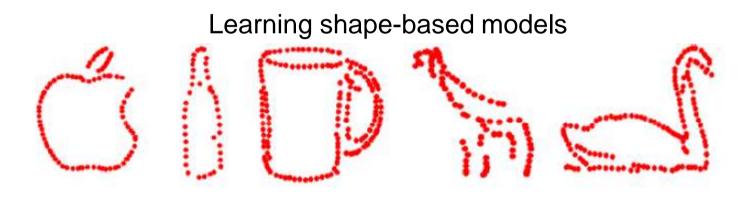
Category-level localization

Cordelia Schmid

Category-level localization

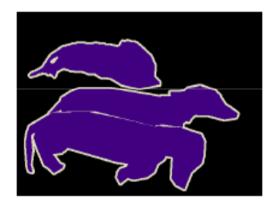
• Localization of object outlines



Localizing the objects with the learnt models

Category-level localization

- Localization of object pixels
 - Pixel-level classification, segmentation



Overview

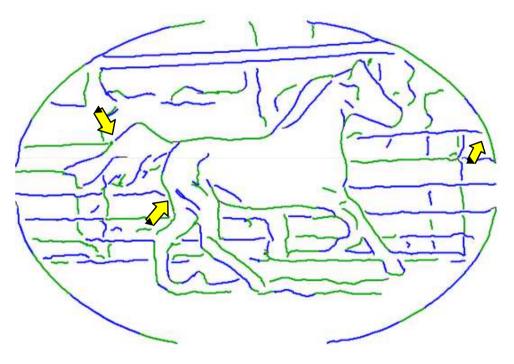
- Shape-based descriptors
- Learning deformable shape models

Shape-based features for localization

- Classes with characteristic shape
 - appearance, local patches are not adapted
 - shape-based descriptors are necessary

[Ferrari, Fevrier, Jurie & Schmid, PAMI'08]

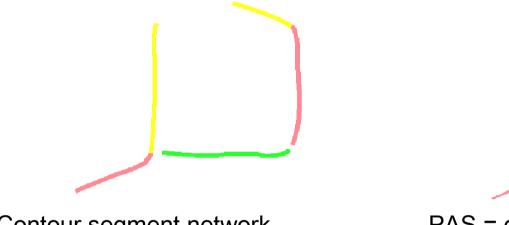
Pairs of adjacent segments (PAS)



Contour segment network [Ferrari et al. ECCV'06]

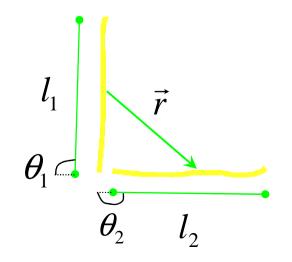
- 1. Edgels extracted with Berkeley boundary detector
- 2. Edgel-chains partitioned into straight contour segments
- Segments connected at edgel-chains' endpoints and junctions

Pairs of adjacent segments (PAS)



Contour segment network

PAS = groups of two connected segments



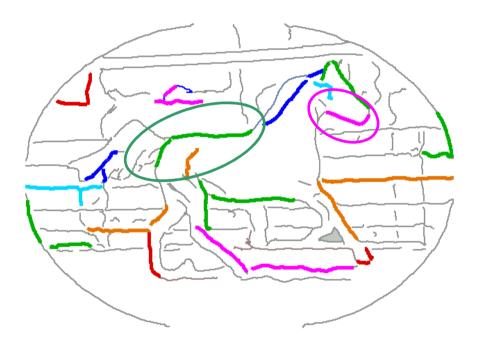
PAS descriptor:

$$\left(\frac{r_x}{\|\vec{r}\|}, \frac{r_y}{\|\vec{r}\|}, \theta_1, \theta_2, \frac{l_1}{\|\vec{r}\|}, \frac{l_2}{\|\vec{r}\|}\right)$$

encodes *geometric* properties of the PAS scale and translation invariant compact, 5D

Features: pairs of adjacent segments (PAS)

Example PAS



Why PAS?

+ can cover pure portions of the object boundary

+ intermediate complexity: good repeatabilityinformativeness trade-off

+ scale-translation invariant

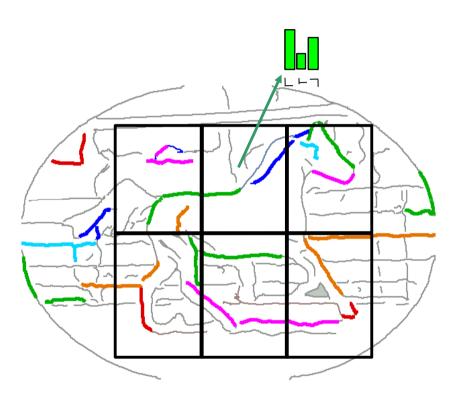
+ connected: natural grouping criterion (need not choose a grouping neighborhood or scale)

PAS codebook

PAS descriptors are clustered into a vocabulary

- Frequently occurring PAS have intuitive, natural shapes
- As we add images, number of PAS types converges to just ~100
- Very similar codebooks come out, regardless of source images
- \rightarrow general, simple features

Window descriptor



- 1. Subdivide window into tiles
- 2. Compute a separate bag of PAS per tile
- 3. Concatenate these semi-local bags
- + distinctive:

records *which* PAS appear *where* weight PAS by average edge strength

+ flexible:

soft-assign PAS to types, coarse tiling

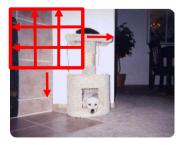
+ fast:

computation with Integral Histograms

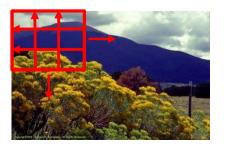
Training

- 1. Learn mean positive window dimensions $M_{W} \times M_{h}$
- 2. Determine number of tiles T
- 3. Collect positive example descriptors

- 4. Collect negative example descriptors:
 - slide $M_{w} \times M_{h}$ window over negative training images



