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Category-level localization

• Localization of object outlines

Learning shape-based models

Localizing the objects with the learnt models 



Category-level localization

• Localization of object pixels
– Pixel-level classification, segmentation



Overview

• Shape-based descriptors

• Learning deformable shape models 



Shape-based features for localization

• Classes with characteristic shape
– appearance, local patches are not adapted
– shape-based descriptors are necessary 

[Ferrari, Fevrier, Jurie & Schmid, PAMI’08]



Pairs of adjacent segments (PAS)

Contour segment network 
[Ferrari et al. ECCV’06]

1. Edgels extracted with 
Berkeley boundary detectorBerkeley boundary detector

2. Edgel-chains partitioned into 
straight contour segments

3. Segments connected at 
edgel-chains’ endpoints and 
junctions



Pairs of adjacent segments (PAS)

Contour segment network PAS = groups of two connected segmentsContour segment network PAS = groups of two connected segments
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PAS descriptor: 
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• encodes geometricproperties of the PAS

• scale and translation invariant

• compact, 5D



Features: pairs of adjacent segments (PAS)

Example PAS

Why PAS ?

+ can cover pure portions 
of the object boundary

+ intermediate complexity:
good repeatability-
informativeness trade-off

+ scale-translation invariant

+ connected: natural grouping 
criterion (need not choose a 
grouping neighborhood or scale)



PAS codebook

a few types from  15 

PAS descriptors are clustered into a vocabulary

indoor images

• Frequently occurring PAS have intuitive, natural shapes
• As we add images, number of PAS types converges to just ~100
• Very similar codebooks come out, regardless of source images

� general, simple features



Window descriptor

1. Subdivide window into tiles

2. Compute a separate bag of PAS per tile

3. Concatenate these semi-local bags

+ distinctive:
records which PAS appear where 
weight PAS by average edge strength

+ flexible:
soft-assign PAS to types, coarse tiling

+ fast:
computation with Integral Histograms



Training

1. Learn mean positive window dimensions
2. Determine number of tiles T
3. Collect positive example descriptors

hw MM ×

4. Collect negative example descriptors:
slide                   window over negative training images

hw MM ×



Training

5. Train a linear SVM from positive and negative window descriptors 

A few of the highest weighed descriptor vector dimensions (= 'PAS + tile')

+  lie on object boundary (= local shape structures common to many training exemplars)



Testing

1. Slide window of aspect ratio                   at multiple scaleshw MM /

2. SVM classify each window + non-maxima suppression
detections



Experimental results – INRIA horses
Dataset: 170 positive + 170 negative images (training =  50 pos + 50 neg)

wide range of scales; clutter

+ tiling brings a substantial improvement       
optimum at T=30 � used for all other experiments

(missed and FP)

+ works well: 86% det-rate at 0.3 FPPI (50 pos + 50 neg training images)



Experimental results – INRIA horses
Dataset: 170 positive + 170 negative images (training =  50 pos + 50 neg)

wide range of scales; clutter

+ PAS better than any 
interest point detector

- all interest point (IP) comparisons with T=10, and 120 feature types (= optimum over 
INRIA horses, and ETHZ Shape Classes)
- IP codebooks are class-specific

interest point detector



Results – ETH shape classes

Dataset: 255 images, 5 classes; large scale changes, clutter
training = half of positive images for a class

+ same number from the other classes (1/4 from each)
testing = allallallall other images



Results – ETH shape classes

Dataset: 255 images, 5 classes; large scale changes, clutter
training = half of positive images for a class

+ same number from the other classes (1/4 from each)
testing = allallallall other images

Missed



Generalizing PAS to kAS

kAS: any path of length k through the contour segment network

segment network 3AS 4ASsegment network 3AS 4AS

scale+translation invariant descriptor with dimensionality 4k-2
k = feature complexity; higher k more informative, but less repeatable

• overall mean det-rates (%)
1AS        PAS          3AS          4AS

0.3 FPPI      69           77             64              57
0.4 FPPI      76           82             70              64

PAS do best !



Overview

• Localization with shape-based descriptors

• Learning deformable shape models



Goal: localize boundaries of  class instancesGoal: localize boundaries of  class instances

Training data

Learning Learning deformabledeformable shapeshape modelsmodels fromfrom imagesimages

Training: bounding-boxes

Testing: object boundaries

Test image

[Ferrari, Jurie, Schmid, IJCV10]



Learn a shape model from training imagesLearn a shape model from training images

Training data

prototype shape deformation model

+



Match it to the test imageMatch it to the test image



Challenges for learningChallenges for learning

Main issue
which edgels belong
to the class boundaries ?

