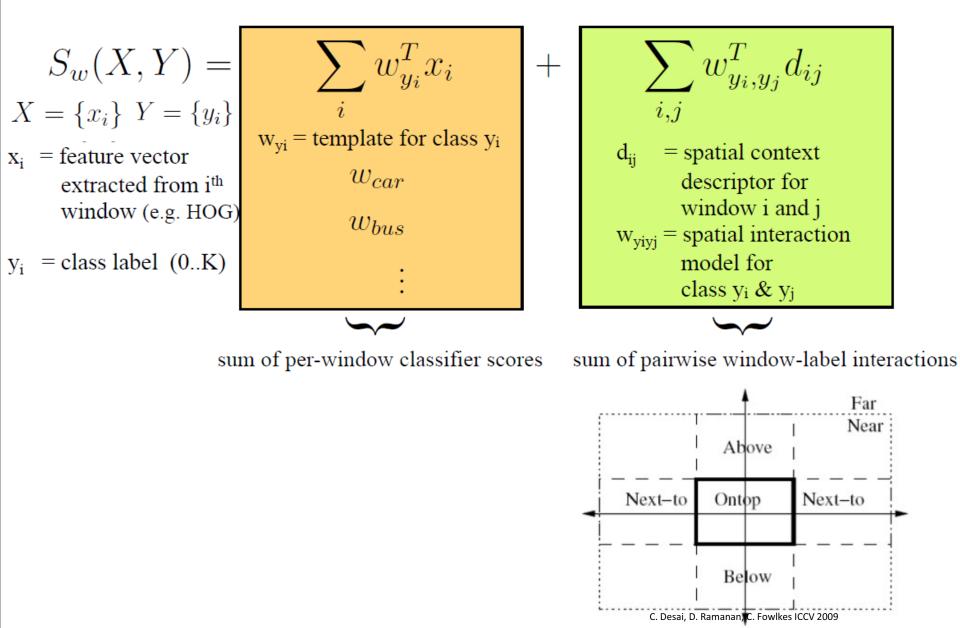
 x_i = feature vector extracted from ith window (e.g. HOG) y_i = class label (0..K) for ith window

Global scoring function



sum of per-window classifier scores

Global scoring function



Inference

$$S_w(X,Y) = \sum_i w_{y_i}^T x_i + \sum_{i,j} w_{y_i,y_j}^T d_{ij}$$

$$L(X) = \operatorname*{argmax}_{Y} S_w(X, Y)$$

Looks like an MRF - can we use standard inference techniques?

Our model is not sub-modular

Sub-modular interactions: neighboring labels should be similar NMS interactions: neighboring labels should be different

Greedy inference

$$L(X) = \underset{Y}{\operatorname{argmax}} S(X, Y) \quad S(X, Y) = \sum_{i} w_{y_i}^T x_i + \sum_{i,j} w_{y_i, y_j}^T d_{ij}$$

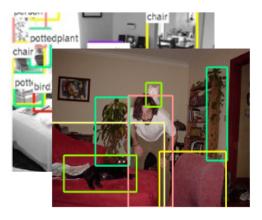
Analogous to common NMS schemes

 (1) Initialize all labels to bg Initialize per-window scores with local template
(2) Select highest scoring un-instanced window
(3) Instance it and add pairwise contribution to remaining windows
(4) Stop when remaining windows score < 0

Effectiveness: Greedy solution close to optimal in practice (See Numhauser et al. 78 for theoretical arguements)

Learning

Training data consists of pairs of $\{X_n, Y_n\}$



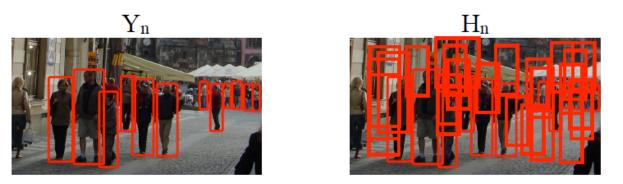
$$S_w(X,Y) = \sum_i w_{y_i}^T x_i + \sum_{i,j} w_{y_i,y_j}^T d_{ij}$$

 $S_w(X,Y) = w^T \Psi(X,Y)$

C. Desai, D. Ramanan, C. Fowlkes ICCV 2009

Learning with SVMs $\underset{w}{\operatorname{argmin}} \quad \frac{1}{2}w^{T}w$ s.t. $\forall n, H_{n} \neq Y_{n} \qquad w^{T}\Psi(X_{n}, Y_{n}) - w^{T}\Psi(X_{n}, H_{n}) \geq 1$

