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Announcements

• Assignment 3 is due to next week• Assignment 3 is due to next week
http://www.di.ens.fr/willow/teaching/recvis11/assignment3/

• Final project proposals were due to last week. 
http://www di ens fr/willow/teaching/recvis11/finalproject/http://www.di.ens.fr/willow/teaching/recvis11/finalproject/

• See what reports we have received from you here:• See what reports we have received from you here:
https://docs.google.com/spreadsheet/pub?key=0Aso5oi2c4U
B5dGVXXzFIRWZoZ24wNzNuQll5c3FsNXc&output=htmlp
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LIU Zhe liu.zhe.imagine@gmail.com R No project - PhD No project - PhD No project - PhD

MOULLET Simon simon moullet@gmail com R R In DiscussionMOULLET Simon simon.moullet@gmail.com R R In Discussion

NADAL Pierre-Adrien panadal@gmail.com R R In Discussion

POULENARD Raphael raphael.poulenard@free.fr (R) In Discussion
RAIS Martin martus@gmail.com R R R
ROYER Martin martin.royer@m4x.org VL R Ry @ g

SANCHEZ-PEREZ Andres andres.sanchez-perez@polytechnique.edu R R R
SCAMAN Kevin kevin.scaman@polytechnique.edu R R R
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SUZANO-MASSA Francisco Vitor francisco-vitor.suzano-massa@polytechnique.edu R R R R

THOMAS Francois-Xavier fx.thomas@gmail.com R R In Discussion
VAROQUAUX Nelle nelle.varoquaux@gmail.com R R R
ZHANG Shun tobbyzh@gmail.com VL R



What we would like to be able to do…
• Visual scene understanding
• What is in the image and where• What is in the image and where

Plant
Gate

Dog 2: Sitting on Motorbike

Dog 1: Terrier
Wall

Motorbike: Suzuki GSX 750

Ground: Gravel
Person: John Smith, holding Dog 2

Motorbike: Suzuki GSX 750

O• Object categories, identities, properties, activities, relations, …



Recognition Tasks
• Image Classification

Does the image contain an aeroplane?– Does the image contain an aeroplane?

• Object Class Detection/Localization
– Where are the aeroplanes (if any)?

• Object Class Segmentationj S g
– Which pixels are part of an aeroplane 

(if any)?( y)



Feature:  Histogram of Oriented 
Gradients (HOG)Gradients (HOG)

image
dominant 
direction HOG

en
cy

• tile 64 x 128 pixel window into 8 x 8 pixel cells

fre
qu

e

orientation

tile 64 x 128 pixel window into 8 x 8 pixel cells

• each cell represented by histogram over 8 
orientation bins  (i.e. angles in range 0-180 degrees) orientation



Window (Image) Classification

Training Data

Feature 



Classifier
Extraction





• HOG Features pedestrian/Non-pedestrian

• Linear SVM classifier



Why does HOG + SVM work so well?
• Similar to SIFT, records spatial arrangement of histogram orientations
• Compare to learning only edges:

– Complex junctions can be represented– Complex junctions can be represented
– Avoids problem of early thresholding
– Represents also soft internal gradientsg

• Older methods based on edges have become largely obsolete

• HOG gives fixed length vector for window, 
suitable for feature vector for SVM



Chamfer Matching
Input Edges Template • Match points between template 

and image

• Measure mean distance

• Template edgel matches nearest
image edgel

Distance
• Distance transform reduces min operation 

to array lookupDistance 
Transform

to array lookup

• Computable in linear time

Best

• Localize by sliding window search

[Gavrila & Philomin, 1999]
match



Chamfer Matching

Hierarchy of Templates Detections

• In practice performs poorly in clutter
• Unoriented edges are not discriminative enoughg g

(too easy to find…)
[Gavrila & Philomin, 1999]



Biologic perspective

• The function of the brain mostly remains 
unknown, however, the structure of the 
primary visual cortex (also known as V1) 
is quite well understood.q

• V1 is organized in orientation- and 
location-sensitive “columns”.
Wh li ti l i t ti ? Ed• Why sampling spatial orientation? Edge 
directions can be inferred from only two 
measurements   (dI/dx, dI/dy).

• Averaging responses for particular 
orientation in a local spatial 
neighborhood would be similar to aneighborhood would be similar to a 
particular bin of the HOG/SIFT 
histogram vectors!

Orientation columns in the visual cortex of the 
monkey. (Illustration from Gary Blasdel.)