Complications
- intra-class variability

- missing edgels

- produce point correspondences  
(learn deformations)



Challenges for detectionChallenges for detection

- clutter

- intra-class variability

- scale changes

- clutter

- fragmented and 
incomplete contours



Local contour featuresLocal contour features

PAS
Pair of Adjacent Segments

+ robust
connect also across gaps

+ clean+ clean
descriptor encodes the
two segments only

+ invariant
to translation and scale

+ intermediate complexity
good compromise between
repeatability and informativity



Local contour featuresLocal contour features

PAS
Pair of Adjacent Segments

two PAS in correspondence
translation+scale transform
use in Hough-like schemesuse in Hough-like schemes

Clustering descriptors
codebook of PAS types
(here from mug bounding boxes)



Learning: overviewLearning: overview

find models parts assemble an initial shape refine the shape



Learning: finding model partsLearning: finding model parts

Intuition
PAS on class boundaries reoccur at 
similar locations/scales/shapes

Background and details specific to 
individual examples don’tindividual examples don’t



Learning: finding model partsLearning: finding model parts

Algorithm
1. align bounding-boxes up to 

translation/scale/aspect-ratio

2. create a separate voting space
per PAS type

3. soft-assign PAS to types 

4. PAS cast ‘existence’ votes in
corresponding spaces



Learning: finding model partsLearning: finding model parts

Algorithm
1. align bounding-boxes up to 

translation/scale/aspect-ratio

2. create a separate voting space
per PAS type

3. soft-assign PAS to types 

4. PAS cast ‘existence’ votes in
corresponding spaces

5. local maxima      model parts



Learning: finding model partsLearning: finding model parts

Model parts

- location + size (wrt canonical BB)

- shape (PAS type)

- strength (value of local maximum)



Learning: finding model partsLearning: finding model parts

Why does it work ?

Unlikely unrelated PAS have similar 
location andsize andshape

form no peaks !

Important properties
+ see all training data at once

+ linear complexity

robust

efficient large-scale learning



Learning: assembling an initial shapeLearning: assembling an initial shape

Not a shape yet

- multiple strokes

- adjacent parts don’t fit together

Why ?Why ?
- parts are learnt independently

Let’s try to assemble parts 
into a proper whole

We want single-stroked, 
long continuous lines !

best occurrence for each part



Learning: assembling an initial shapeLearning: assembling an initial shape

all occurrences in a few training images

Observation
each part has several occurrences

can assemble shape variations by selecting different occurrences

Idea
select occurrences so as to form larger connected aggregates



Learning: assembling an initial shapeLearning: assembling an initial shape

Hey, this starts to look like a mug !

+ segments fit well within a block

+ most redundant strokes are gone

Can we do better ?

- discontinuities between blocks ?

- generic-looking ?



Learning: shape refinementLearning: shape refinement

Idea

treat shape as deformable point set

and match it backonto training images

How ?How ?
- robust non-rigid point matcher: TPS-RPM
(thin plat spline – robust point matching)

- strong initialization:
align model shape BB over training BB

likely to succeed

Chui and Rangarajan, A new point matching algorithm for non-rigid registration, CVIU 2003



Learning: shape refinementLearning: shape refinement

Shape refinement algorithm

1. Match current model shape back
to every training image

backmatched shapes are in full
point-to-point correspondence !

2. set model to mean shape

3. remove redundant points

4. if changed          iterate to 1



Learning: shape refinementLearning: shape refinement

Final model shape

+ clean (almost only class boundaries)

+ generic-looking

+ smooth, connected lines

+ generic-looking

+ fine-scale structures recovered 
(handle arcs)

+ accurate point correspondences
spanning training images



Learning: shape deformationsLearning: shape deformations

From backmatching
intra-class variation examples,
in complete correspondence

Apply Cootes’ technique
1. shapes = vectors in 2p-D space1. shapes = vectors in 2p-D space
2. apply PCA

Deformation model
. top n eigenvectors covering 95% of variance
. associated eigenvalues       (act as bounds)

valid regionof shape space

Tim Cootes, An introduction to Active Shape Models, 2000

= mean shape



Learning completed !Learning completed !

Automatic learning of
shapes, correspondences, and deformations

from unsegmented images



Object detection: overviewObject detection: overview
Goal
given a test image, localize class 
instances up to their boundaries

?
How ?
1. Hough voting over PAS matches

rough location+scale estimates? rough location+scale estimates

2. use to initialize TPS-RPM

combination enables true pointwise 
shape matching to cluttered images

3. constrain TPS-RPM with
learnt deformation model

better accuracy



Object detection: Hough votingObject detection: Hough voting

Algorithm

1. soft-match model parts to test PAS

2. each match
translation + scale change
vote in accumulator space

3. local maxima
rough estimates of object candidates

Leibe and Schiele, DAGM 2004;    Shotton et al, ICCV 2005;    Opelt et al. ECCV 2006



Object detection: Hough votingObject detection: Hough voting

Algorithm

1. soft-match model parts to test PAS

2. each match
translation + scale change
vote in accumulator space

3. local maxima
rough estimates of object candidates

Leibe and Schiele, DAGM 2004;    Shotton et al, ICCV 2005;    Opelt et al. ECCV 2006

initializations for shape matching !