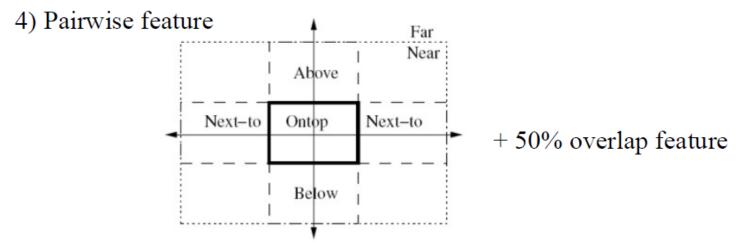
"Find a small w such that for each image, score of true label Y_n dominates all other hypothesized labels H_n by at least 1 unit"



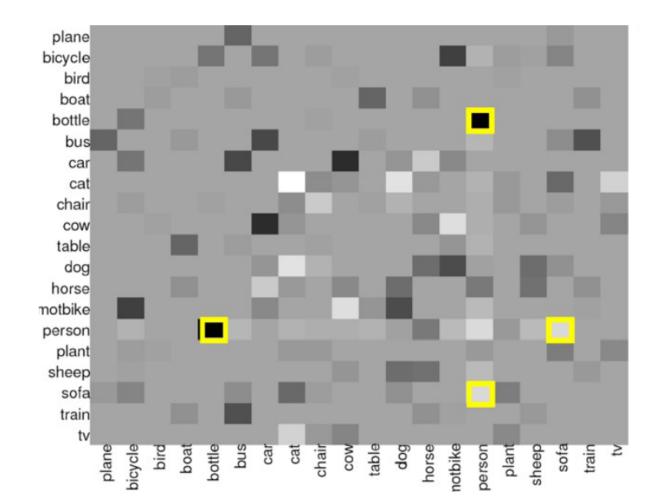
Only a tiny fraction of exponential number of constraints are necessary (i.e., support vectors) Structured Prediction Tsochantaridis et al. ICML 04

Experiments

- We use PASCAL 2007 training and test data 20 classes, 5000 training images, 5000 test images
- 2) Baseline: Felzenswalb et al. PAMI 09 (with default NMS)
- 3) Local feature = [score of baseline detector 1](We learn bias and offset for each local detector)



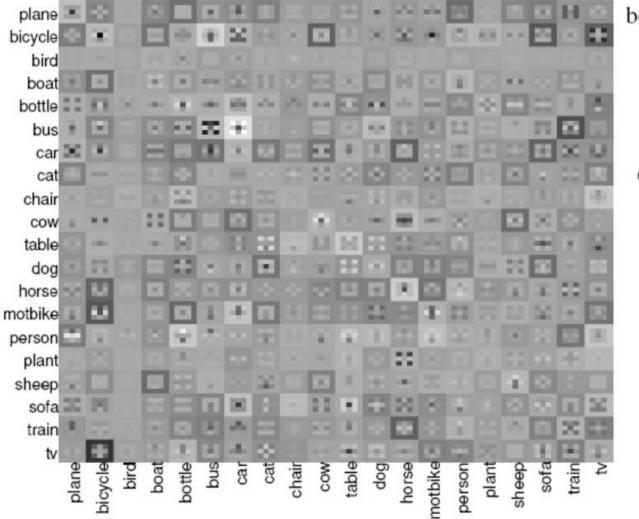
Overlap feature in pairwise potential



Mutual exclusion can be subtle Parameters are trained with knowledge of local detectors