Training a sliding window detector
• Object detection is inherently asymmetric: much more

“non-object” than “object” datanon object  than object  data

• Classifier needs to have very low false positive rate
• Non-object category is very complex – need lots of data• Non-object category is very complex – need lots of data



Bootstrapping

1. Pick negative training 
set at randomset at random

2. Train classifier
3 Run on training data3. Run on training data
4. Add false positives to 

training settraining set
5. Repeat from 2

• Collect a finite but diverse set of non-object windows
• Force classifier to concentrate on hard negative examples

For some classifiers can ensure equivalence to training on• For some classifiers can ensure equivalence to training on 
entire data set



Example: train an upper body detector
– Training data – used for training and validation sets

33 Hollywood2 training movies• 33 Hollywood2 training movies
• 1122 frames with upper bodies marked

– First stage training (bootstrapping)
• 1607 upper body annotations jittered to 32k positive samples
• 55k negatives sampled from the same set of frames• 55k negatives sampled from the same set of frames

– Second stage training (retraining)
• 150k hard negatives found in the training data



Training data positive annotationsTraining data – positive annotations



Positive windows

Note: common size and alignment



Jittered positives



Jittered positives



Random negatives



Random negatives



Window (Image) first stage classification

HOG Feature  Linear SVMJittered positives HOG Feature
Extraction






Classifier
Jittered positives 

random negatives f(x)  wT x  b
xx

• find high scoring false positives detectionsfind high scoring  false positives detections

• these are the hard negatives for the next round of training• these are the hard negatives for the next round of training

cost = # training images x inference on each image• cost = # training images x inference on each image



Hard negatives



Hard negatives



First stage performance on validation set



Precision – Recall curve
returned 
windows

correct 
windows windowswindows

• Precision: % of returned windows that 
are correctare correct

• Recall: % of correct windows that are

1 all windows

• Recall: % of correct windows that are 
returned
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First stage performance on validation set



Performance after retrainingg



Effects of retrainingg



Side by side

before retraining after retraining



Side by side

before retraining after retrainingbefore retraining after retraining



Side by side
before retraining after retraining



Tracked upper  body detectionspp y



Tracked upper body person 
detectionsdetections

Combined face, upper body and full body detectors “vote” for 
upper body bounding boxes.

Detections are tracked and smoothed over video.
[Lezama, MVA thesis 2010]



Accelerating Sliding Window Search
• Sliding window search is slow because so many windows are 

needed e g x × y × scale ≈ 100 000 for a 320×240 imageneeded e.g. x × y × scale 100,000 for a 320×240 image

• Most windows are clearly not the object class of interest

• Can we speed up the search?



Cascaded Classification
• Build a sequence of classifiers with increasing complexity

More complex, slower, lower false positive rate

Classifier
N

FaceClassifier
2

Classifier
1

Possibly a 
face

Possibly a 
faceN21

Window

face face

Non-faceNon-faceNon-face

• Reject easy non-objects using simpler and faster classifiers



Cascaded Classification

• Slow expensive classifiers only applied to a few windows 
significant speed-up

• Controlling classifier complexity/speed:Controlling classifier complexity/speed:
– Number of support vectors [Romdhani et al, 2001]
– Number of features [Viola & Jones, 2001]
– Type of SVM kernel [Vedaldi et al, 2009]



Summary: Sliding Window Detection
• Can convert any image classifier into an 

object detector by sliding window Efficientobject detector by sliding window. Efficient 
search methods available.

• Requirements for invariance are reduced by 
hi t l ti d lsearching over e.g. translation and scale

S ti l d b• Spatial correspondence can be 
“engineered in” by spatial tiling



Outline

S1. Sliding window detectors

2. Features and adding spatial informationg p

3. HOG + linear SVM classifier

4. Two state of the art algorithms and PASCAL VOC
• VOC challenge

• Felzenswalb et al – multiple parts, latent SVM

5 The future and challenges5. The future and challenges



The PASCAL Visual Object ClassesThe PASCAL Visual Object Classes 
(VOC) Dataset and Challenge

Mark Everingham
Luc Van Gool
Chris Williams

John Winn
Andrew ZissermanAndrew Zisserman



The PASCAL VOC Challenge

• Challenge in visual object
recognition funded byrecognition funded by
PASCAL network of
excellence

• Publicly available dataset of
annotated imagesannotated images

• Main competitions in classification (is there an X in this 
i ) d i ( h h X’ ) d iimage), detection (where are the X’s), and segmentation 
(which pixels belong to X)

• “Taster competitions” in 2-D human “pose estimation” (2007-
present) and static action classes

• Standard evaluation protocol (software supplied)



Dataset Content

• 20 classes: aeroplane, bicycle, boat, bottle, bus, car, cat, 
chair, cow, dining table, dog, horse, motorbike, person, 
potted plant, sheep, train, TV

• Real images downloaded from flickr, not filtered for “quality”

• Complex scenes, scale, pose, lighting, occlusion, ...



Annotation
• Complete annotation of all objects

• Annotated in one session with written guidelines

O l d d Diffi ltOccluded
Object is significantly 
occluded within BB

Difficult
Not scored in 
evaluation

Truncated
Object extends 
beyond BB

Pose
Facing left



Examples

Aeroplane Bicycle Bird Boat Bottle

Bus Car Cat Chair Cow



Examples

Dining Table Dog Horse Motorbike Person

Potted Plant Sheep Sofa Train TV/Monitorp /



Main Challenge Tasks

• Classification
I th d i thi i ?– Is there a dog in this image?

