Neural networks and optimization

Nicolas Le Roux

INRIA

8 Nov 2011

Nicolas Le Roux (INRIA)

Neural networks and optimization

8 Nov 2011 1 / 80

.∋...>

2 Linear classifier

- I'm here for you, I already know that stuff
- It's better to look silly than to stay so
- Ask questions if you don't understand !

A b

Goal : classification and regression

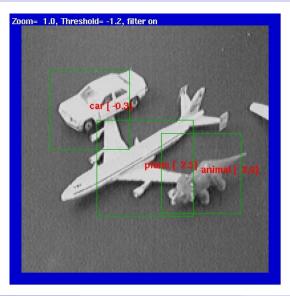
- Medical imaging : cancer or not ? Classification
- Autonomous driving : optimal wheel position Regression
- Kinect : where are the limbs ? Regression
- OCR : what are the characters ? Classification

Goal : classification and regression

- Medical imaging : cancer or not ? Classification
- Autonomous driving : optimal wheel position Regression
- Kinect : where are the limbs ? Regression
- OCR : what are the characters ? Classification

Regression and classification are similar problems

Goal : real-time object recognition



Nicolas Le Roux (INRIA)

Neural networks and optimization

8 Nov 2011 5 / 80

Linear classifier

• Dataset : $(X^{(i)}, Y^{(i)})$ pairs, i = 1, ..., N.

•
$$X^{(i)} \in \mathbb{R}^n$$
, $Y^{(i)} \in \{-1, 1\}$.

• Goal : Find *w* and *b* such that $sign(w^T X^{(i)} + b) = Y^{(i)}$.

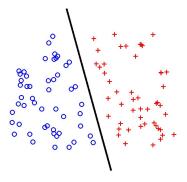
イロン イボン イヨン イヨ

Linear classifier

• Dataset : $(X^{(i)}, Y^{(i)})$ pairs, i = 1, ..., N.

•
$$X^{(i)} \in \mathbb{R}^n, Y^{(i)} \in \{-1, 1\}.$$

• Goal : Find w and b such that $\operatorname{sign}(w^{\top}X^{(i)} + b) = Y^{(i)}$.



Perceptron algorithm (Rosenblatt, 57)

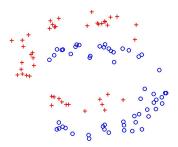
•
$$w_0 = 0, b_0 = 0$$

• $\widehat{Y}^{(i)} = \operatorname{sign}(w^{\top}X^{(i)} + b)$
• $w_{t+1} \leftarrow w_t + \sum_i (Y^{(i)} - \widehat{Y}^{(i)})X^{(i)}$
• $b_{t+1} \leftarrow b_t + \sum_i (Y^{(i)} - \widehat{Y}^{(i)})$

Movie linearly_separable_perceptron.avi

• • • • • • • • • • • •

Some data are not separable



The Perceptron algorithm is NOT convergent for non linearly separable data.

Nicolas Le Roux (INRIA)

Neural networks and optimization

8 Nov 2011 8 / 80

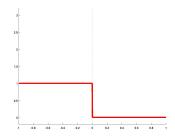
Non convergence of the perceptron algorithm

Movie non_linearly_separable_perceptron.avi

• We need an algorithm which works both on separable and non separable data.

Cost function

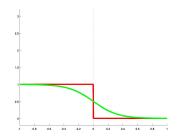
• Classification error is not smooth.



8 Nov 2011 10 / 80

Cost function

- Classification error is not smooth.
- Sigmoid is smooth but not convex.



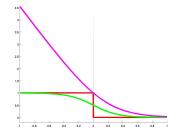
- Convexity guarantees the same solution every time.
- In practice, it is not always crucial.

Nicolas Le Roux (INRIA)

Neural networks and optimization

Convex cost functions

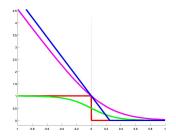
- Classification error is not smooth.
- Sigmoid is smooth but not convex.
- Logistic loss is a convex upper bound.



Nicolas Le Roux (INRIA)

Convex cost functions

- Classification error is not smooth.
- Sigmoid is smooth but not convex.
- Logistic loss is a convex upper bound.
- Hinge loss (SVMs) is very much like logistic.