C. Desai, D. Ramanan, C. Fowlkes ICCV 2009

Remaining pairwise potentials



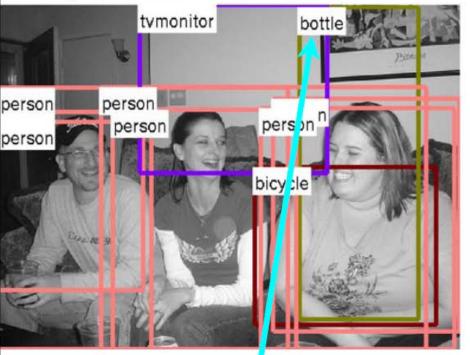
bottles wrt tables

cars wrt trains

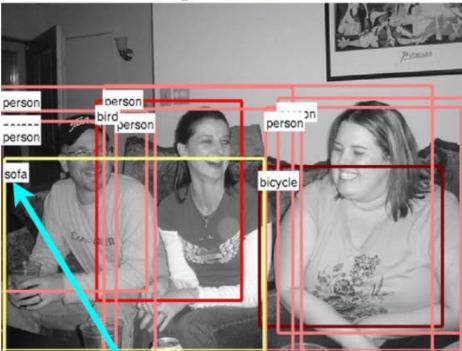
m.bikes wrt m.bikes

Results

Top 10 detections for baseline



Our top 10 detections



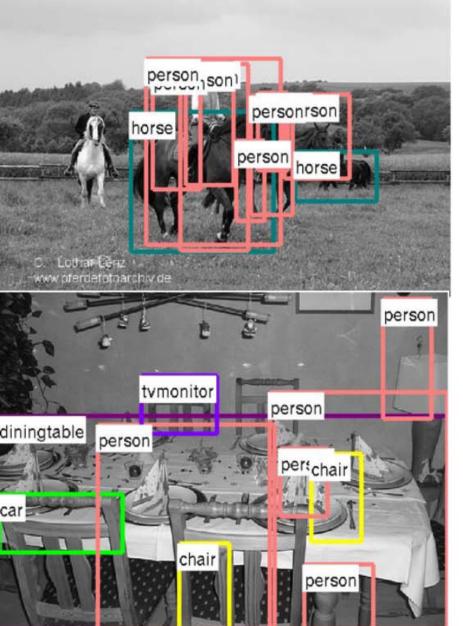
Inhibit overlapping people & bottles because local detectors confuse them Favor overlapping people & sofas because people sit on sofas

C. Desai, D. Ramanan, C. Fowlkes ICCV 2009

Results

Baseline

Our model



Default NMS heuristics				Default heuristics don't	
	Winning F PASCAL07 score	Felzenszwalb et al. PAMI 09 code	Mutual Exclusion	work for Mutu Our model	al Exclusion
plane	.262	0.278	0.270	0.288	
bike	.409	0.559	0.444	0.562	
bird	.098	0.014	0.015	0.032	
boat	.094	0.146	0.125	0.142	
bottle	.214	0.257	0.185	0.294	
bus	.393	0.381	0.299	0.387	
car	.432	0.470	0.466	0.487	
cat	.240	0.151	0.133	0.124	
chair	.128	0.163	0.145	0.160	
COW	.140	0.167	0.109	0.177	
table	.098	0.228	0.191	0.240	
dog	.162	0.111	0.091	0.117	
horse	.335	0.438	0.371	0.450	
motbike	.375	0.373	0.325	0.394	
person	.221	0.352	0.342	0.355	
plant	.120	0.140	0.091	0.152	
sheep	.175	0.169	0.091	0.161	
sofa	.147	0.193	0.188	0.201	
train	.334	0.319	0.318	0.342	
TV	.289	0.373	0.359	0.354	

Our model outperforms Felzenszwalb et al.'s baseline for most classes

Yet, another multi-object detection problem

Density-aware person detection and tracking in crowds

M. Rodriguez, I. Laptev, J. Sivic, J.-Y. Audibert

Motivation

Recognize crowd events

- Predict future [potentially dangerous] events
 - Detect and track individual people

Problem

□ As the density of people in a scene increases:

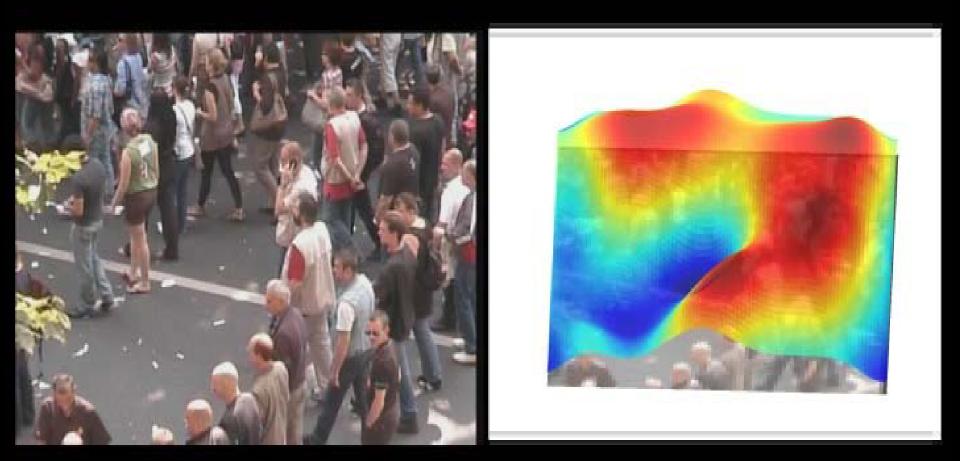
The accuracy of current detection and tracking methods degrades