– Evaluation by precision/recall

• Detection
– Localize all the people (if any) in 

this image
/– Evaluation by precision/recall 

based on bounding box overlap



Detection: Evaluation of Bounding Boxes

• Area of Overlap (AO) Measure• Area of Overlap (AO) Measure
Ground truth Bgt

Bgt  Bp

Predicted Bp

> ThresholdDetection if
50%50%



















Detection

Wide variety of methods: sliding window, combination with whole 
image classifiers, segmentation based



Object Detection with Discriminatively Object Detection with Discriminatively 
Trained Part Based Models

Pedro F. Felzenszwalb, David Mcallester, 
Deva Ramanan, Ross Girshick

PAMI 2010

Matlab code available online:
http://www.cs.brown.edu/~pff/latent/



Approach

• Mixture of deformable part-based modelsMixture of deformable part-based models
– One component per “aspect” e.g. front/side view

• Each component has global template + deformable partsEach component has global template  deformable parts
• Discriminative training from bounding boxes alone



Example Model
• One component of person model

x1

x x

x3

x4

x6

x5

x2

root filters
coarse resolution

part filters
finer resolution

deformation
modelscoarse resolution finer resolution models



Starting Point: HOG Filter
p

Filter F

Score of F at position p is 
F φ(p H)F φ(p, H)

φ(p, H) = concatenation of 
HOG features from

HOG pyramid H
HOG features from 

subwindow specified by p

• Search: sliding window over position and scale
• Feature extraction: HOG DescriptorFeature extraction: HOG Descriptor
• Classifier: Linear SVM Dalal & Triggs [2005]



Object Hypothesis
• Position of root + each part
• Each part: HOG filter (at higher resolution)• Each part: HOG filter (at higher resolution)

p0 : location of root

z = (p0,..., pn)

p1,..., pn : location of parts

S i f filtScore is sum of filter 
scores minus 

deformation costs



Score of a Hypothesis
Appearance term Spatial prior

filters deformation parameters

displacements

concatenation of 
HOG features and

concatenation of filters 
and deformation HOG features and 

part displacement 
features

and deformation 
parameters

• Linear classifier applied to feature subset defined by hypothesis



Part Detection

input image
head filter

input image

Response of filter in l-th pyramid level

cross-correlation

Transformed response

max-convolution, computed in linear time
(spreading, local max, etc)(spreading, local max, etc)



System



Training
• Training data = images + bounding boxes
• Need to learn: model structure filters deformation costs• Need to learn: model structure, filters, deformation costs

Training



Latent SVM (MI-SVM)

Classifiers that score an example x usingp g

β are model parameters
z are latent values

• Which component?
• Where are the parts?

Training data

• Where are the parts?

We would like to find β such that:

Minimize “Hinge loss” on one training exampleRegularizer

SVM objective



Latent SVM Training

• Convex if we fix z for positive examples

• Optimization:
– Initialize β and iterate:

Alternation
β

• Pick best z for each positive example
• Optimize β with z fixed

Alternation 
strategy

p β

• Local minimum: needs good initializationg
– Parts initialized heuristically from root



Person Model

root filters
l ti

part filters
fi l ti

deformation
d lcoarse resolution finer resolution models

Handles partial occlusion/truncation



Car Model

root filters part filters deformationroot filters
coarse resolution

part filters
finer resolution

deformation
models



Car Detections

high scoring false positiveshigh scoring true positives



Person Detections

hi h i t iti
high scoring false positives 

high scoring true positives
g g p

(not enough overlap)



Precision/Recall: VOC2008 Person
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Precision/Recall: VOC2008 Bicycle
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Comparison of Models



Summary
• Multiple features and multiple kernels boost 

performance
Di i i ti l i f d l ith l t t• Discriminative learning of model with latent 
variables for single feature (HOG):

Latent variables can learn best alignment in the– Latent variables can learn best alignment in the 
ROI  training annotation

– Parts can be thought of as local SIFT vectors
– Some similarities to Implicit Shape 

Model/Constellation models but with 
discriminative/careful training throughoutdiscriminative/careful training throughout

NB: Code available for latent model !



Outline

1. Sliding window detectors

2 Features and adding spatial information2. Features and adding spatial information

3. HOG + linear SVM classifier

4. Two state of the art algorithms and PASCAL VOC

5. The future and challenges



Current  Research Challenges
• Context

– from scene properties: GIST, BoW, stuff 
– from other objects
– from geometry of scene, e.g.  Hoiem et al CVPR 06

• Occlusion/truncation
– Winn & Shotton, Layout Consistent Random Field, CVPR 06

V d ldi & Zi NIPS 09– Vedaldi & Zisserman, NIPS 09
– Yang et al, Layered Object Detection, CVPR 10

• 3D

S li th d f l• Scaling up – thousands of classes
– Torralba et al, Feature sharing
– ImageNetg

• Weak and noisy supervision



Pictorial structure model re-visited: 
ffi i t fittiefficient fitting

Let’s have a closer look at the LSVM deformable part-based model…



Object Hypothesis
• Position of root + each part
• Each part: HOG filter (at higher resolution)• Each part: HOG filter (at higher resolution)

p0 : location of root

z = (p0,..., pn)

p1,..., pn : location of parts

S i f filtScore is sum of filter 
scores minus 

deformation costs



What is the cost of fitting the PS model?
• For fixed (learned) Fi and di

• For simplicity, consider only single scale of the pyramidp y, y g py
• Parts can appear anywhere in the image (h=number of pixels)

Appearance term Spatial prior

displacements

filters deformation parameters

p

p0 : location of root
p1,..., pn : location of parts

pi = (xi , yi ) 
dxi = xi – x0
dy = y ydyi = yi – y0

Fitting cost: Naïve search is O(nh2)



What is the cost of fitting the PS model?
• For fixed (learned) Fi and di

• For simplicity, consider only single scale of the pyramidp y, y g py
• Parts can appear anywhere in the image (h=number of pixels)

Appearance term Spatial prior

displacements

filters deformation parameters

p

Fitting cost: Naïve search is O(nh2)
Need to evaluate the deformation cost of each part with respect to 

th tthe root.