Solving separable AND non-separable problems

Movie non_linearly_separable_logistic.avi Movie linearly_separable_logistic.avi

Nicolas Le Roux (INRIA)

Neural networks and optimization

8 Nov 2011 12/80

Non-linear classification

Movie non_linearly_separable_poly_kernel.avi

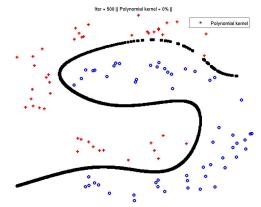
Nicolas Le Roux (INRIA)

Neural networks and optimization

8 Nov 2011 13 / 80

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Non-linear classification



- Features : $X_1, X_2 \rightarrow$ linear classifier
- Features : $X_1, X_2, X_1X_2, X_1^2, \ldots \rightarrow$ non-linear classifier

Nicolas Le Roux (INRIA)

Neural networks and optimization

Choosing the features

- To make it work, I created lots of extra features :
- $(X_1, X_2, X_1X_2, X_1^2X_2, X_1X_2^2)^{(1,2,3,\dots,10)}$

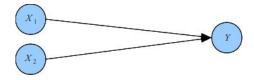
A (1) > A (2) > A

Choosing the features

- To make it work, I created lots of extra features :
- $(X_1, X_2, X_1X_2, X_1^2X_2, X_1X_2^2)^{(1,2,3,\dots,10)}$
- Would it work with fewer features?
- Test with $(X_1, X_2, X_1X_2, X_1^2X_2, X_1X_2^2)^{(1,2)}$

Movie non_linearly_separable_poly_2.avi

A graphical view of the classifiers



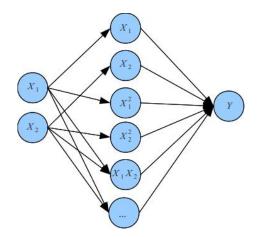
$$f(X) = w_1 X_1 + w_2 X_2 + b$$

Nicolas Le Roux (INRIA)

Neural networks and optimization

8 Nov 2011 16 / 80

A graphical view of the classifiers



$$f(X) = w_1 X_1 + w_2 X_2 + w_3 X_1^2 + w_4 X_2^2 + w_5 X_1 X_2 + \dots$$

Nicolas Le Roux (INRIA)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- A linear classifier on a non-linear transformation is non-linear.
- A non-linear classifier relies on non-linear features.
- Which ones do we choose?

- A linear classifier on a non-linear transformation is non-linear.
- A non-linear classifier relies on non-linear features.
- Which ones do we choose?

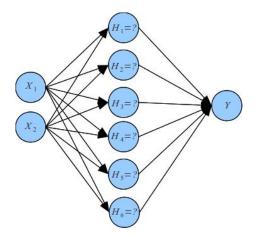
• Example :
$$H_j = X_1^{p_j} X_2^{q_j}$$

- A linear classifier on a non-linear transformation is non-linear.
- A non-linear classifier relies on non-linear features.
- Which ones do we choose?
- Example : $H_j = X_1^{p_j} X_2^{q_j}$
- SVM : $H_j = K(X, X^{(j)})$ with K some kernel function

4 **A b b b b b b**

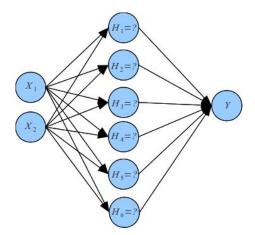
- A linear classifier on a non-linear transformation is non-linear.
- A non-linear classifier relies on non-linear features.
- Which ones do we choose?
- Example : $H_j = X_1^{p_j} X_2^{q_j}$
- SVM : $H_j = K(X, X^{(j)})$ with K some kernel function
- Do they have to be predefined?

A (10) A (10)



 A neural network will learn the H_i's

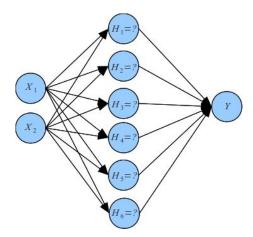
(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))



 A neural network will learn the H_j's

• • • • • • • • • • • •

- Usually, we use
 - $H_j = g(v_j^\top X)$

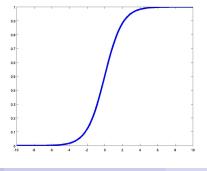


- A neural network will learn the H_j's
- Usually, we use
 - $H_j = g(v_j^\top X)$
- *H_j* : Hidden unit
- v_j : Input weight
- g : Transfer function

Transfer function

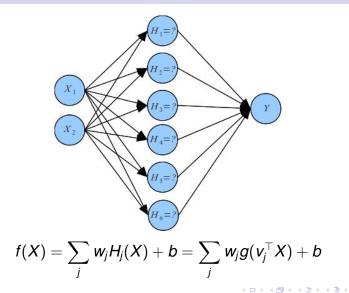
$$f(X) = \sum_{j} w_{j}H_{j}(X) + b = \sum_{j} w_{j}g(v_{j}^{\top}X) + b$$

- g is the transfer function.
- Usually, g is the sigmoid or the tanh.