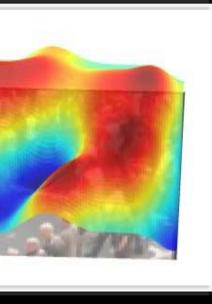
Increasing person density

Detection and Tracking

Typical state-of-the-art detection and tracking

Density Estimation

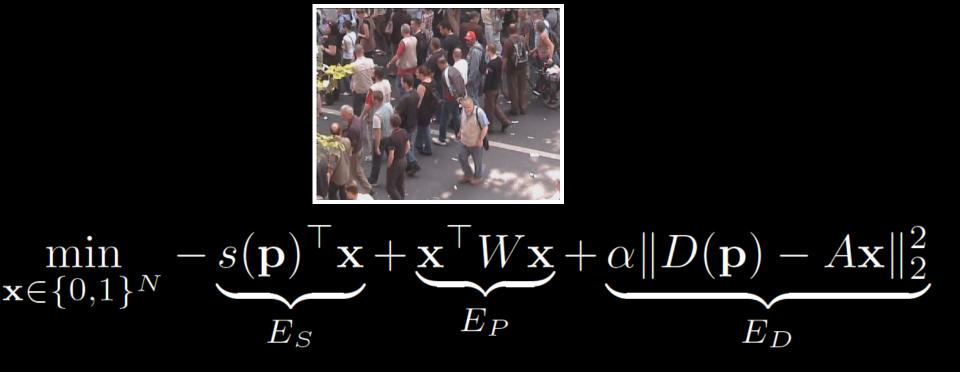




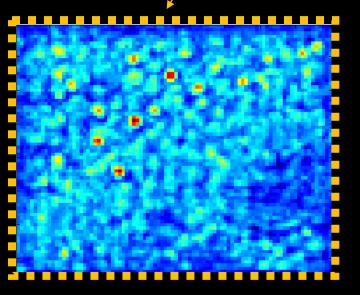
Density estimate