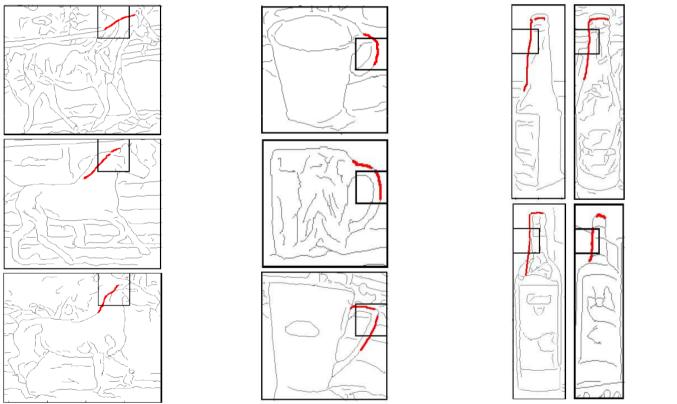




Training

5. Train a linear SVM from positive and negative window descriptors

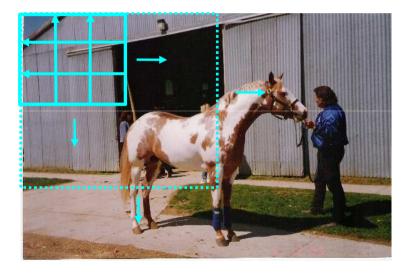
A few of the highest weighed descriptor vector dimensions (= 'PAS + tile')



+ lie on object boundary (= local shape structures common to many training exemplars)

Testing

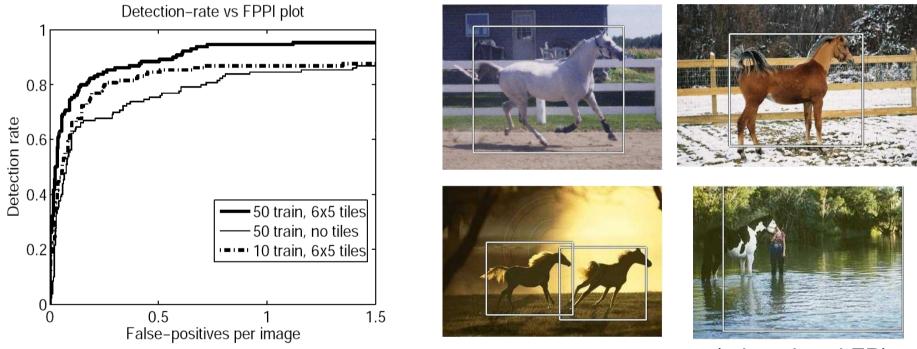
1. Slide window of aspect ratio M_{W}/M_{h} at multiple scales



- 2. SVM classify each window + non-maxima suppression
- \rightarrow detections

Experimental results – INRIA horses

Dataset: 170 positive + 170 negative images (training = 50 pos + 50 neg) wide range of scales; clutter



(missed and FP)

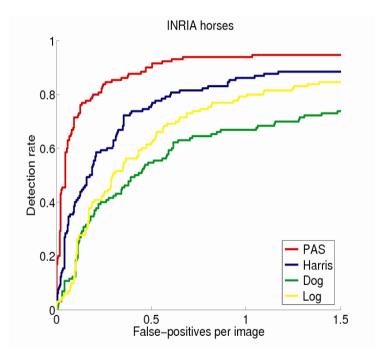
+ tiling brings a substantial improvement

optimum at T=30 \rightarrow used for all other experiments

+ works well: 86% det-rate at 0.3 FPPI (50 pos + 50 neg training images)

Experimental results – INRIA horses

Dataset: 170 positive + 170 negative images (training = 50 pos + 50 neg) wide range of scales; clutter



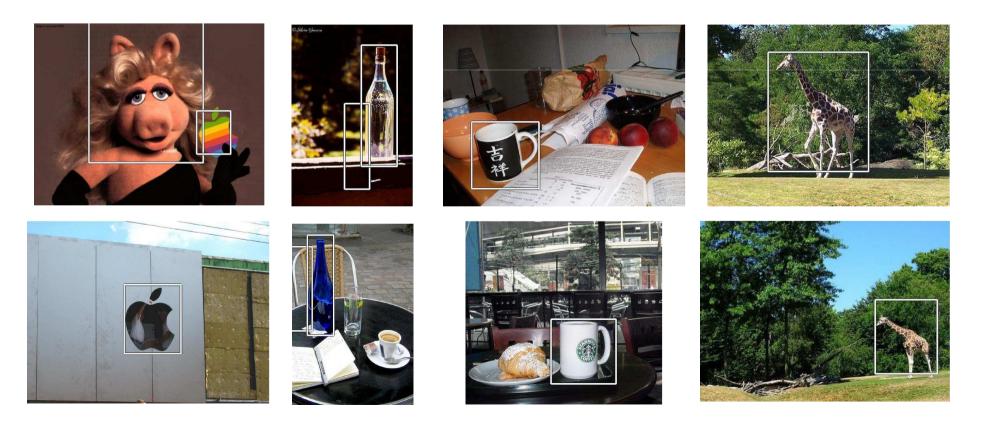
+ PAS better than any interest point detector

- all interest point (IP) comparisons with T=10, and 120 feature types (= optimum over INRIA horses, and ETHZ Shape Classes)

- IP codebooks are class-specific

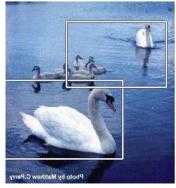
Results – ETH shape classes

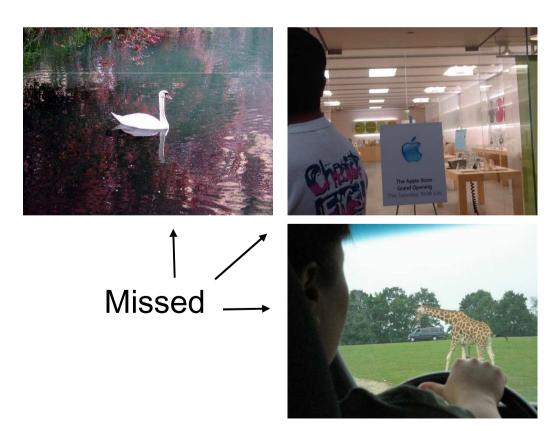
Dataset: 255 images, 5 classes; large scale changes, clutter training = half of positive images for a class + same number from the other classes (1/4 from each) testing = all other images