Can be done in O(nh) 



Special case of a more general problem
Appearance term Spatial prior

displacements

filters deformation parameters

displacements

Maximization of the PS score can be re-written as a minimization of 
the following cost function on a “star” graph:

6

g g p

1

32

1

4 5



Dynamic programming on graphs

² Graph ( V; E )

² Vert ices vi for i = 1; : : : ; n

² Edges ei j connect vi t o ot her vert ices vj

f ( x)
X

m ( v ) +
X

Á( v ; v )f ( x) =
vi 2 V

mi ( vi ) +
ei j 2 E

Á( vi ; vj )



Dynamic programming - review

• Discrete optimization• Discrete optimization

• Each variable x has a finite number of possible 
statesstates

• Applies to problems that can be decomposed into a 
sequence of stagessequence of stages

• Each stage expressed in terms of results of fixed 
number of previous stagesnumber of previous stages

• The cost function need not be convex

Th “d i ” i hi t i l• The name “dynamic” is historical

• Also called the “Viterbi” algorithm

• Let’s first consider a chain:
54 61 2 3



Consider a cost function                                      of the form f ( x) : IRn ! IR
nX nX

f ( x) =
nX

i= 1
mi ( x i ) +

nX

i = 2
Ái ( x i ¡ 1; x i )

where xi can take one of h values trellis

e g h=5 n=6

x1 x2 x3 x4 x5 x6

e.g. h=5, n=6 find 
shortest 

path

f ( x) =
m1( x1) + m2( x2) + m3( x3) + m4( x4) + m5( x5) + m6( x6)

f ( x) =

Complexity of minimization:

Á( x1; x2) + Á( x2; x3) + Á( x3; x4) + Á( x4; x5) + Á( x5; x6)

• exhaustive search O(hn)

• dynamic programming O(nh2)



f ( x) =
nX

mi ( x i ) +
nX

Á( xi ¡ 1; x i )

x1 x2 x3 x4 x5 x6

i = 1 i= 2

Key idea: the optimization can be broken down into n  sub-optimizations

St ep 1 : For each value of x2 det erm ine t he best value of x1

² Comput e

S2( x2) = m inf m2( x2) + m1( x1) + Á( x1; x2) gS2( x2) m inx1
f m2( x2) m1( x1) Á( x1; x2) g

= m2( x2) + m inx1
f m1( x1) + Á( x1; x2) g

² Record t he value of x1 for which S2( x2) is a m inimum

T o comput e t his m inimum for all x2 involves O( h2) operat ions



x1 x2 x3 x4 x5 x6

St 2 F h l f d t i t h b t l f dSt ep 2 : For each value of x3 det erm ine t he best value of x2 and x1

² Comput e

S3( x3) = m3( x3) + m inx2
f S2( x2) + Á( x2; x3) g

² Record t he value of x2 for which S3( x3) is a m inimum

Again, t o comput e t his m inim um for all x3 involves O( h2) operat ions
Not e Sk( xk) encodes t he lowest cost part ial sum for all nodes up t o k
which have t he value xk at node k, i.e.

kX kX
Sk( xk) = m inx1;x2;:::;xk¡ 1

kX

i = 1
mi ( x i ) +

kX

i = 2
Á( xi ¡ 1; x i )



Viterbi Algorithm

² Init ialize S1( x1) = m1( x1)

² For k = 2 : n

ÁSk( xk) = mk( xk) + m inxk¡ 1
f Sk¡ 1( xk¡ 1) + Á( xk¡ 1; xk) g

bk( xk) = arg m inxk¡ 1
f Sk¡ 1( xk¡ 1) + Á( xk¡ 1; xk) gxk¡ 1

² T erm inat e

x¤
n = arg m inxn

Sn( xn)

² B ackt rack

xi ¡ 1 = bi ( x i )

Complexity O(nh2)



Dynamic programming on graphs

² Graph ( V; E )

² Vert ices vi for i = 1; : : : ; n

² Edges ei j connect vi t o ot her vert ices vj

f ( x)
X

m ( v ) +
X

Á( v ; v )f ( x) =
vi 2 V

mi ( vi ) +
ei j 2 E

Á( vi ; vj )

So far have considered chains

54 61 2 3



Different graph structures

Can use dynamic programming 

1
6

3 5

y p g g

3

4 5

2

1

32

1

3

4

5

6

2

Fully connected

4 5

6 4 5

St t t

4 6

Tree structureFully connected

O(hn)

Star structure

O(nh2)

Tree structure

O(nh2)O(hn) O(nh2)O(nh2)

n partsn parts

h positions (e.g. every pixel for translation)



Coming back to fitting pictorial structures
Appearance term Spatial prior

displacements

filters deformation parameters

displacements

Maximization of the PS score can be re-written as a minimization of 
the following cost function on a “star” graph:

6

g g p

1

32 As the spatial prior is a quadratic function of part
positions, (xi, yi), finding the optimal configuration 1

4 5

p , ( i, yi), g p g
of parts can be done in O(nh) time, instead of 
naïve O(nh2).