Nicolas Le Roux (INRIA)

Neural networks and optimization



Nicolas Le Roux (INRIA)

Example on the non-separable problem

Movie non_linearly_separable_mlp_3.avi

Nicolas Le Roux (INRIA)

Neural networks and optimization

8 Nov 2011 21 / 80

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Training a neural network

- Dataset : $(X^{(i)}, Y^{(i)})$ pairs, i = 1, ..., N.
- Goal : Find w and b such that

$$\operatorname{sign}\left(\boldsymbol{w}^{\top}\boldsymbol{X}^{(i)}+\boldsymbol{b}\right)=\boldsymbol{Y}^{(i)}$$

• • • • • • • • • • • • •

Training a neural network

- Dataset : $(X^{(i)}, Y^{(i)})$ pairs, i = 1, ..., N.
- Goal : Find w and b to minimize

$$\sum_{i} \log \left(1 + \exp\left(-Y^{(i)}\left(w^{\top}X^{(i)} + b\right)\right)\right)$$

Nicolas Le Roux (INRIA)

• • • • • • • • • • • •

Training a neural network

- Dataset : $(X^{(i)}, Y^{(i)})$ pairs, i = 1, ..., N.
- Goal : Find v_1, \ldots, v_k , w and b to minimize

$$\sum_{i} \log \left(1 + \exp \left(- Y^{(i)} \left[\sum_{j} w_{j} g\left(v_{j}^{\top} X^{(i)} \right) \right] \right) \right)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Neural network - 8 hidden units

Movie non_linearly_separable_mlp_8.avi

Nicolas Le Roux (INRIA)

Neural networks and optimization

イロト イポト イヨト イヨト

Neural network - 5 hidden units

Movie non_linearly_separable_mlp_5.avi

Neural network - 3 hidden units

Movie non_linearly_separable_mlp_3.avi

Nicolas Le Roux (INRIA)

Neural networks and optimization

8 Nov 2011 25 / 80

Neural network - 2 hidden units

Movie non_linearly_separable_mlp_2.avi

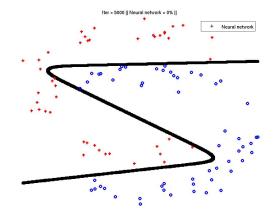
Nicolas Le Roux (INRIA)

Neural networks and optimization

■ ト イ ヨ ト ヨ つ へ C 8 Nov 2011 26 / 80

イロト イポト イヨト イヨト

Non-linear classification



Nicolas Le Roux (INRIA)

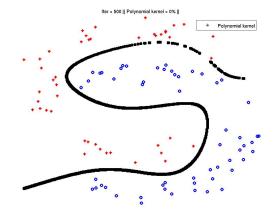
Neural networks and optimization

8 Nov 2011 27 / 80

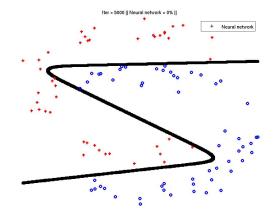
a

-

Non-linear classification



Non-linear classification



Nicolas Le Roux (INRIA)

Neural networks and optimization

8 Nov 2011 27 / 80

a

-

Cost function

s = cost function (logistic loss, hinge loss, ...)

$$\ell(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{b}, \boldsymbol{X}^{(i)}, \boldsymbol{Y}^{(i)}) = \boldsymbol{s}\left(\widehat{\boldsymbol{Y}}^{(i)}, \boldsymbol{Y}^{(i)}\right)$$
$$= \boldsymbol{s}\left(\sum_{j} \boldsymbol{w}_{j} \boldsymbol{H}_{j}(\boldsymbol{X}^{(i)}), \boldsymbol{Y}^{(i)}\right)$$
$$= \boldsymbol{s}\left(\sum_{j} \boldsymbol{w}_{j} \boldsymbol{g}\left(\boldsymbol{v}_{j}^{\top} \boldsymbol{X}^{(i)}\right), \boldsymbol{Y}^{(i)}\right)$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Nicolas Le Roux (INRIA)

Backpropagation - Output weights

s = cost function (logistic loss, hinge loss, ...)

$$\widehat{Y}^{(i)} = \sum_{j} w_{j} H_{j}(X^{(i)})$$

$$\frac{\partial \ell(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{b}, \boldsymbol{X}^{(i)}, \boldsymbol{Y}^{(i)})}{\partial \boldsymbol{w}_{j}} = \frac{\partial \ell(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{b}, \boldsymbol{X}^{(i)}, \boldsymbol{Y}^{(i)})}{\partial \widehat{\boldsymbol{Y}}^{(i)}} \frac{\partial \widehat{\boldsymbol{Y}}^{(i)}}{\partial \boldsymbol{w}_{j}}$$
$$= \frac{\partial \ell(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{b}, \boldsymbol{X}^{(i)}, \boldsymbol{Y}^{(i)})}{\partial \widehat{\boldsymbol{Y}}^{(i)}} H_{j}(\boldsymbol{X}^{(i)})$$

Nicolas Le Roux (INRIA)

Backpropagation - Input weights

s = cost function (logistic loss, hinge loss, ...)