Results – ETH shape classes

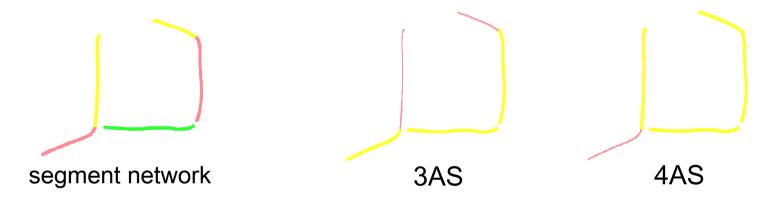
Dataset: 255 images, 5 classes; large scale changes, clutter training = half of positive images for a class + same number from the other classes (1/4 from each) testing = all other images





Generalizing PAS to kAS

*k*AS: any path of length *k* through the contour segment network



scale+translation invariant descriptor with dimensionality 4*k*-2

k = feature complexity; higher *k* more informative, but less repeatable

overall mean det-rates (%)

	1AS	PAS	3AS	4AS	PAS do best !
0.3 FPPI	69	77	64	57	FAS UU DESI
0.4 FPPI	76	82	70	64	

Overview

- Localization with shape-based descriptors
- Learning deformable shape models

Learning deformable shape models from images

Training data

Goal: localize boundaries of class instances

Test image

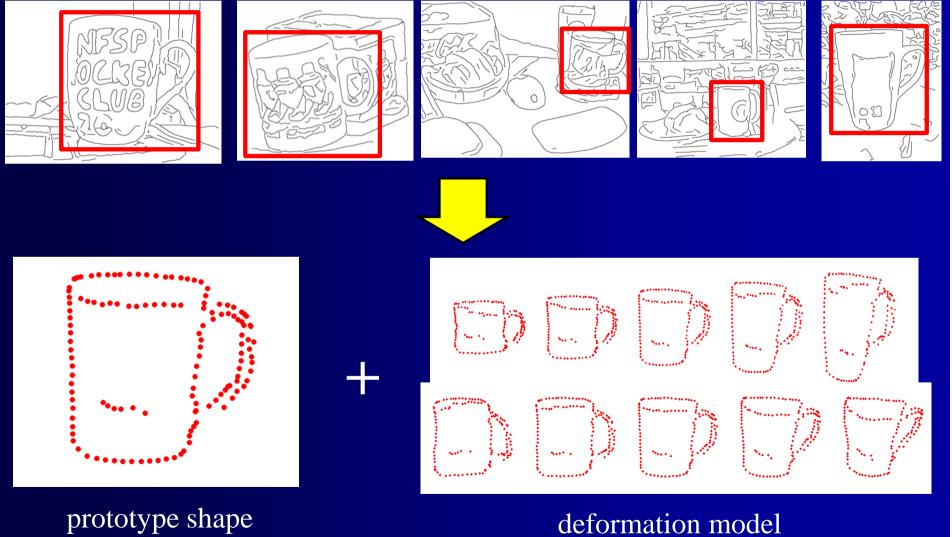
Training: *bounding-boxes*

Testing: *object boundaries*

[Ferrari, Jurie, Schmid, IJCV10]

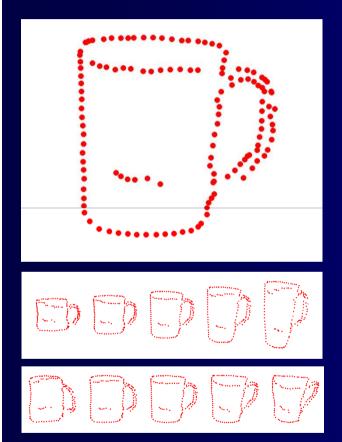
Learn a shape model from training images

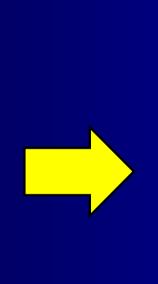
Training data

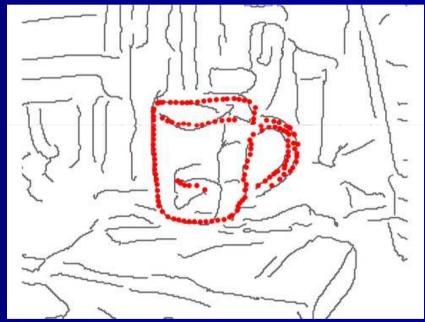


prototype shape

Match it to the test image







Challenges for learning

Main issue

which edgels belong to the class boundaries ?

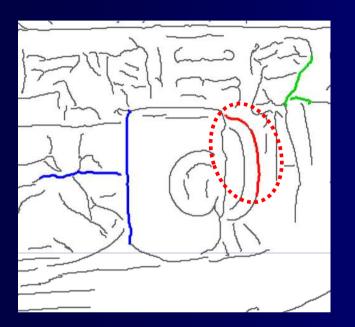
Complications

- intra-class variability
- missing edgels
- produce point correspondences (learn deformations)

Challenges for detection

- scale changes
- intra-class variability
- clutter
- fragmented and incomplete contours

Local contour features



PAS Pair of Adjacent Segments

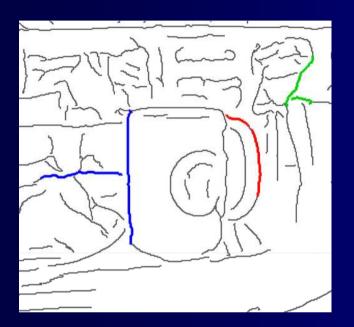
+ *robust* connect also across gaps

+ *clean* descriptor encodes the two segments *only*

+ *invariant* to translation and scale

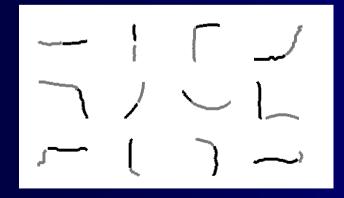
 + intermediate complexity good compromise between repeatability and informativity