Part Detection

input image
head filter

input image

Response of filter in l-th pyramid level

cross-correlation

Transformed response

Distance transform computed in linear time
(spreading, local max, etc)(spreading, local max, etc)



System



Other applications of PS models: 
f i l f t d t ti i ifacial feature detection in images

Model

v3

Model

v2

The goal: Localize facial features in faces 
output by face detector

v1

• Parts V= {v1, … vn}

• Connected by springs in a star configuration to 
v4

y p g g
nose (can be a tree)

• Quadratic cost for springs

high spring cost



Example part localizations in videoExample part localizations in video



Example of a model with 9 parts

Support parts based face descriptorsSupport parts-based face descriptors
Provide initialization for global face descriptors

Code available online: http://www.robots.ox.ac.uk/~vgg/research/nface/index.html



Summary
• Pictorial structure models with tree configuration of parts can 

be fitted in O(nh2) {n=number of parts h=number of pixels}be fitted in O(nh ). {n number of parts, h number of pixels}

• For quadratic pair-wise terms this can be reduced to O(nh). 

• This can lead to significant speed-ups if h is large (e.g. 
b f i l )number of pixels).

Other applications: 
• Facial feature finding• Facial feature finding
• Fitting articulated models 



Human Pose Estimation



Objective and motivationj

Determine human body pose (layout)

Why? To recognize poses, gestures, actions



Activities characterized by a pose



Activities characterized by a pose



Activities characterized by a pose



Challenges: articulations and deformations



Challenges: of (almost) unconstrained images

varying illumination and low contrast;  moving camera and background;
multiple people;  scale changes;  extensive clutter;  any clothing





Outline

Review of pictorial structures for articulated models

Inference given the model: Strong supervision, full 
generative model “Gold standard model”generative model – “Gold-standard model”

I i l i th d l f ifi iImage parsing: learning the model for a specific image

R t dRecent advances

Datasets and challenges



Pictorial StructuresPictorial Structures

• Intuitive model of an object

• Model has two components

1. parts (2D image fragments)

2. structure (configuration of parts)2. structure (configuration of parts)

• Dates back to Fischler & Elschlager 1973



From earlier: objects

Mixture of deformable part-based modelsMixture of deformable part based models
• One component per “aspect” e.g. front/side view

Each component has global template + deformable parts
Discriminative training from bounding boxes alone



Localize multi part objects at arbitrary locations in an imageLocalize multi-part objects at arbitrary locations in an image
• Generic object models such as person or car
• Allow for articulated objectsAllow for articulated objects
• Simultaneous use of appearance and spatial information
• Provide efficient and practical algorithms

To fit model to image: minimize an energy (or cost) function that reflects both
• Appearance: how well each part matches at given location
• Configuration: degree to which parts match 2D spatial layout



Long tradition of using pictorial structures for humans

Finding People by Sampling 
Ioffe & Forsyth, ICCV 1999

Pictorial Structure Models for Object Recognition
Felzenszwalb & Huttenlocher, 2000

Learning to Parse Pictures of People 
Ronfard, Schmid & Triggs, ECCV 2002gg



Felzenszwalb & Huttenlocher

NB: requires background subtraction 



Variety of Poses



Variety of Poses



Objective: detect human and determine upper body pose (layout)

si f

a2

a1



Pictorial structure model – CRF 

si f

a2

a1



Unary term: appearance feature I - colour

input image skin torso background

l t icolour posteriors



Unary term: appearance feature II - HOG

Histogram of oriented gradients (HOG)

Dalal & Triggs, CVPR 2005

Histogram of oriented gradients (HOG)

HOG of image
HOG of lower

lHOG of image arm template
(learned)

L2 Distance



Pairwise terms: kinematic layout

ab;ij = wabd(|i-j|)

dd

i - ji - j i - j
Potts

j
Truncated Quadratic



Pictorial structure model – CRF 

si f

a2

a1



Complexity

si f

a2

a1



Are trees the answer?