$$\begin{split} \widehat{Y}^{(i)} &= \sum_{j} w_{j} H_{j}(X^{(i)}) \\ H_{j}(X^{(i)}) &= g\left(v_{j}^{\top} X^{(i)}\right) \\ \overset{(i)}{\rightarrow} Y^{(i)}) \quad \partial \ell(v, w, b, X^{(i)}, Y^{(i)}) \partial H_{j}(X^{(i)}) \end{split}$$

$$\frac{\partial \ell(\mathbf{v}, \mathbf{w}, \mathbf{b}, \mathbf{X}^{(i)}, \mathbf{Y}^{(i)})}{\partial \mathbf{v}_{j}} = \frac{\partial \ell(\mathbf{v}, \mathbf{w}, \mathbf{b}, \mathbf{X}^{(i)}, \mathbf{Y}^{(i)})}{\partial H_{j}(\mathbf{X}^{(i)})} \frac{\partial H_{j}(\mathbf{X}^{(i)})}{\partial \mathbf{v}_{j}}$$
$$= \frac{\partial \ell(\mathbf{v}, \mathbf{w}, \mathbf{b}, \mathbf{X}^{(i)}, \mathbf{Y}^{(i)})}{\partial \widehat{\mathbf{Y}}^{(i)}} \frac{\partial \widehat{\mathbf{Y}}^{(i)}}{\partial H_{j}(\mathbf{X}^{(i)})} \frac{\partial H_{j}(\mathbf{X}^{(i)})}{\partial \mathbf{v}_{j}}$$
$$= \frac{\partial \ell(\mathbf{v}, \mathbf{w}, \mathbf{b}, \mathbf{X}^{(i)}, \mathbf{Y}^{(i)})}{\partial \widehat{\mathbf{Y}}^{(i)}} \mathbf{w}_{j} \mathbf{X}^{(i)} \mathbf{g}' \left(\mathbf{v}_{j}^{\top} \mathbf{X}^{(i)}\right)$$

Nicolas Le Roux (INRIA)

Training neural networks - Summary

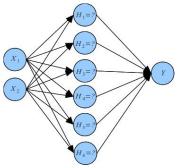
- For each datapoint, compute the gradient of the cost with respect to the weights.
- Done using the backpropagation of the gradient.
- Convex with respect to the output weights (linear classifier).
- NOT convex with respect to the input weights : POTENTIAL PROBLEMS !

Neural networks - Summary

- A linear classifier in a feature space can model non-linear boundaries.
- Finding a good feature space is essential.
- One can design the feature map by hand.
- One can learn the feature map, using fewer features than if it done by hand.
- Learning the feature map is potentially HARD (non-convexity).

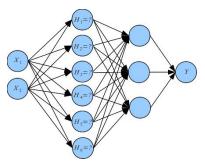
Nicolas Le Roux (INRIA)

Neural networks - Not summary



- Linear combination of the output of soft classifiers.
- This is a non-linear classifier.
- One can take a linear combination of these.

Neural networks - Not summary



- Linear combination of the output of soft classifiers.
- This is a non-linear classifier.
- One can take a linear combination of these.

• This becomes a neural network with two hidden layers.

Nicolas Le Roux (INRIA)

Neural networks and optimization

Advantages of neural networks

- They can learn anything.
- Extremely fast at test time (computing the answer for a new datapoint) because fewer features.
- Complete control over the power of the network (by controlling the hidden layers sizes).

Problems of neural networks

- \bullet Highly non-convex \rightarrow many local minima
- Can learn anything but have more parameters → need tons of examples to be good.

- Neural networks are potentially extremely efficient.
- But it is HARD to train them !
- If you wish to use them, be smart (or ask someone who knows) !
- If you have a huge dataset, they CAN be awesome !

v_j 's for images

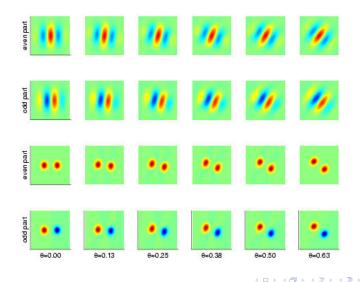
$$f(X) = \sum_{j} w_{j}H_{j}(X) + b = \sum_{j} w_{j}g(v_{j}^{\top}X) + b$$

- If X is an image, v_i is an image too.
- *v_i* acts as a filter (presence or absence of a pattern).
- What does v_j look like?

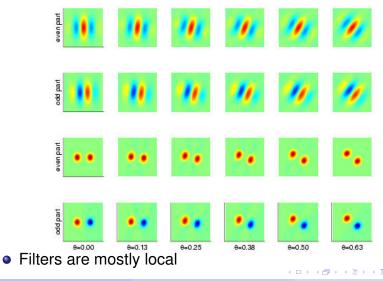
< 6 b

- B

v_i 's for images - Examples



v_i 's for images - Examples



Nicolas Le Roux (INRIA)

8 Nov 2011 38 / 80

Basic idea of convolutional neural networks

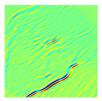
- Filters are mostly local.
- Instead of using image-wide filters, use small ones over patches.
- Repeat for every patch to get a response image.
- Subsample the response image to get local invariance.

