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Foreword

I’m here for you, I already know that stuff

It’s better to look silly than to stay so

Ask questions if you don’t understand !

Nicolas Le Roux (INRIA) Neural networks and optimization 8 Nov 2011 3 / 80



Goal : classification and regression

Medical imaging : cancer or not ? Classification

Autonomous driving : optimal wheel position Regression

Kinect : where are the limbs ? Regression

OCR : what are the characters ? Classification

Regression and classification are similar problems
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Goal : real-time object recognition
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Linear classifier

Dataset :
(
X (i),Y (i)

)
pairs, i = 1, . . . ,N.

X (i) ∈ Rn, Y (i) ∈ {−1,1}.

Goal : Find w and b such that sign(w>X (i) + b) = Y (i).
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Perceptron algorithm (Rosenblatt, 57)

w0 = 0, b0 = 0

Ŷ (i) = sign(w>X (i) + b)

wt+1 ← wt +
∑

i

(
Y (i) − Ŷ (i)

)
X (i)

bt+1 ← bt +
∑

i

(
Y (i) − Ŷ (i)

)
Movie linearly_separable_perceptron.avi
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Some data are not separable

The Perceptron algorithm is NOT convergent for non linearly
separable data.
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Non convergence of the perceptron algorithm

Movie non_linearly_separable_perceptron.avi

We need an algorithm which works both on separable and

non separable data.
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Cost function

Classification error is not smooth.

Sigmoid is smooth but not convex.

Convexity guarantees the same solution every time.

In practice, it is not always crucial.
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Convex cost functions

Classification error is not smooth.

Sigmoid is smooth but not convex.

Logistic loss is a convex upper bound.

Hinge loss (SVMs) is very much like logistic.
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Solving separable AND non-separable

problems

Movie non_linearly_separable_logistic.avi Movie
linearly_separable_logistic.avi
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Non-linear classification

Movie non_linearly_separable_poly_kernel.avi
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Non-linear classification

Features : X1,X2 → linear classifier

Features : X1,X2,X1X2,X 2
1 , . . .→ non-linear classifier
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Choosing the features

To make it work, I created lots of extra features :

(X1,X2,X1X2,X 2
1 X2,X1X 2

2 )
(1,2,3,...,10)

Would it work with fewer features ?

Test with (X1,X2,X1X2,X 2
1 X2,X1X 2

2 )
(1,2)

Movie non_linearly_separable_poly_2.avi
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A graphical view of the classifiers

f (X ) = w1X1 + w2X2 + b
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A graphical view of the classifiers

f (X ) = w1X1 + w2X2 + w3X 2
1 + w4X 2

2 + w5X1X2 + . . .
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Non-linear features

A linear classifier on a non-linear transformation is

non-linear.

A non-linear classifier relies on non-linear features.

Which ones do we choose ?

Example : Hj = X pj
1 X qj

2

SVM : Hj = K (X ,X (j)) with K some kernel function

Do they have to be predefined ?
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Neural networks

A neural network will learn

the Hj ’s

Usually, we use

Hj = g(v>j X )

Hj : Hidden unit

vj : Input weight

g : Transfer function
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Transfer function

f (X ) =
∑

j

wjHj(X ) + b =
∑

j

wjg(v>j X ) + b

g is the transfer function.

Usually, g is the sigmoid or the tanh.

If g is the sigmoid, each hidden unit is the output of a soft

classifier.
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Neural networks

f (X ) =
∑

j

wjHj(X ) + b =
∑

j

wjg(v>j X ) + b

Each hidden unit is a (soft) linear classifier.

We linearly combine these classifiers to get the output.
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Example on the non-separable problem

Movie non_linearly_separable_mlp_3.avi
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Training a neural network

Dataset :
(
X (i),Y (i)

)
pairs, i = 1, . . . ,N.

Goal : Find w and b such that

sign
(
w>X (i) + b

)
= Y (i)
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Training a neural network

Dataset :
(
X (i),Y (i)

)
pairs, i = 1, . . . ,N.

Goal : Find w and b to minimize∑
i

log
(
1 + exp

(
−Y (i) (w>X (i) + b

)))
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Training a neural network

Dataset :
(
X (i),Y (i)

)
pairs, i = 1, . . . ,N.

Goal : Find v1, . . . , vk , w and b to minimize

∑
i

log

1 + exp

−Y (i)

∑
j

wjg
(
v>j X (i))
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Neural network - 8 hidden units

Movie non_linearly_separable_mlp_8.avi
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Neural network - 5 hidden units

Movie non_linearly_separable_mlp_5.avi
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Neural network - 3 hidden units

Movie non_linearly_separable_mlp_3.avi
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Neural network - 2 hidden units

Movie non_linearly_separable_mlp_2.avi
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Non-linear classification
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Non-linear classification
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Non-linear classification

Nicolas Le Roux (INRIA) Neural networks and optimization 8 Nov 2011 27 / 80



Cost function

s = cost function (logistic loss, hinge loss, ...)