He T

UAUA
left right

LA LA

Ha Ha

n• With n parts and h possible discrete locations per part, O(hn)

• For a tree using dynamic programming this reduces to O(nh2)• For a tree, using dynamic programming this reduces to O(nh2)

• If model is a tree and has certain edge costs then complexityIf model is a tree and has certain edge costs, then complexity 
reduces to O(nh) using a distance transform  [Felzenszwalb & 
Huttenlocher, 2000, 2005]



Problems with tree structured pictorial structures

• Layout model defines the foreground,  
i.e. it chooses the pixels to “explain”

• ignores skin and strong edge 
in background

• “double counting”

Generative model of foreground only



Kinematic structure vs graphical (independence) structure

Graph G = (V E)Graph G = (V,E)

He T He T

UAUA
left right

UAUA
left right

UAUA

LA LA

UAUA

LA LA
Requires more

Ha Ha Ha Ha
Requires more 
connections than a tree



And for the background problem

1. Add background model so that every pixel in region explained

2. f lays out parts in back-to-front depth order (painter’s algorithm)

Colour is pixel-wise labellingp g
by parts (back-to-front)

Generative model of entire region
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Long Term Arm and Hand Tracking for 

P t i k B hl M k E i h

g g
Continuous Sign Language TV Broadcasts

Patrick Buehler, Mark Everingham, 

Daniel Huttenlocher, Andrew Zisserman

B iti h M hi Vi i C f 2008British Machine Vision Conference 2008



ObjectiveObjective

• Detect hands and arms of person signing British Sign Language

• Hour long sequencesHour long sequences

• Strong but minimal supervision



Learning the model

Strong supervision: manual input

Learn colour
model

Learn HOG
templates

Provide head and 
body examplesmodel templates body examples

5 frames 40 frames 15 frames 15 frames

40 annotated frames per video used for pose estimation in > 50 000 frames40 annotated frames per video, used for pose estimation in > 50,000 frames



Inference (model fitting)
• Fit head and torso [Navaratnam et al. 2005]

Th d h d• Then: arms and hands

Input Output
Intermediate 

step

Find arm/hand pose 
with minimum cost

Head and torso 
fitting

Problem: Brute force search is still not feasible



Model fitting by sampling
• Sample configurations from inexpensive model
• Evaluate configuration using full model

Input
Output

samples

For sampling use tree structured pictorial Structures:

best arm candidate

For sampling use tree structured pictorial Structures: 
• [Felzenszwalb & Huttenlocher 2000, 2005] 
• Complexity linear in the number of parts  O(nh)
• Pr(f | data): Sample from max-marginal with heuristics 1000 times
• cf Felzenszwalb & Huttenlocher 2005 sampled from marginal



Model fitting by samplingModel fitting by sampling

S l fi i f i i d d l• Sample configurations from inexpensive tree structured model
• Evaluate configuration using full model



Example resultsExample results



Pose estimation results



ApplicationApplication

Learning sign language by watching TV 
(using weakly aligned subtitles)(using weakly aligned subtitles)

Patrick Buehler 

Mark Everingham 

Andrew Zisserman

CVPR 2009CVPR 2009



Objective

Learn signs in British Sign Language (BSL) corresponding to text words:
• Training data from TV broadcasts with simultaneous signing g g g
• Supervision solely from sub-titles

Output: automatically
l d i (4 l ti )Input: video + subtitle learned signs (4x slow motion)

Office

G tGovernment

Use subtitles to find video sequences containing word. These are the positive
training sequences. Use other sequences as negative training sequences.



Overview

Given an English word 
e.g. “tree” what is the 
corresponding British p g
Sign Language sign?

positive
sequences

negative
set



Use sliding window to choose sub-
sequence of poses in one positive 

1st sliding window
sequence and determine if
same sub-sequence of poses 
occurs in other positive sequencesoccurs in other positive sequences 
somewhere, but 
does not occur in the negative set

positive
sequences

negative
set



Use sliding window to choose sub-
sequence of poses in one positive 

5th sliding window
sequence and determine if
same sub-sequence of poses 
occurs in other positive sequencesoccurs in other positive sequences 
somewhere, but 
does not occur in the negative set

positive
sequences

negative
set



Multiple instance learning

Positive
b

Negative
bag

bags
bag

sign ofsign of
interest



Evaluation

Good results for a variety of signs:

Signs where 
hand movement 

Signs where 
hand shape 

Signs where 
both hands

Signs which
are finger--

Signs which
are perfomed in 
f f fis important is important are together spelled front of the face

Navy Lung Fungi Kew Whale

Prince Garden Golf Bob Rose



Summary 

G fGiven a good appearance model and proper account of 
foreground and background, then problems such as occlusion 
and ordering can be resolved. The cost of inference stilland ordering can be resolved. The cost of inference still 
remains though.

Next:

How to obtain models automatically in videos and imagesHow to obtain models automatically in videos and images
If the appearance features are discriminative, how far can one go with 
foreground only pictorial structures and tree based inference?
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Learning appearance models in videos
Strike a Pose: Tracking People by Finding Stylized Poses
Deva Ramanan David Forsyth and Andrew Zisserman CVPR 2005

g pp

Deva Ramanan, David Forsyth and Andrew Zisserman, CVPR 2005



edges

walkingwalking
pose

pictorial
structure

efficient
matching



Build Model

small scale

torso
find 

discriminative 
features

learn
limb

classifiers

bg

(limb pixels alone
are poor model)

unusual pose



Build Model & Detect

torso

armsmall scale

leglabel
pixels

learn
limb

classifiers
general

pose
pictorial

head

p
structure

unusual pose



Running Example



How well do classifiers generalize?