Local contour features



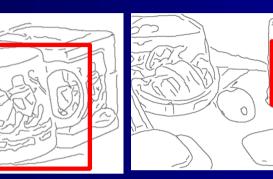
PAS Pair of Adjacent Segments

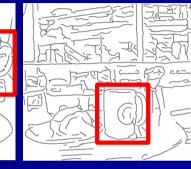
two PAS in correspondence
→ translation+scale transform
→ use in Hough-like schemes

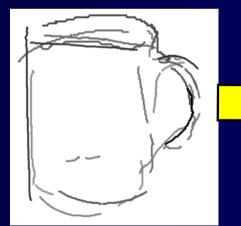


Clustering descriptors → codebook of *PAS types* (here from mug bounding boxes)

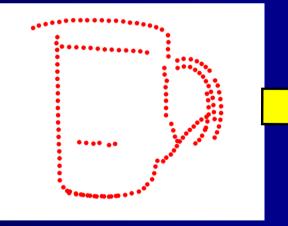
Learning: overview





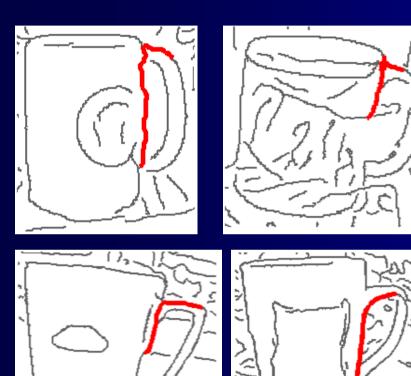


find models parts



assemble an initial shape

refine the shape

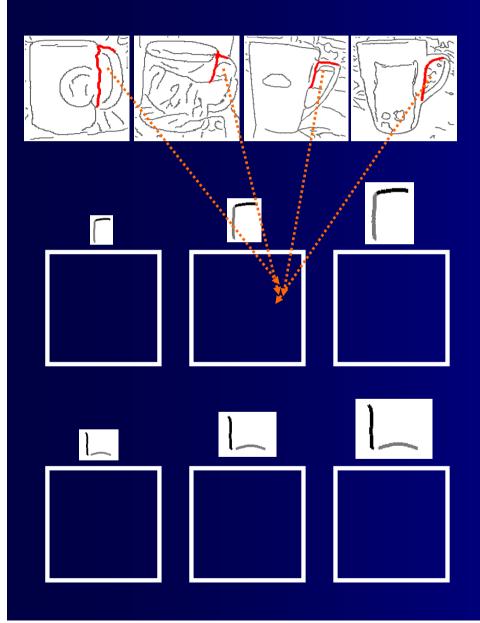


8

Intuition

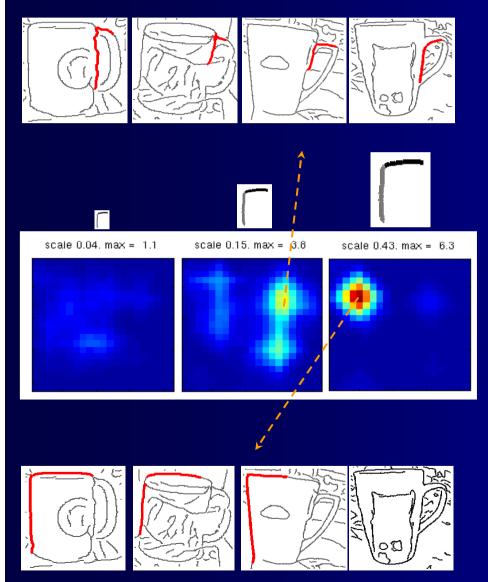
PAS on class boundaries reoccur at similar locations/scales/shapes

Background and details specific to individual examples don't



Algorithm

- 1. align bounding-boxes up to translation/scale/aspect-ratio
- 2. create a separate voting space per PAS type
- 3. soft-assign PAS to types
- 4. PAS cast 'existence' votes in corresponding spaces



Algorithm

- 1. align bounding-boxes up to translation/scale/aspect-ratio
- 2. create a separate voting space per PAS type
- 3. soft-assign PAS to types
- 4. PAS cast 'existence' votes in corresponding spaces
- 5. local maxima \rightarrow model parts

Model parts

- location + size (wrt canonical BB)
- shape (PAS type)
- strength (value of local maximum)

Why does it work?

Unlikely unrelated PAS have similar location *and* size *and* shape

 \rightarrow form no peaks !

Important properties

+ see all training data at once

 \rightarrow robust

- + linear complexity
- \rightarrow efficient large-scale learning

Learning: assembling an initial shape

best occurrence for each part

Not a shape yet

- multiple strokes
- adjacent parts don't fit together

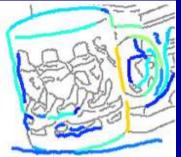
Why?

- parts are learnt *independently*

Let's try to assemble parts into a proper whole

We want single-stroked, long continuous lines !

Learning: assembling an initial shape



all occurrences in a few training images

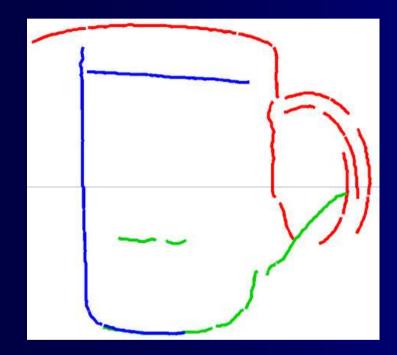
Observation

each part has several occurrences

Idea

select occurrences so as to form larger connected aggregates

Learning: assembling an initial shape

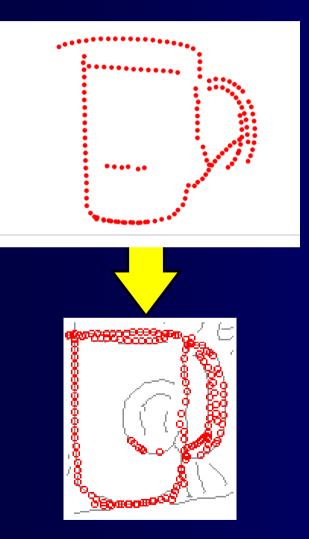


Hey, this starts to look like a mug !
+ segments fit well within a block
+ most redundant strokes are gone

Can we do better ?