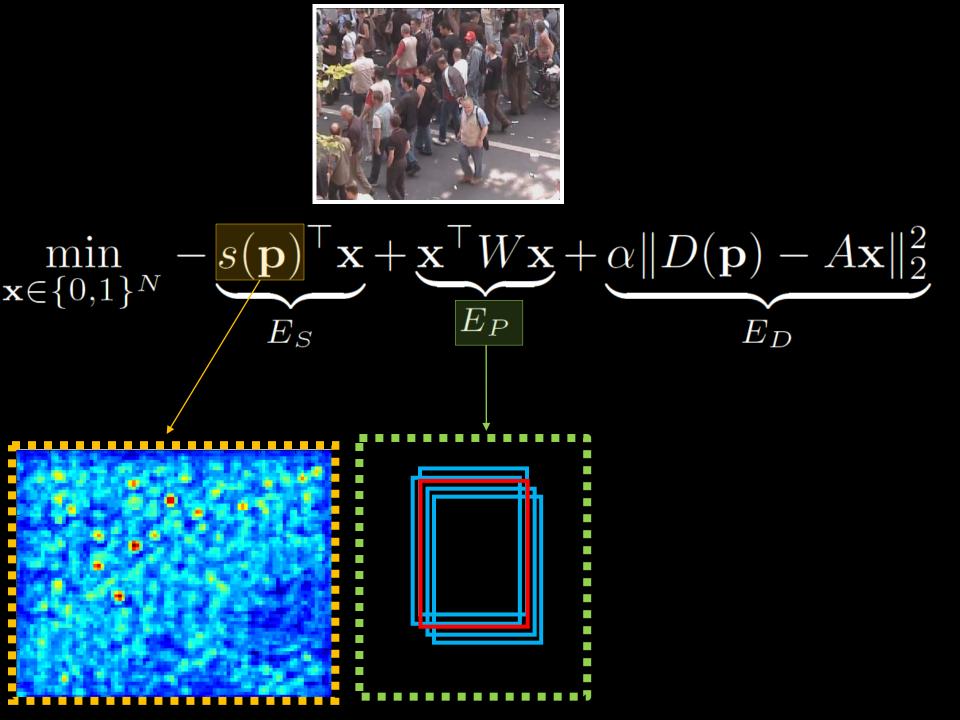
Improved Detection and Tracking

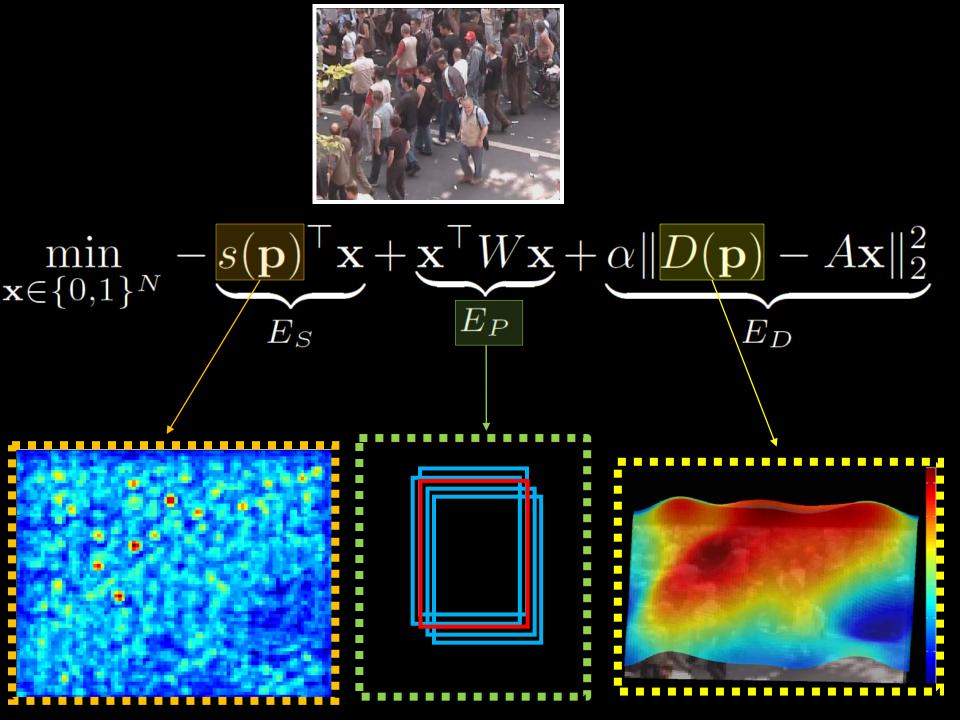
Energy Formulation



 $^{\top}\mathbf{x} + \mathbf{x}^{\top}W\mathbf{x} + \alpha \|D(\mathbf{p}) - A\mathbf{x}\|_{2}^{2}$ $\min_{\mathbf{x} \in \{0,1\}^N}$ $s(\mathbf{p})$ E_P E_S E_D