Image Parsing – Ramanan NIPS 06

Learn image and person specific unary terms
• initial iteration  edges

f ll i it ti  d & l• following iterations  edges & colour

189





(Almost) unconstrained images

Extremely difficult when knowing nothing about appearance/pose/location



Failure of direct pose estimation

Ramanan NIPS 2006 unaided

Not powerful enough for a cluttered image where size is not given



Progressive search space reductionProgressive search space reduction
for human pose estimation

Vitto Ferrari, Manuel Marin-Jimenez, Andrew Zisserman

CVPR 2008/2009CVPR 2008/2009



Restrict search space using detector

Find (x,y,s) coordinate frame for a person

detection window (upper-body, face etc.)detection window (upper body, face etc.)

O
R

ET
EC

TO
D

E

Ferrari et al. 08, Andriluka et al. 09, Gammeter et al. 08 194



Learn an image and person specific model

Supervision
N• None

W k d lWeaker model
• Tree structured graphical model 

O l t d ll d• Overlap not modelled
• Single scale parameter

N b k d d l• No background model
Inference

D t t b d d t t• Detect person – use upper body detector
• Use upper body region to restrict search

Use colour segmentation to restrict search further• Use colour segmentation to restrict search further
• Parsing pictorial structure by Ramanan NIPS 06



Search space reduction by upper body human detection

Idea
t i t l ti d l ith

(1) detect human; (2) reduce search from hn

get approximate location and scale with a
detector generic over pose and appearance

Building an upper body detector
Train

Building an upper-body detector
- based on Dalal and Triggs CVPR 2005

train = 96 frames X 12 perturbations- train = 96 frames X 12 perturbations

Test

+ fixes scale of body parts

Benefits for pose estimation
 fixes scale of body parts

+ sets bounds on x,y locations

+ detects also back views

- little info about pose (arms)
+ fast

detected enlarged



Upper body detector – using HOGs

average training dataaverage training data



Search space reduction by foreground highlighting

Idea
exploit knowledge about structure of 
search area to initialize Grabcut

I iti li tiInitialization
- learn fg/bg models from regions where
person likely present/absent

- clamp central strip to fg

- don’t clamp bg (arms can be anywhere) 

+ further reduce clutter

Benefits for pose estimation
 further reduce clutter

+ conservative (no loss 95.5% times)
+ needs no knowledge of background

+ allows for moving background
initialization output



Search space reduction by foreground highlighting

Idea
exploit knowledge about structure of p g
search area to initialize Grabcut

I iti li tiInitialization
- learn fg/bg models from regions where
person likely present/absent

- clamp central strip to fg

- don’t clamp bg (arms can be anywhere) 

+ further reduce clutter

Benefits for pose estimation
 further reduce clutter

+ conservative (no loss 95.5% times)
+ needs no knowledge of background

+ allows for moving background



Pose estimation by image parsing - Ramanan NIPS 06

Goal
estimate posterior of part configuration

Algorithm
1. inference with edges unary 

2. learn appearance models of
body parts and background

3 inference with edges + colour unary

edge
parse

edge + col
parse

3. inference with edges + colour unary

Advantages of space reductionappearance
parse parse + much more robust

+ much faster (10x-100x)



Failure of direct pose estimation
Ramanan NIPS 2006 unaided



Results on Buffy frames



Results on PASCAL flickr images



What is missed?



What is missed?

truncation is not modelled



What is missed?

occlusion is not modelled



Application: Pose Search

Gi l t dGiven user-selected
query frame+person …

queryquery

… retrieve shots with persons
i th f id d t bin the same pose from video database

video databaseCVPR 2009



Pose Search
Pose descriptors

- soft-segmentations of body parts

- distributions over orient+locationdistributions over orient location
for parts and pairs of parts 

Similarity measures
- dot-product (= soft intersection)

- Batthacharrya / Chi-square



Processing

Off-line:Off line:
• Detect upper bodies in every frame 
• Link (track) upper body detections( ) pp y
• Estimate upper body pose for each frame of track
• Compute descriptor (vector) for each upper body posep p ( ) pp y p

Run-time:
• Rank each track by its similarity to the query pose



Pose Search 

Q

“hips pose”



Pose Search 

Q

“rest pose”



Pose Search 

Q

“rest pose”



Other poses – query interesting pose

Hollywood movies – Query on Gandhi, Search Hugh Grant opus

Q









Other poses – query interesting pose

Hollywood movies – Query on Gandhi, Search Hugh Grant opus

QQ











Articulated Pose Estimation 
with Flexible Mixtures of Parts with Flexible Mixtures of Parts 



GoalGoal

A ti l t d ti ti (b Wiki di )Articulated pose estimation (by Wikipedia)
recovers the pose of an articulated object which consists of 
j i t d i id tjoints and rigid parts



ApplicationsApplications

Action HCI Gaming

Segmentation Object DetectionSegmentation Object Detection

……



Unconstrained ImagesUnconstrained Images



Classic ApproachClassic Approach

Fischler & Elschlager 1973 

Felzenszwalb & Huttenlocher 2005
Marr & Nishihara 1978

Part Representation
• Head, Torso, Arm, Leg
• Location, Rotation, 

S l

Felzenszwalb & Huttenlocher 2005 

Pictorial Structure
• Unary Templates

Pairwise SpringsScale • Pairwise Springs

Andriluka etc. 2009
Eichner etc. 2009

Johnson & Everingham 2010
Singh etc. 2010

Epshteian & Ullman 2007

Lan & Huttenlocher 2005

Ramanan 2007
Sigal & Black 2006

Johnson & Everingham 2010
Sapp etc. 2010
Tran & Forsyth 2010

Epshteian & Ullman 2007

Ferrari etc. 2008
Wang & Mori 2008



ProblemProblem

How to capture affine deformations of limbs?