Filtering - Filter 1

Original image

Filter

Output image



• • • • • • • • • • • •

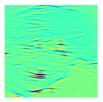
ъ

Filtering - Filter 2

Original image

Filter

Output image



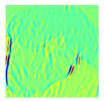
• • • • • • • • • • • •

Filtering - Filter 3

Original image

Filter

Output image



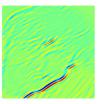
• • • • • • • • • • • •

8 Nov 2011 42 / 80

Pooling - Filter 1

Original image

Output image



Subsampled image

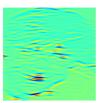
How to do 2x subsampling-pooling :

- Output image = O, subsampled image = S.
- $S_{ij} = \max_{k \text{ over window around } (2i,2j)} O_k$.

Pooling - Filter 2

Original image

Output image



Subsampled image

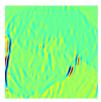
How to do 2x subsampling-pooling :

- Output image = O, subsampled image = S.
- $S_{ij} = \max_{k \text{ over window around } (2i,2j)} O_k$.

Pooling - Filter 3

Original image

Output image



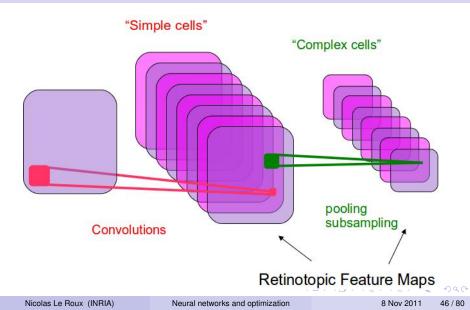
Subsampled image

How to do 2x subsampling-pooling :

- Output image = O, subsampled image = S.
- $S_{ij} = \max_{k \text{ over window around } (2i,2j)} O_k$.

イロト 不得 トイヨト イヨト

A convolutional layer

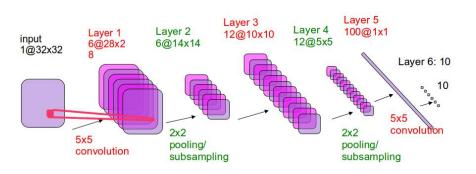


Transforming the data with a layer

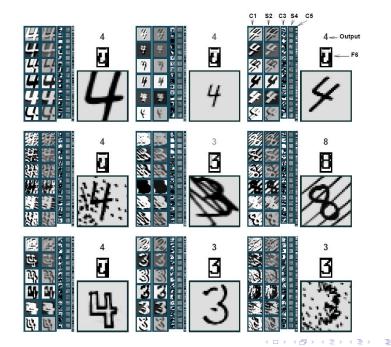
Original datapoint

New datapoint

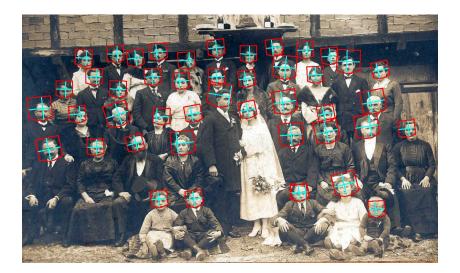
A convolutional network



A D N A P N A D N A D



Face detection

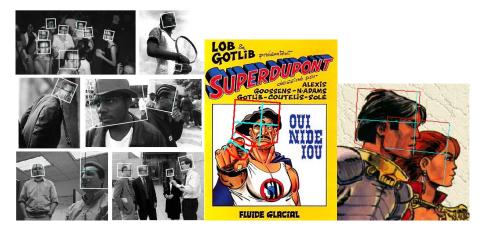


Nicolas Le Roux (INRIA)

Neural networks and optimization

< 17 ▶

Face detection



Nicolas Le Roux (INRIA)

イロト イヨト イヨト イヨト

- 50 toys belonging to 5 categories
 - animal, human figure, airplane, truck, car
- 10 instance per category
 - 5 instances used for training, 5 instances for testing
- Raw dataset
 - ▶ 972 stereo pairs of each toy. 48,600 image pairs total.

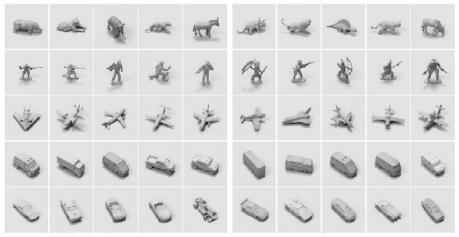
▲ 同 ▶ | ▲ 三 ▶

NORB dataset - 2

For each instance :

- 18 azimuths
- 0 to 350 degrees every 20 degrees
- 9 elevations
- 30 to 70 degrees from horizontal every 5 degrees
- 6 illuminations
- on/off combinations of 4 lights
- 2 cameras (stereo), 7.5 cm apart
- 40 cm from the object