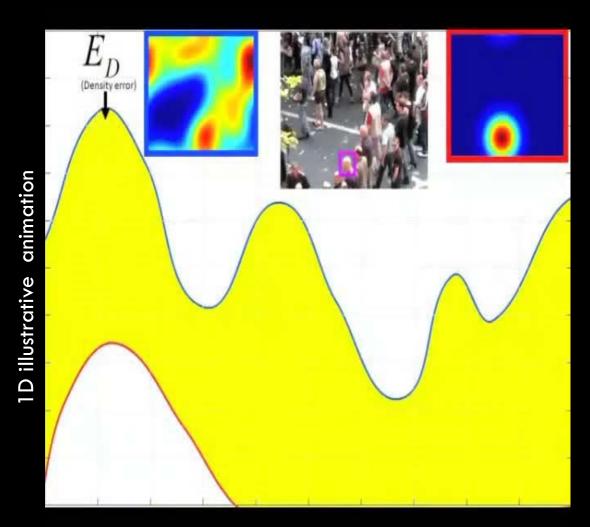




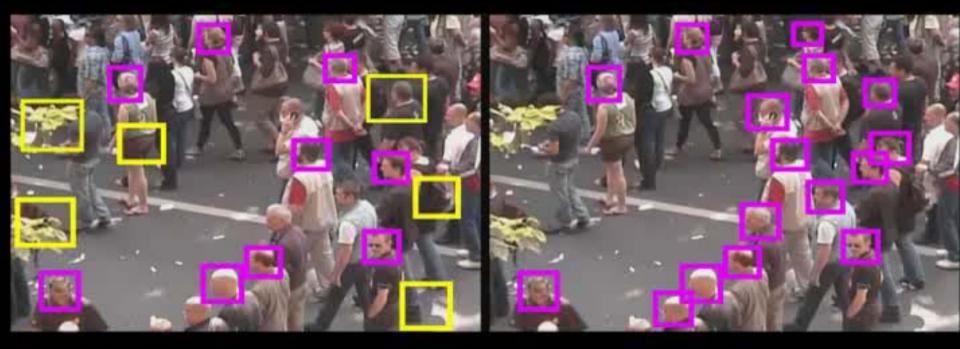


Optimization

- NP-hard problem
- We adopt a greedy search procedure



Results and Evaluation



Baseline

Density-aware

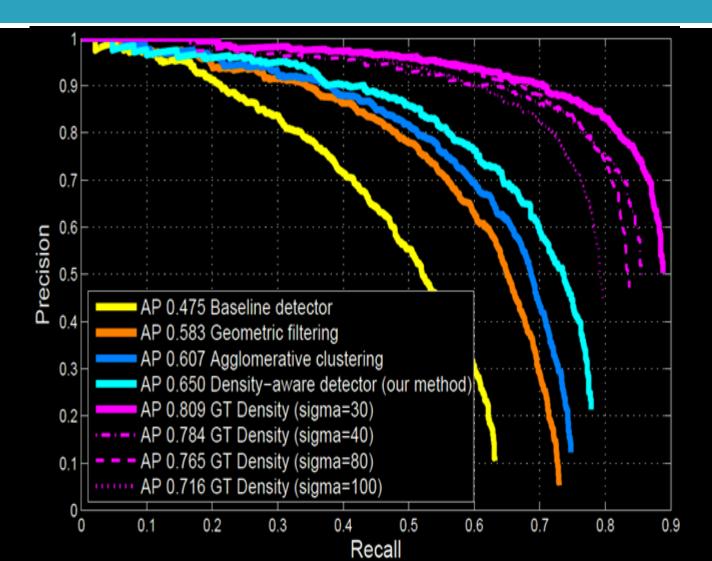
Incorrect track

Baseline

Density-aware

Incorrect track

Detection Evaluation



Inrernship Topic 1 Person Detection and Tracking in Crowds

Willow team, advisors: Ivan Laptev and Josef Sivic

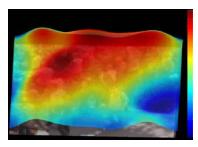
http://www.di.ens.fr/willow/teaching/recvis11/internships

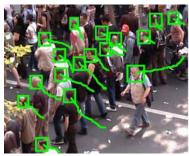
Goals:

- Improve person detection and tracking with *better person density estimation*.
- Leverage space-time constraints with *density-aware track detection*.
- Address new research problems such as person *detection and tracking in low resolution video*

Potential outcomes:

- Impact on the very active and challenging research domain
- Conference/journal publication and the start of a PhD thesis





What to do about The Object That Cannot Be Named?

Slides by Derek Hoiem Computer Science Department University of Illinois at Urbana- Champaign

A. Farhadi, I. Endres, and D. Hoiem 2010

A failure/success story

Photo by Ivan Makarov

Dealing with inevitable failure

Failure in categorization should not mean failure in recognition

What to do about the **Object That Cannot Be Named**?

Example

Assisted Driving

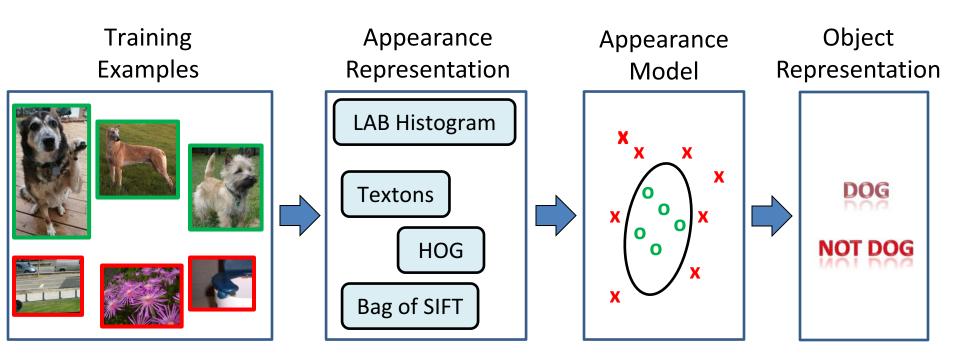
A. Farhadi, I. Endres, and D. Hoiem 2010