`(v ,w ,b,X (i),Y (i)) = s
(

Ŷ (i),Y (i)
)

= s

∑
j

wjHj(X (i)),Y (i)


= s

∑
j

wjg
(
v>j X (i)) ,Y (i)
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Backpropagation - Output weights

s = cost function (logistic loss, hinge loss, ...)

Ŷ (i) =
∑

j

wjHj(X (i))

∂`(v ,w ,b,X (i),Y (i))

∂wj
=
∂`(v ,w ,b,X (i),Y (i))

∂Ŷ (i)

∂Ŷ (i)

∂wj

=
∂`(v ,w ,b,X (i),Y (i))

∂Ŷ (i)
Hj(X (i))
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Backpropagation - Input weights

s = cost function (logistic loss, hinge loss, ...)

Ŷ (i) =
∑

j

wjHj(X (i))

Hj(X (i)) = g
(
v>j X (i))

∂`(v ,w ,b,X (i),Y (i))

∂vj
=
∂`(v ,w ,b,X (i),Y (i))

∂Hj(X (i))

∂Hj(X (i))

∂vj

=
∂`(v ,w ,b,X (i),Y (i))

∂Ŷ (i)

∂Ŷ (i)

∂Hj(X (i))

∂Hj(X (i))

∂vj

=
∂`(v ,w ,b,X (i),Y (i))

∂Ŷ (i)
wjX (i)g′

(
v>j X (i))
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Training neural networks - Summary

For each datapoint, compute the gradient of the cost with

respect to the weights.

Done using the backpropagation of the gradient.

Convex with respect to the output weights (linear classifier).

NOT convex with respect to the input weights : POTENTIAL

PROBLEMS !

Nicolas Le Roux (INRIA) Neural networks and optimization 8 Nov 2011 31 / 80



Neural networks - Summary

A linear classifier in a feature space can model non-linear

boundaries.

Finding a good feature space is essential.

One can design the feature map by hand.

One can learn the feature map, using fewer features than if

it done by hand.

Learning the feature map is potentially HARD

(non-convexity).
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Neural networks - Not summary

Linear combination of the output of soft classifiers.

This is a non-linear classifier.

One can take a linear combination of these.

This becomes a neural network with two hidden layers.
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Advantages of neural networks

They can learn anything.

Extremely fast at test time (computing the answer for a new

datapoint) because fewer features.

Complete control over the power of the network (by

controlling the hidden layers sizes).
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Problems of neural networks

Highly non-convex→ many local minima

Can learn anything but have more parameters→ need tons

of examples to be good.
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Take-home messages

Neural networks are potentially extremely efficient.

But it is HARD to train them !

If you wish to use them, be smart (or ask someone who

knows) !

If you have a huge dataset, they CAN be awesome !
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vj ’s for images

f (X ) =
∑

j

wjHj(X ) + b =
∑

j

wjg(v>j X ) + b

If X is an image, vj is an image too.

vj acts as a filter (presence or absence of a pattern).

What does vj look like ?
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vj ’s for images - Examples

Filters are mostly local
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Basic idea of convolutional neural networks

Filters are mostly local.

Instead of using image-wide filters, use small ones over

patches.

Repeat for every patch to get a response image.

Subsample the response image to get local invariance.

Nicolas Le Roux (INRIA) Neural networks and optimization 8 Nov 2011 39 / 80



Filtering - Filter 1

Original image Filter Output image
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Filtering - Filter 2

Original image Filter Output image
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Filtering - Filter 3

Original image Filter Output image
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Pooling - Filter 1

Original image Output image Subsampled image

How to do 2x subsampling-pooling :

Output image = O, subsampled image = S.

Sij = maxk over window around (2i,2j) Ok .
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Pooling - Filter 3
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A convolutional layer
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Transforming the data with a layer

Original datapoint New datapoint
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A convolutional network
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Face detection
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Face detection
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NORB dataset

50 toys belonging to 5 categories

I animal, human figure, airplane, truck, car

10 instance per category

I 5 instances used for training, 5 instances for testing

Raw dataset

I 972 stereo pairs of each toy. 48,600 image pairs total.
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NORB dataset - 2

For each instance :

18 azimuths

0 to 350 degrees every 20 degrees

9 elevations

30 to 70 degrees from horizontal every 5 degrees

6 illuminations

on/off combinations of 4 lights

2 cameras (stereo), 7.5 cm apart

40 cm from the object
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NORB dataset - 3
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Textured and cluttered versions
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90,857 free parameters, 3,901,162 connections.