NORB dataset - 3

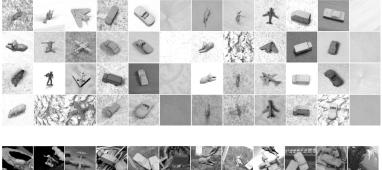


Training instances

Test instances

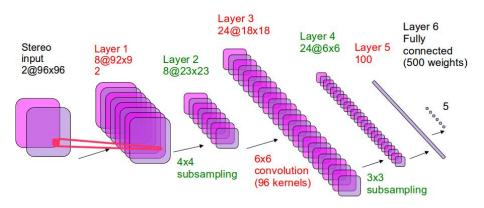
Nicolas Le Roux (INRIA)

Textured and cluttered versions



Nicolas Le Roux (INRIA)

Neural networks and optimization



- 90,857 free parameters, 3,901,162 connections.
- The entire network is trained end-to-end (all the layers are trained simultaneously).

Nicolas Le Roux (INRIA)

Neural networks and optimization

8 Nov 2011 56 / 80

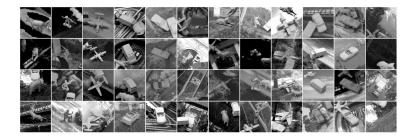
Normalized-Uniform set

Method	Error
Linear Classifier on raw stereo images	30.2%
K-Nearest-Neighbors on raw stereo images	18.4%
K-Nearest-Neighbors on PCA-95	16.6%
Pairwise SVM on 96x96 stereo images	11.6%
Pairwise SVM on 95 Principal Components	13.3%
Convolutional Net on 96x96 stereo images	5.8%

-

・ロト ・日下 ・ ヨト ・

Jittered-Cluttered Dataset



- 291,600 stereo pairs for training, 58,320 for testing
- Objects are jittered
 - position, scale, in-plane rotation, contrast, brightness, backgrounds, distractor objects,...
- Input dimension : 98x98x2 (approx 18,000)

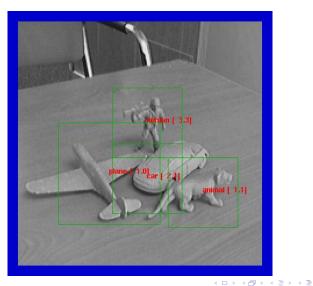
Nicolas Le Roux (INRIA)

Neural networks and optimization

Jittered-Cluttered Dataset - Results

Method	Error
SVM with Gaussian kernel	43.3%
Convolutional Net with binocular input	7.8%
Convolutional Net + SVM on top	5.9%
Convolutional Net with monocular input	20.8%
Smaller mono net (DEMO)	26.0%

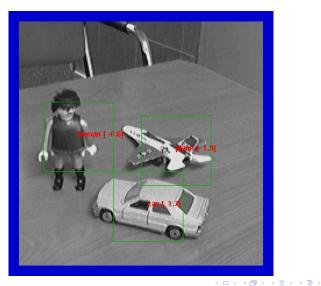
Dataset available from http://www.cs.nyu.edu/~yann



Nicolas Le Roux (INRIA)

Neural networks and optimization

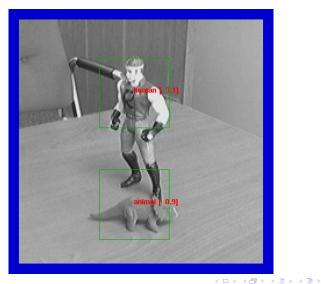
▶ < E ▶ E ∽ Q ⊂ 8 Nov 2011 60 / 80



Nicolas Le Roux (INRIA)

Neural networks and optimization

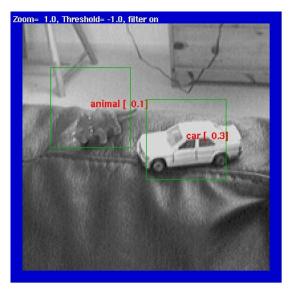
▶ < E ▶ E ∽ Q ⊂ 8 Nov 2011 61 / 80



Nicolas Le Roux (INRIA)

Neural networks and optimization

▶ < E ▶ E ∽ Q () 8 Nov 2011 62 / 80



Nicolas Le Roux (INRIA)

Neural networks and optimization

8 Nov 2011 63 / 80

< ∃⇒

Nicolas Le Roux (INRIA)

Neural networks and optimization

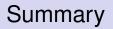
< ≣ > ≣ ্ প ে 8 Nov 2011 64 / 80



Nicolas Le Roux (INRIA)

Neural networks and optimization

▶ ▲ Ē ▶ Ē ∽ Q () 8 Nov 2011 65 / 80



- With complex problems, it is hard to design features by hand.
- Neural networks circumvent this problem.
- They can be hard to train (again...).
- Convolutional neural networks use knowledge about locality in images.
- They are much easier than standard networks.
- And they are FAST (again...).