Example

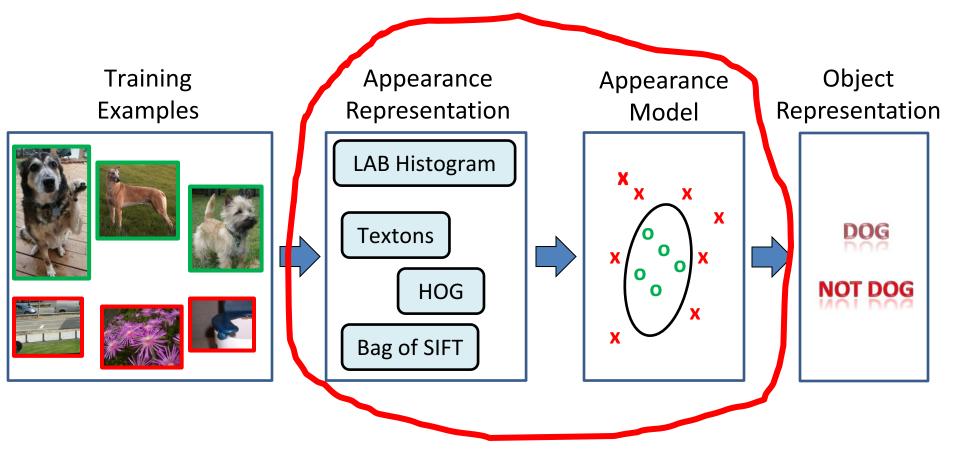
Security

A. Farhadi, I. Endres, and D. Hoiem 2010

Current View of Recognition

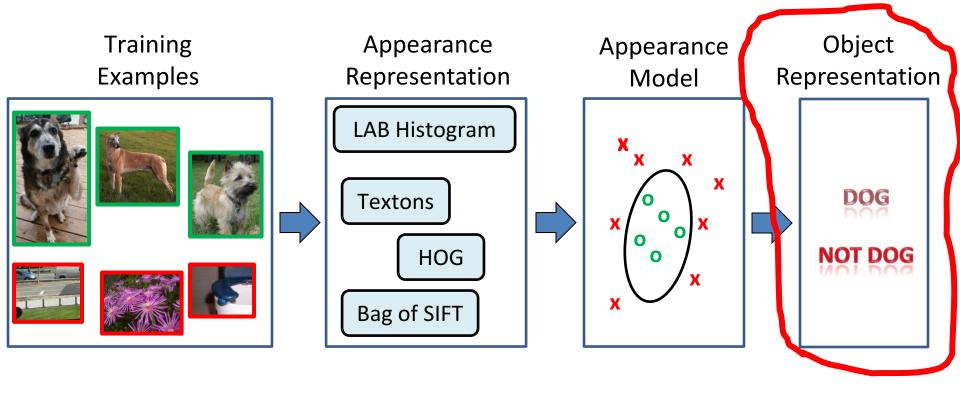


Current View of Recognition



Lots of effort – fancy stuff

Current View of Recognition



Not much changed

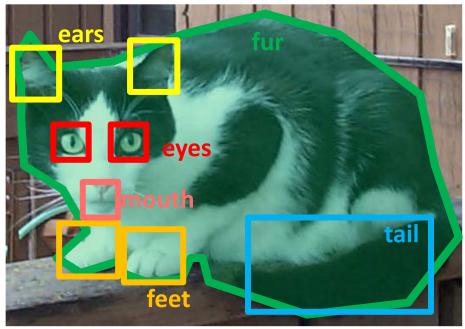
Category-based representation

- Limited description and prediction
- No generalization to objects outside of learned categories
- Provides little guidance for learning

So what would make a better representation?

Attribute-based Representation

- Properties that we want to describe or predict
- Shared across basic categories
- Made explicit through supervision



Multiple Categories animal, land animal, ..., cat

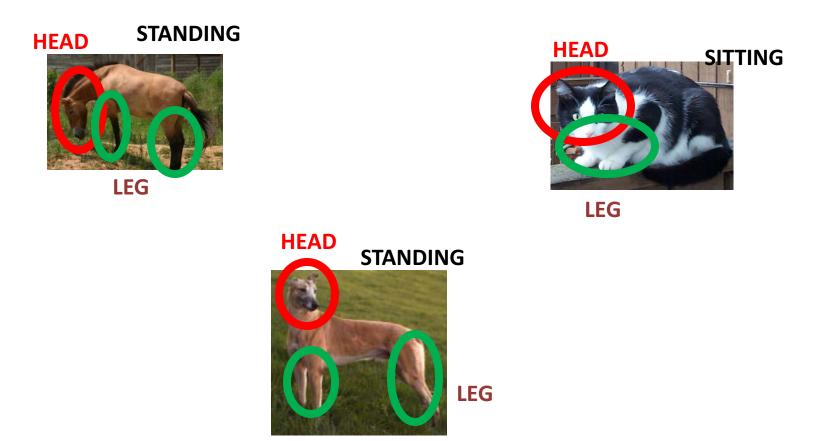
Viewpoint/pose lying down, left side, facing camera

Function

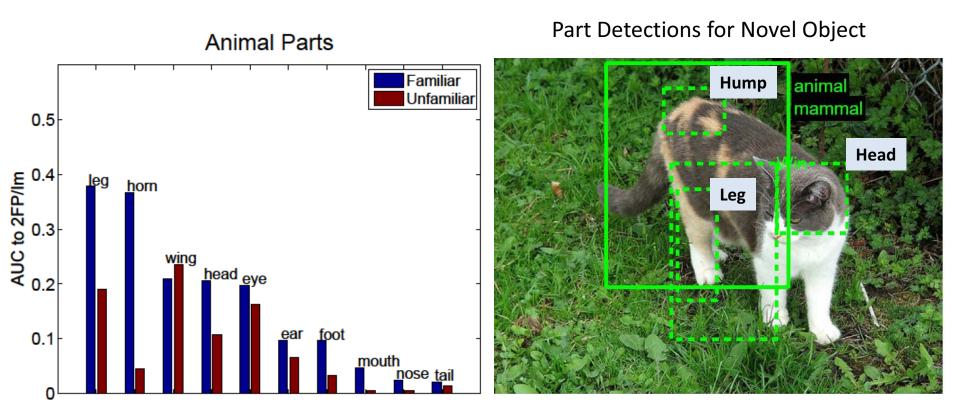
fast runner, climb trees, eat small animals, jump high, household pet, scratch