- discontinuities between blocks ?
- generic-looking ?

Learning: shape refinement



Idea

treat shape as deformable point setand *match it back* onto training images

How?

- robust non-rigid point matcher: TPS-RPM (thin plat spline robust point matching)
- strong initialization:
 - align model shape BB over training BB
 - \rightarrow likely to succeed

Chui and Rangarajan, A new point matching algorithm for non-rigid registration, CVIU 2003

Learning: shape refinement



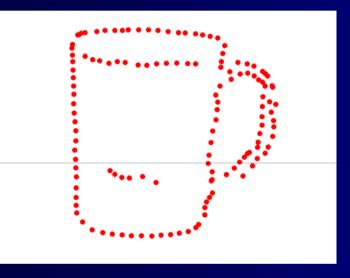
Shape refinement algorithm

1. Match current model shape back to every training image

backmatched shapes are in full point-to-point correspondence !

- 2. set model to mean shape
- 3. remove redundant points
- 4. if changed \rightarrow iterate to 1

Learning: shape refinement

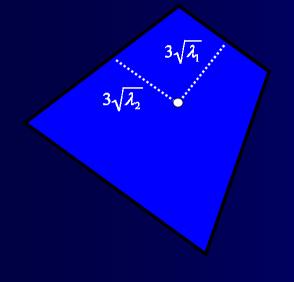


Final model shape

- + clean (almost only class boundaries)
- + smooth, connected lines
- + generic-looking
- + fine-scale structures recovered (handle arcs)
- + accurate point correspondences spanning training images

Learning: shape deformations

From backmatching intra-class variation examples, in complete correspondence



• = mean shape

Apply Cootes' technique 1. shapes = vectors in 2p-D space 2. apply PCA

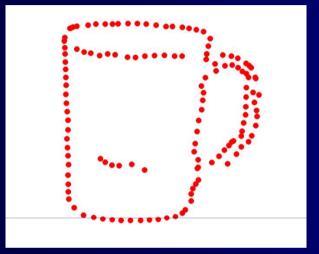
Deformation model

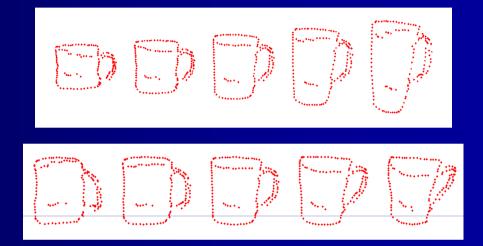
. top *n* eigenvectors covering 95% of variance . associated eigenvalues λ_i (act as bounds)

 \rightarrow valid region of shape space

Tim Cootes, An introduction to Active Shape Models, 2000

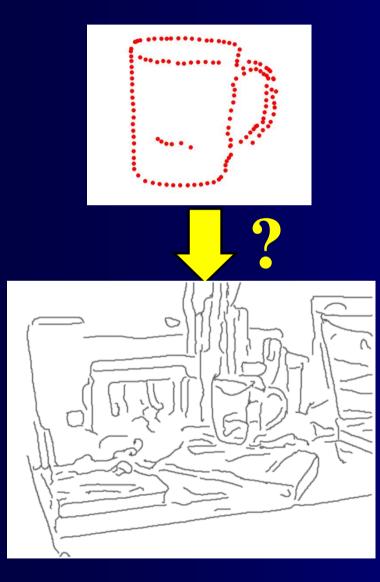
Learning completed !





Automatic learning of shapes, correspondences, and deformations from unsegmented images

Object detection: overview



Goal

given a test image, localize class instances up to their boundaries

How ?

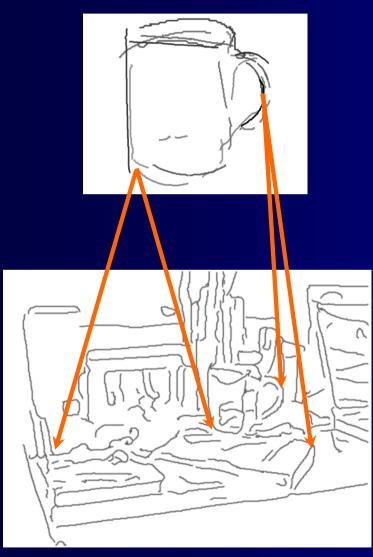
1. Hough voting over PAS matches \rightarrow rough location+scale estimates

2. use to initialize TPS-RPM

combination enables true pointwise shape matching to cluttered images

- 3. constrain TPS-RPM with learnt deformation model
 - \rightarrow better accuracy

Object detection: Hough voting



Algorithm

- 1. soft-match model parts to test PAS
- 2. each match
 - \rightarrow translation + scale change
 - \rightarrow vote in accumulator space
- 3. local maxima
 → rough estimates of object candidates

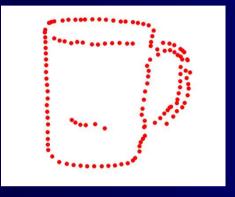
Object detection: Hough voting

Algorithm

- 1. soft-match model parts to test PAS
- 2. each match
 - \rightarrow translation + scale change
 - \rightarrow vote in accumulator space
- 3. local maxima
 → rough estimates of object candidates

initializations for shape matching !