What has not been covered

- In some cases, we have lots of data, but without the labels.
- Unsupervised learning.
- There are techniques to use these data to get better performance.
- E.g. : Task-Driven Dictionary Learning, Mairal et al.

The need for fast learning

- Neural networks may need many examples (several millions or more).
- We need to be able to use them quickly.

Batch methods

$$L(\theta) = \frac{1}{N} \sum_{i} \ell(\theta, X^{(i)}, Y^{(i)})$$
$$\theta_{t+1} \to \theta_t - \frac{\alpha_t}{N} \sum_{i} \frac{\partial \ell(\theta, X^{(i)}, Y^{(i)})}{\partial \theta}$$

- To compute one update of the parameters, we need to go through all the data.
- This can be very expensive.
- What if we have an infinite amount of data?

Nicolas Le Roux (INRIA)

Neural networks and optimization

Potential solutions

Discard data.

- Seems stupid
- Yet many people do it

Potential solutions

Discard data.

- Seems stupid
- Yet many people do it
- ② Use approximate methods.
 - Update = average of the updates for all datapoints.
 - Are these update really different?
 - If not, how can we learn faster?

- B

Stochastic gradient descent

$$L(\theta) = \frac{1}{N} \sum_{i} \ell(\theta, X^{(i)}, Y^{(i)})$$
$$\theta_{t+1} \to \theta_t - \frac{\alpha_t}{N} \sum_{i} \frac{\partial \ell(\theta, X^{(i)}, Y^{(i)})}{\partial \theta}$$

Nicolas Le Roux (INRIA)

Neural networks and optimization

8 Nov 2011 71 / 80

э.

Stochastic gradient descent

$$L(\theta) = \frac{1}{N} \sum_{i} \ell(\theta, X^{(i)}, Y^{(i)})$$
$$\theta_{t+1} \to \theta_t - \alpha_t \frac{\partial \ell(\theta, X^{(i_t)}, Y^{(i_t)})}{\partial \theta}$$

Nicolas Le Roux (INRIA)

Neural networks and optimization

8 Nov 2011 71 / 80

э.

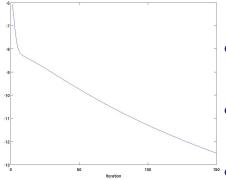
Stochastic gradient descent

$$L(\theta) = \frac{1}{N} \sum_{i} \ell(\theta, X^{(i)}, Y^{(i)})$$
$$\theta_{t+1} \to \theta_t - \alpha_t \frac{\partial \ell(\theta, X^{(i_t)}, Y^{(i_t)})}{\partial \theta}$$

What do we lose when updating the parameters to satisfy just one example?

- B

Disagreement



- $\|\mu\|^2/\sigma^2$ during optimization (log scale)
- As optimization progresses, disagreement increases
- Early on, one can pick one example at a time
- What about later?

Standard learning paradigm :

- We want to solve a task on new datapoints.
- We have a training set.

 We hope that the performance on the training set is informative of the performance on new datapoints.
 Can we know when we start overfitting ?

- When all gradients disagree, stochastic error stalls.
- When all gradients disagree, training and test error part.

IT DOES NOT MATTER IF ONE DOES NOT REACH THE MINIMUM OF THE TRAINING ERROR !

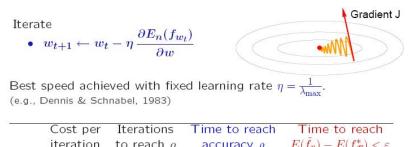
Decomposition of the error

$$E(\tilde{f}_n) - E(f^*) = E(f^*_{\mathcal{F}}) - E(f^*) \text{ Approximation error} + E(f_n) - E(f^*_{\mathcal{F}}) \text{ Estimation error} + E(\tilde{f}_n) - E(f_n) \text{ Optimization error}$$

Questions :

- O be we optimize the training error to decrease $E(\tilde{f}_n) E(f_n)$?
- 2 Do we increase *n* to decrease $E(f_n) E(f_{\mathcal{F}}^*)$?

Gradient Descent (GD)



12	recrucion	to reach p	decuracy p	$L(Jn) = L(J\mathcal{F}) < \varepsilon$
GD	$\mathcal{O}(nd)$	$\mathcal{O}\left(\kappa \log \frac{1}{\rho}\right)$	$\mathcal{O}\left(nd\kappa\log\frac{1}{\rho}\right)$	$\mathcal{O}\left(\frac{d^2\kappa}{\varepsilon^{1/\alpha}}\log^2\frac{1}{\varepsilon}\right)$

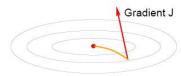
- In the last column, n and ρ are chosen to reach ε as fast as possible.
- Solve for ε to find the best error rate achievable in a given time.
- Remark: abuses of the $\mathcal{O}()$ notation

Slide	from	Léon	Botton
-------	------	------	--------

Second Order Gradient Descent (2GD)