Advantages of supervised attributes

 Provides correspondence for objects from different categories

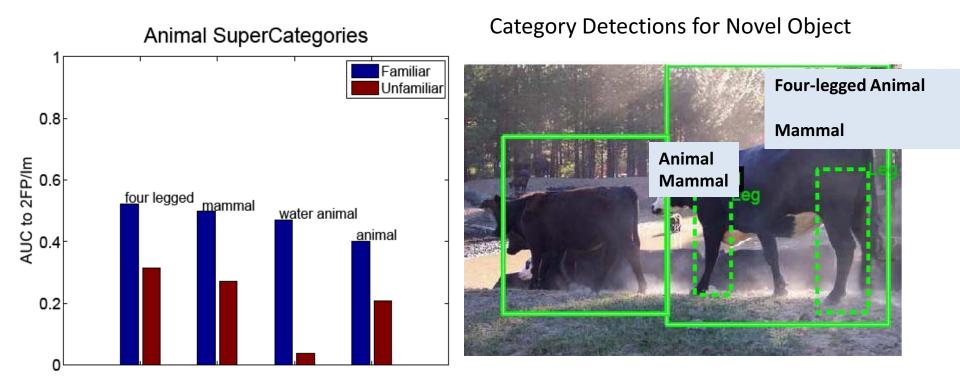


Result: Part detectors can generalize across categories



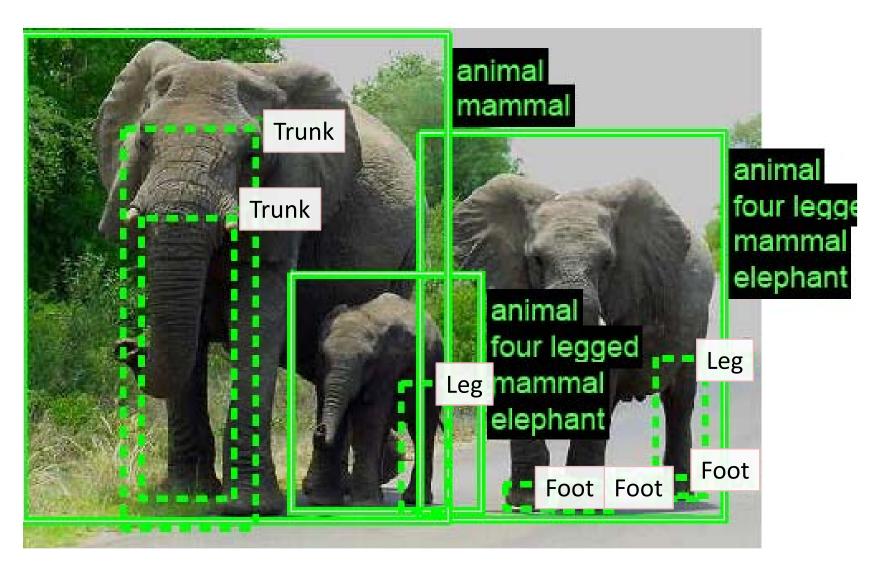
Detectors trained using (Felzenszwalb Girshik McAllester Ramanan 2009) method

Result: Broad category detectors can generalize across basic categories



Detectors trained using (Felzenszwalb Girshik McAllester Ramanan 2009) method

Result: We can better find and describe objects from familiar categories



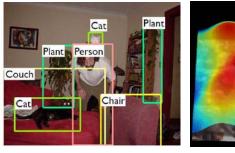
A. Farhadi, I. Endres, and D. Hoiem 2010

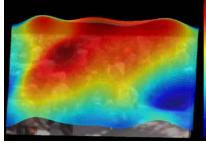
What we have seen so far?

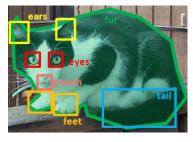
• Objects in the context of scenes.

• Objects in relation with each other

• Objects defined by parts and attributes







Is this the end of the story?

It seems important to recognize object use

How to reason about typical / non-typical object use?

The perception of function

• Direct perception (affordances): Gibson (70s-80s)



Mediated perception (Categorization)