The entire network is trained end-to-end (all the layers are

trained simultaneously).
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Normalized-Uniform set

Method Error
Linear Classifier on raw stereo images 30.2%
K-Nearest-Neighbors on raw stereo images 18.4%
K-Nearest-Neighbors on PCA-95 16.6%
Pairwise SVM on 96x96 stereo images 11.6%
Pairwise SVM on 95 Principal Components 13.3%
Convolutional Net on 96x96 stereo images 5.8%
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Jittered-Cluttered Dataset

291,600 stereo pairs for training, 58,320 for testing

Objects are jittered

I position, scale, in-plane rotation, contrast, brightness,

backgrounds, distractor objects,...

Input dimension : 98x98x2 (approx 18,000)
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Jittered-Cluttered Dataset - Results

Method Error
SVM with Gaussian kernel 43.3%
Convolutional Net with binocular input 7.8%
Convolutional Net + SVM on top 5.9%
Convolutional Net with monocular input 20.8%
Smaller mono net (DEMO) 26.0%

Dataset available from http://www.cs.nyu.edu/˜yann
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NORB recognition - 1
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NORB recognition - 2
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NORB recognition - 3
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NORB recognition - 4
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NORB recognition - 5
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NORB recognition - 6
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Summary

With complex problems, it is hard to design features by

hand.

Neural networks circumvent this problem.

They can be hard to train (again...).

Convolutional neural networks use knowledge about locality

in images.

They are much easier than standard networks.

And they are FAST (again...).
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What has not been covered

In some cases, we have lots of data, but without the labels.

Unsupervised learning.

There are techniques to use these data to get better

performance.

E.g. : Task-Driven Dictionary Learning, Mairal et al.
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The need for fast learning

Neural networks may need many examples (several millions

or more).

We need to be able to use them quickly.
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Batch methods

L(θ) =
1
N

∑
i

`(θ,X (i),Y (i))

θt+1 → θt −
αt

N

∑
i

∂`(θ,X (i),Y (i))

∂θ

To compute one update of the parameters, we need to go

through all the data.

This can be very expensive.

What if we have an infinite amount of data ?

Nicolas Le Roux (INRIA) Neural networks and optimization 8 Nov 2011 69 / 80



Potential solutions

1 Discard data.

I Seems stupid

I Yet many people do it

2 Use approximate methods.

I Update = average of the updates for all datapoints.

I Are these update really different ?

I If not, how can we learn faster ?
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Stochastic gradient descent

L(θ) =
1
N

∑
i

`(θ,X (i),Y (i))

θt+1 → θt −
αt

N

∑
i

∂`(θ,X (i),Y (i))

∂θ
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Stochastic gradient descent

L(θ) =
1
N

∑
i

`(θ,X (i),Y (i))

θt+1 → θt − αt
∂`(θ,X (it ),Y (it ))

∂θ
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Stochastic gradient descent

L(θ) =
1
N

∑
i

`(θ,X (i),Y (i))

θt+1 → θt − αt
∂`(θ,X (it ),Y (it ))

∂θ

What do we lose when updating the parameters to satisfy just
one example ?

Nicolas Le Roux (INRIA) Neural networks and optimization 8 Nov 2011 71 / 80



Disagreement

‖µ‖2/σ2 during optimization

(log scale)

As optimization progresses,

disagreement increases

Early on, one can pick one

example at a time

What about later ?
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Training vs test

Standard learning paradigm :

We want to solve a task on new datapoints.

We have a training set.

We hope that the performance on the training set is

informative of the performance on new datapoints.
Can we know when we start overfitting ?
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Overfitting

When all gradients disagree, stochastic error stalls.

When all gradients disagree, training and test error part.

IT DOES NOT MATTER IF ONE DOES NOT REACH THE
MINIMUM OF THE TRAINING ERROR !
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Decomposition of the error

E(f̃n)− E(f ∗) = E(f ∗F)− E(f ∗) Approximation error
+ E(fn)− E(f ∗F) Estimation error

+ E(f̃n)− E(fn) Optimization error

Questions :

1 Do we optimize the training error to decrease E(f̃n)−E(fn)?

2 Do we increase n to decrease E(fn)− E(f ∗F)?
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Slide from Léon Botton
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Slide from Léon Botton

Nicolas Le Roux (INRIA) Neural networks and optimization 8 Nov 2011 78 / 80



Slide from Léon Botton
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Summary

Stochastic methods update the parameters much more

often than batch ones.

They are terrible to find the minimum of the training error.

It may not matter as the training error is not the test error.
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Summary

Stochastic methods update the parameters much more

often than batch ones.

They are terrible to find the minimum of the training error.

It may not matter as the training error is not the test error.

In practice :

You will ALMOST ALWAYS have enough data.

You will ALMOST ALWAYS lack time.

You must ALMOST ALWAYS use stochastic methods.

How to use accelerated techniques remains to be seen.
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