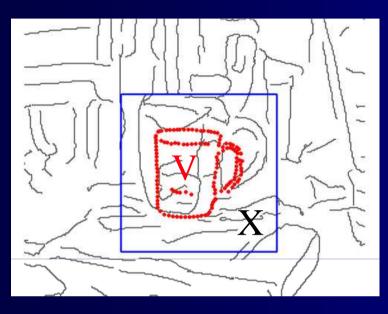
Object detection: Hough voting



Remember ... soft !

- vote ∞ shape similarity
- vote oc edge strength of test PAS
- vote oc strength of model part
- spread vote to neighboring location and scale bins

Object detection: shape matching by TPS-RPM



Deterministic annealing: iterate with T decreasing → M less fuzzy (looks closer) → TPS more deformable *Initialize* get point sets V (model) and X (edge points)

Goal find correspondences M & non-rigid TPS mapping

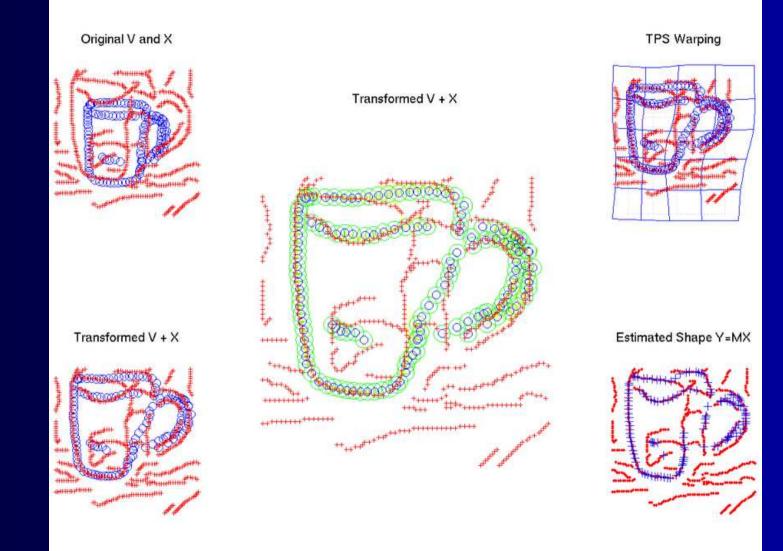
M = (|X|+1)x(|V|+1) soft-assign matrix

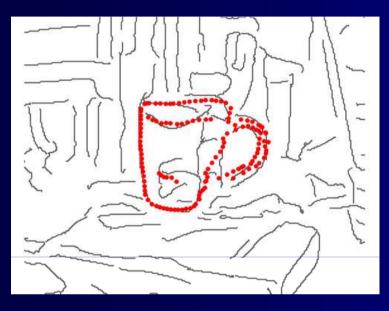
Algorithm
1. Update M based on
dist(TPS,X) + orient(TPS,X) + strength(X)
2. Update TPS:
 - Y = MX

- fit regularized TPS to $V \longrightarrow Y$

Chui and Rangarajan, A new point matching algorithm for non-rigid registration, CVIU 2003

TPS-RPM in action !





Output of TPS-RPM nice, but sometimes inaccurate or even not mug-like

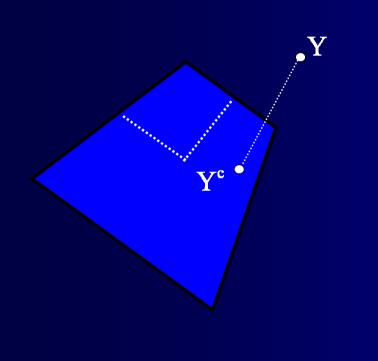
Why ? generic TPS deformation model (prefers smoother transforms)

Constrained shape matching

constrain TPS-RPM by learnt *class-specific* deformation model

+ only shapes similar to class members

+ improve detection accuracy



General idea

constrain optimization to explore only region of shape space spanned by training examples

How to modify TPS-RPM ?

- fit regularized TPS to $V \leftrightarrow Y$

1. Update M

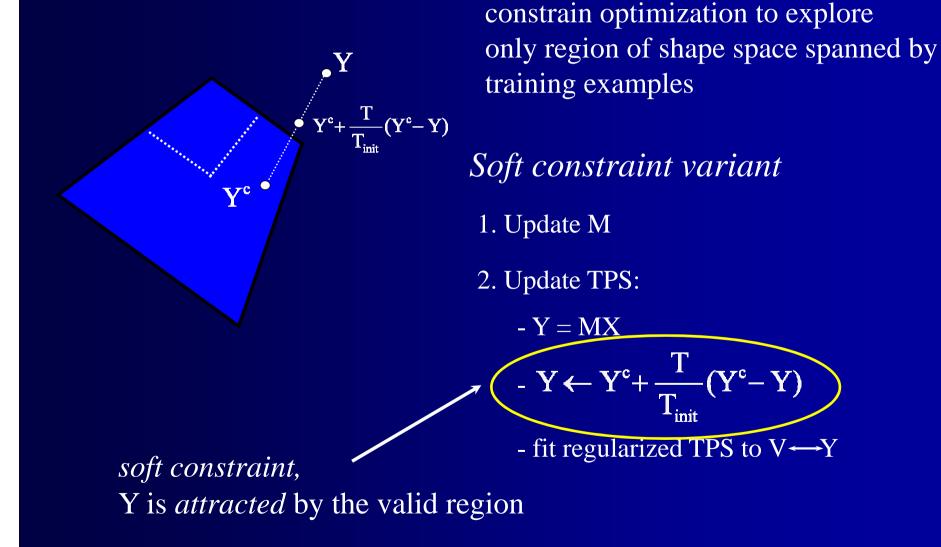
2. Update TPS:

 $-\mathbf{Y} = \mathbf{M}\mathbf{X}$

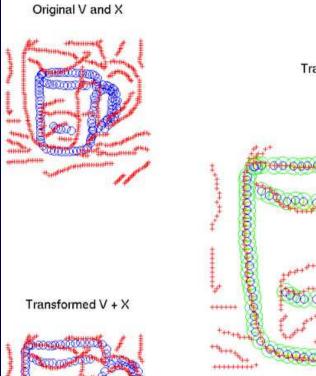
hard constraint, sometimes too restrictive

General idea

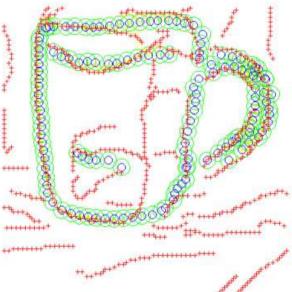
 $(\mathbf{Y}^{c}-\mathbf{Y})$



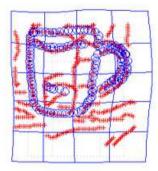
Soft constrained TPS-RPM in action !