Iterate

• $w_{t+1} \leftarrow w_t - H^{-1} \frac{\partial E_n(f_{w_t})}{\partial w}$



We assume H^{-1} is known in advance. Superlinear optimization speed (e.g., Dennis & Schnabel, 1983)

	Cost per	Iterations	Time to reach	Time to reach
	iteration	to reach ρ	accuracy ρ	$E(\tilde{f}_n) - E(f_{\mathcal{F}}^*) < \varepsilon$
2GD	$\mathcal{O}(d(d+n))$	$\mathcal{O}\left(\log \log \frac{1}{\rho}\right)$	$\mathcal{O}\left(d(d+n)\log\log\frac{1}{\rho}\right)$	$\mathcal{O}\left(\frac{d^2}{\varepsilon^{1/\alpha}}\log\frac{1}{\varepsilon}\log\log\frac{1}{\varepsilon}\right)$

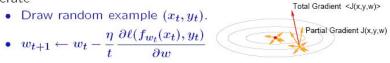
- Optimization speed is much faster.
- Learning speed only saves the condition number κ .

Slide from Léon Botton

Nicolas Le Roux (INRIA)

Stochastic Gradient Descent (SGD)

Iterate



Best decreasing gain schedule with $\eta = \frac{1}{\lambda_{\min}}$. (see Murata, 1998; Bottou & LeCun, 2004)

	Cost per	Iterations	Time to reach	Time to reach
	iteration	to reach ρ	accuracy ρ	$E(\tilde{f}_n) - E(f^*_{\mathcal{F}}) < \varepsilon$
SGD	$\mathcal{O}(d)$	$\frac{\nu k}{\rho} + o\left(\frac{1}{\rho}\right)$	$\mathcal{O}\left(\frac{d\nu k}{\rho}\right)$	$\mathcal{O}\left(\frac{d\nuk}{\varepsilon}\right)$
	With $1 \le h$	$k \leq \kappa^2$		

- Optimization speed is catastrophic.
- Learning speed does not depend on the statistical estimation rate α .
- Learning speed depends on condition number κ but scales very well.

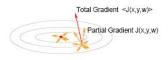
Slide from Léon Botton		(中) (월) (월) (월) [월]	୬୯୯
Nicolas Le Roux (INRIA)	Neural networks and optimization	8 Nov 2011	78 / 80

Second order Stochastic Descent (2SGD)

Iterate

• Draw random example (x_t, y_t) .

•
$$w_{t+1} \leftarrow w_t - \frac{1}{t} H^{-1} \frac{\partial \ell(f_{w_t}(x_t), y_t)}{\partial w}$$



4 **A b b b b b b**

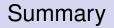
Replace scalar gain $\frac{\eta}{t}$ by matrix $\frac{1}{t}H^{-1}$.

		Iterations to reach ρ	Time to reach accuracy ρ	Time to reach $E(\tilde{f}_n) - E(f_{\mathcal{F}}^*) < \varepsilon$
2SGD	$\mathcal{O}(d^2)$	$\frac{\nu}{\rho} + o\left(\frac{1}{\rho}\right)$	$\mathcal{O}\left(\frac{d^2\nu}{\rho}\right)$	$\mathcal{O}\left(\frac{d^2\nu}{\varepsilon}\right)$

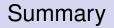
- Each iteration is d times more expensive.
- The number of iterations is reduced by κ^2 (or less.)
- Second order only changes the constant factors.

Slide from Léon Botton

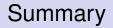
Nicolas Le Roux (INRIA)



• Stochastic methods update the parameters much more often than batch ones.



- Stochastic methods update the parameters much more often than batch ones.
- They are terrible to find the minimum of the training error.



- Stochastic methods update the parameters much more often than batch ones.
- They are terrible to find the minimum of the training error.
- It may not matter as the training error is not the test error.

- Stochastic methods update the parameters much more often than batch ones.
- They are terrible to find the minimum of the training error.
- It may not matter as the training error is not the test error.

In practice :

• You will ALMOST ALWAYS have enough data.

- Stochastic methods update the parameters much more often than batch ones.
- They are terrible to find the minimum of the training error.
- It may not matter as the training error is not the test error.

In practice :

- You will ALMOST ALWAYS have enough data.
- You will ALMOST ALWAYS lack time.

- Stochastic methods update the parameters much more often than batch ones.
- They are terrible to find the minimum of the training error.
- It may not matter as the training error is not the test error.

In practice :

- You will ALMOST ALWAYS have enough data.
- You will ALMOST ALWAYS lack time.
- You must ALMOST ALWAYS use stochastic methods.

- Stochastic methods update the parameters much more often than batch ones.
- They are terrible to find the minimum of the training error.
- It may not matter as the training error is not the test error.

In practice :

- You will ALMOST ALWAYS have enough data.
- You will ALMOST ALWAYS lack time.
- You must ALMOST ALWAYS use stochastic methods.
- How to use accelerated techniques remains to be seen.

Nicolas Le Roux (INRIA)

Neural networks and optimization