In plane rotation Out plane rotationIn plane rotation Out plane rotation

Foreshortening Scaling

Naïve brute-force evaluation is expensive



Our Approach “Mini” PartsOur Approach – Mini  Parts

Capture affine deformations with “mini” part model



Example: Arm ApproximationExample: Arm Approximation



Example: Torso ApproximationExample: Torso Approximation



Our ApproachOur Approach

• Extension of Pictorial Structure Model

• Why? 
Flexibility: General affine warps (orientation, 

foreshortening, …)

Speed: Mixtures of local templates + dynamic 
programmingprogramming



Linear-Parameterized Pictorial 
Structure Model



Linear-Parameterized Pictorial 
Structure Model



Linear-Parameterized Pictorial 
Structure Model



Our Flexible Mixture ModelOur Flexible Mixture Model



Our Flexible Mixture ModelOur Flexible Mixture Model



Co occurrence “Prior”Co-occurrence Prior
 0.01  0.01
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-0.01



Inference & LearningInference & Learning
Inferencee e ce



Inference & LearningInference & Learning
Inferencee e ce

Learning



Benchmark DatasetsBenchmark Datasets

PARSE Full-body BUFFY Upper-body 

http://www.ics.uci.edu/~draman
an/papers/parse/index.html

http://www.robots.ox.ac.uk/~vg
g/data/stickmen/index.html



How to Get Part Mixtures?How to Get Part Mixtures?

Solution:
Cluster relative locations of joints w.r.t. parents



ArticulationArticulation



Qualitative ResultsQualitative Results



DiagnosticDiagnostic

• 14 parts (joints) vs 27 parts (joints + midpoints)
• More parts and types/mixtures help



Quantitative ResultsQuantitative Results
% of correctly localized limbs

Image Parse Testset
Method TotalMethod Total

Ramanan 2007 27.2

Andrikluka 2009 55.2

Johnson 2010a 56.4

Singh 2010 60.9

Johnson 2010b 66.2

Our Model 74.9

All previous work use explicitly articulated models



Quantitative ResultsQuantitative Results
% of correctly localized limbs

Image Parse Testset
Method Head Torso U. Legs L. Legs U. Arms L. Arms TotalMethod Head Torso U. Legs L. Legs U. Arms L. Arms Total

Ramanan 2007 52.1 37.5 31.0 29.0 17.5 13.6 27.2

Andrikluka 2009 81.4 75.6 63.2 55.1 47.6 31.7 55.2

Johnson 2010a 77.6 68.8 61.5 54.9 53.2 39.3 56.4

Singh 2010 91.2 76.6 71.5 64.9 50.0 34.2 60.9

Johnson 2010b 85.4 76.1 73.4 65.4 64.7 46.9 66.2

Our Model 97.6 93.2 83.9 75.1 72.0 48.3 74.9

1 second per image



Quantitative ResultsQuantitative Results
% of correctly localized limbs

Subset of Buffy Testset
Method TotalMethod Total

Tran 2010 62.3

Andrikluka 2009 73.5

Eichner 2009 80.1

Sapp 2010a 85.9

Sapp 2010b 85.5

Our Model 89.1

All previous work use explicitly articulated models



Quantitative ResultsQuantitative Results
% of correctly localized limbs

Subset of Buffy Testset
Method Head Torso U. Arms L. Arms TotalMethod Head Torso U. Arms L. Arms Total

Tran 2010 --- --- --- --- 62.3

Andrikluka 2009 90.7 95.5 79.3 41.2 73.5

Eichner 2009 98.7 97.9 82.8 59.8 80.1

Sapp 2010a 100 100 91.1 65.7 85.9

Sapp 2010b 100 96.2 95.3 63.0 85.5

Our Model 100 99.6 96.6 70.9 89.1

Ours | 5 seconds   VS   5 minutes | next best



Human DetectionHuman Detection



ConclusionConclusion

• Model affine warps 
with a part-based 
model
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ConclusionConclusion

• Model affine warps 
with a part-based 
model

• Exponential set of p
pictorial structures

• Rigid vs flexible 
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ConclusionConclusion

• Model affine warps 
with a part-based 
model

• Exponential set of p
pictorial structures

• Rigid vs flexible 
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Further ideas:

Human Pose Estimation Using Consistent Max-Covering, Hao 
Jiang ICCV 09Jiang, ICCV 09

Max margin hidden conditional random fields for human actionMax-margin hidden conditional random fields for human action 
recognition, Yang Wang and Greg Mori, CVPR 09

Adaptive pose priors for pictorial structures, B. Sapp, C. Jordan, 
and B. Taskar, CVPR 10,