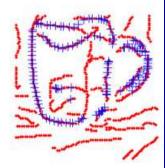
Transformed V + X



TPS Warping



Estimated Shape Y=MX





Soft constrained TPS-RPM

- + shapes fit data more accurately
- + shapes resemble class members
- + in spirit of deterministic annealing !
- + truly alters the search (not fix a posteriori)

Does it really make a difference ?

when it does, it's really noticeable (about 1 in 4 cases)

Datasets: ETHZ Shape Classes

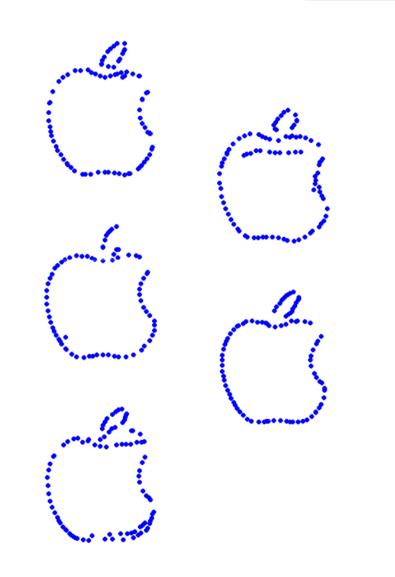
• 255 images from Google-images, and Flickr

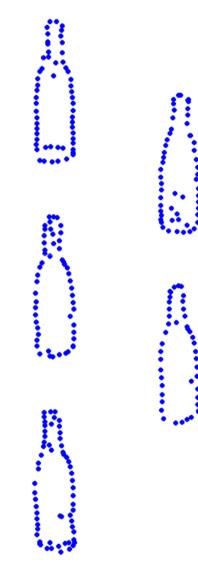
- uncontrolled conditions
- variety: indoor, outdoor, natural, man-made, ...
- wide range of scales (factor 4 for swans, factor 6 for apple-logos)
- all parameters are kept fixed for all experiments
- training images: 5x random half of positive; test images: *all* non-train

Datasets: INRIA Horses

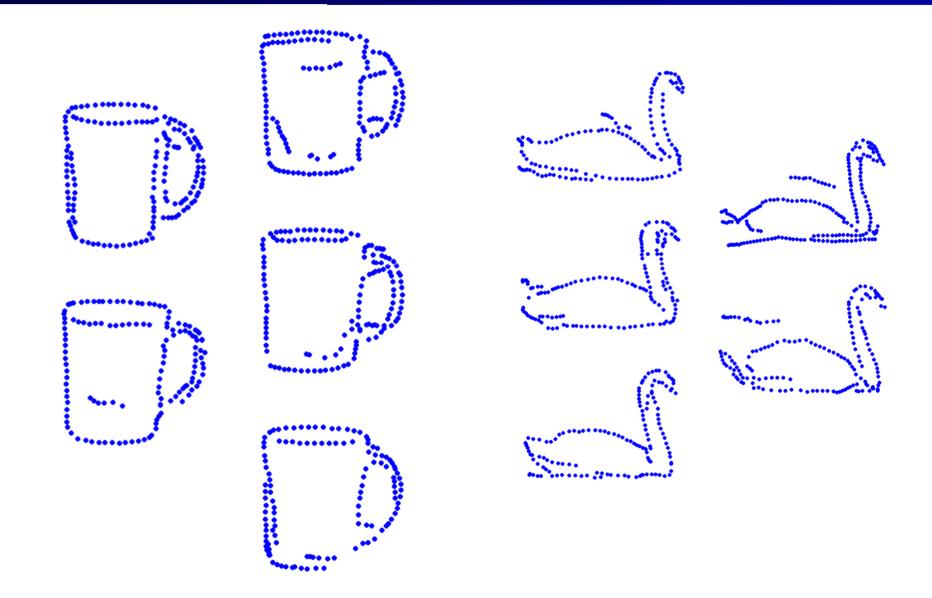
- 170 horse images + 170 non-horse ones
 - clutter, scale changes, various poses
- all parameters are kept fixed for all experiments
- training images: 5x random 50; test images: all non-train images