Object detection: Hough votingObject detection: Hough voting

Remember … soft !

- vote       shape similarity

- vote       edge strength of test PAS

- spread vote to neighboring

- vote       strength of model part

- spread vote to neighboring
location and scale bins



Object detection: shape matching by TPSObject detection: shape matching by TPS--RPMRPM
Initialize
get point sets V (model)  and X (edge points) 

X

V
Goal
find correspondences M & 
non-rigid TPS mapping

M = (|X|+1)x(|V|+1) soft-assign matrix

Chui and Rangarajan, A new point matching algorithm for non-rigid registration, CVIU 2003

M = (|X|+1)x(|V|+1) soft-assign matrix

dist(TPS,X) + orient(TPS,X) + strength(X)

Algorithm
1. Update M based on

2. Update TPS:

- Y = MX
- fit regularized TPS to V     Y

Deterministic annealing:
iterate with T decreasing

M less fuzzy (looks closer)

TPS more deformable



TPSTPS--RPM in action !RPM in action !



Object detection: constrained TPSObject detection: constrained TPS--RPMRPM

Output of TPS-RPM
nice, but sometimes inaccurate
or even not mug-like

Why ?
genericTPS deformation model
(prefers smoother transforms)

Constrained shape matching

constrain TPS-RPM by learnt
class-specificdeformation model

+ only shapes similar to class members

+ improve detection accuracy



Object detection: constrained TPSObject detection: constrained TPS--RPMRPM

General idea
constrain optimization to explore
only region of shape space spanned by
training examples

How to modify TPS-RPM ?

hard constraint,
sometimes too restrictive

1. Update M

2. Update TPS:

- Y = MX

- fit regularized TPS to V     Y

-



Object detection: constrained TPSObject detection: constrained TPS--RPMRPM

General idea
constrain optimization to explore
only region of shape space spanned by
training examples

Soft constraint variant

1. Update M

2. Update TPS:

- Y = MX

- fit regularized TPS to V     Y

-

soft constraint,
Y is attractedby the valid region



Soft constrained TPSSoft constrained TPS--RPM in action !RPM in action !



Object detection: constrained TPSObject detection: constrained TPS--RPMRPM

Soft constrained TPS-RPM

+ shapes fit data more accurately

+ shapes resemble class members

+ in spirit of deterministic annealing !

+ truly alters the search+ truly alters the search
(not fix a posteriori)

Does it really make a difference ?

when it does, it’s really noticeable
(about 1 in 4 cases)



Datasets: ETHZ Shape ClassesDatasets: ETHZ Shape Classes

• 255 images from Google-images, andFlickr
- uncontrolled conditions
- variety: indoor, outdoor, natural, man-made, …
- wide range of scales (factor 4 for swans, factor 6 for apple-logos )

• all parameters are kept fixed for all experiments

• training images: 5x random half of positive; test images: all non-train



Datasets: INRIA HorsesDatasets: INRIA Horses

• 170 horse images + 170 non-horse ones

- clutter, scale changes, various poses

• all parameters are kept fixed for all experiments
• training images: 5x random 50; test images: all non-train images



Results: all learned modelsResults: all learned models



Results: all learned modelsResults: all learned models



Results: all learned modelsResults: all learned models



Results: apple logosResults: apple logos



Results: mugsResults: mugs



Results: giraffesResults: giraffes



Results: bottlesResults: bottles



Results: swansResults: swans



Results: horsesResults: horses



accuracy: 3.0 accuracy: 2.4 accuracy: 1.5

accuracy: 3.1 accuracy: 3.5 accuracy: 5.4

Results: detectionResults: detection--rate vs falserate vs false--positives per imagepositives per image

full system (>20% 
intersection)

full system
(PASCAL:          >50%)

Hough alone
(PASCAL)

accuracy: 3.1 accuracy: 3.5 accuracy: 5.4



Results: HandResults: Hand--drawingsdrawings

Same protocol as Ferrari et al, ECCV 2006:
match each hand-drawing to all 255 test images



Ferrari, ECCV06

chamfer 
(with orientation planes)

chamfer 
(no orientation planes)

Results: detectionResults: detection--rate vs falserate vs false--positives per imagepositives per image

our approach

(no orientation planes)



ConclusionsConclusions

1. learning shape models from images

2. matching them to new cluttered images

+ detect object boundaries while needing only BBs for training

+ effective also with hand-drawings as models+ effective also with hand-drawings as models

+ deals with extensive clutter, shape variability, and large scale changes

- can’t learn highly deformable classes (e.g. jellyfish)

- model quality drops with very high training clutter/fragmentation (giraffes)