Results: all learned models

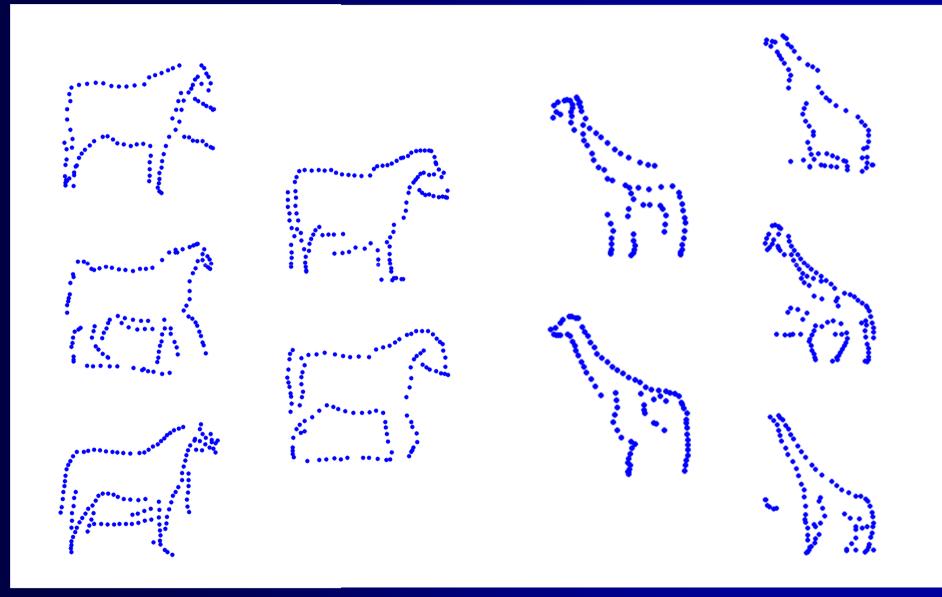




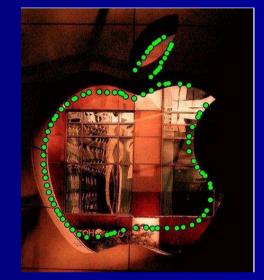
Results: all learned models



Results: all learned models



Results: apple logos



Results: mugs

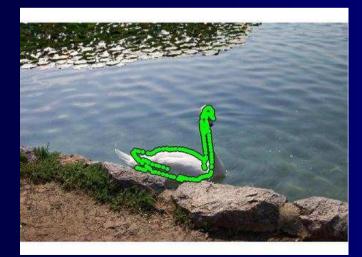
Results: giraffes



Results: bottles

Results: swans





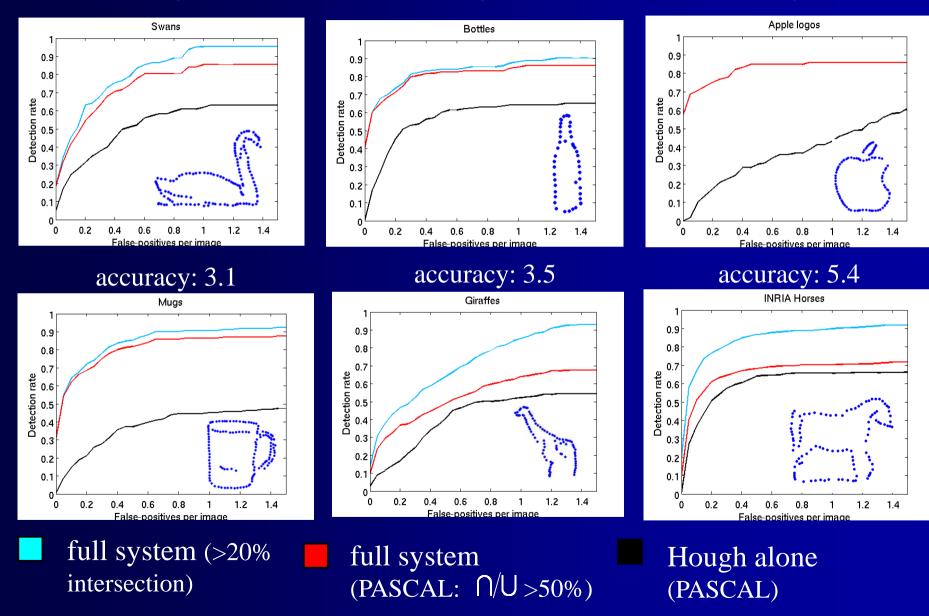
Results: horses

Results: detection-rate vs false-positives per image

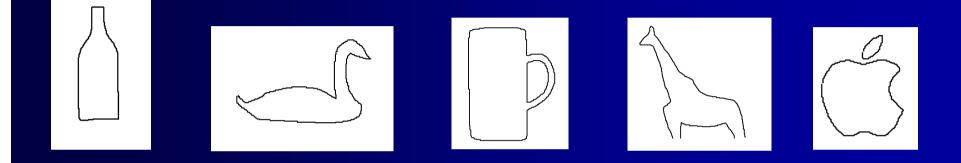
accuracy: 3.0

accuracy: 2.4

accuracy: 1.5



Results: Hand-drawings



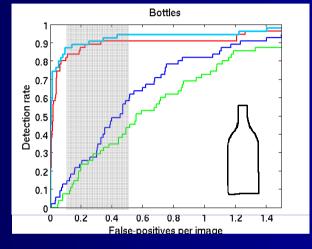
Same protocol as Ferrari et al, ECCV 2006: match each hand-drawing to all 255 test images

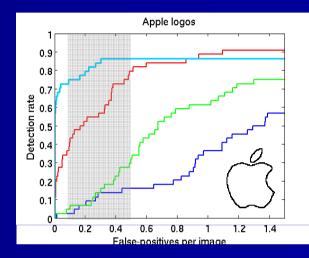
Results: detection-rate vs false-positives per image

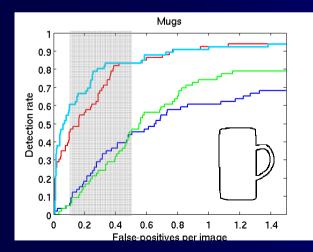
our approach

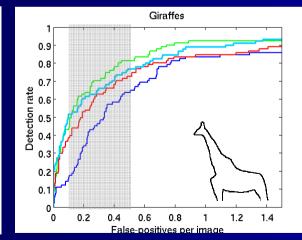
- Ferrari, ECCV06
- chamfer (with orientation planes)

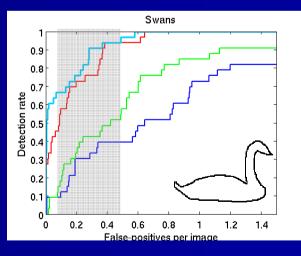
chamfer (no orientation planes)











Conclusions

- 1. learning shape models from images
 2. matching them to new cluttered images
- + detect object boundaries while needing only BBs for training
 + effective also with hand-drawings as models
 + deals with extensive clutter, shape variability, and large scale changes
- can't learn highly deformable classes (e.g. jellyfish)
- model quality drops with very high training clutter/fragmentation (giraffes)