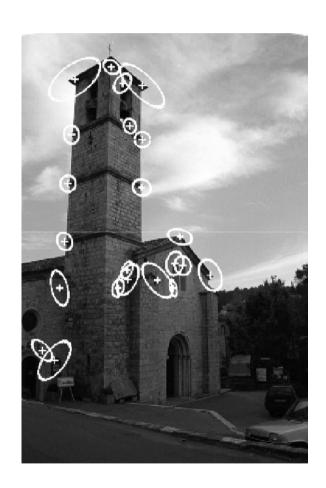
Instance level recognition IV: Very large databases

Cordelia Schmid LEAR – INRIA Grenoble

Visual search

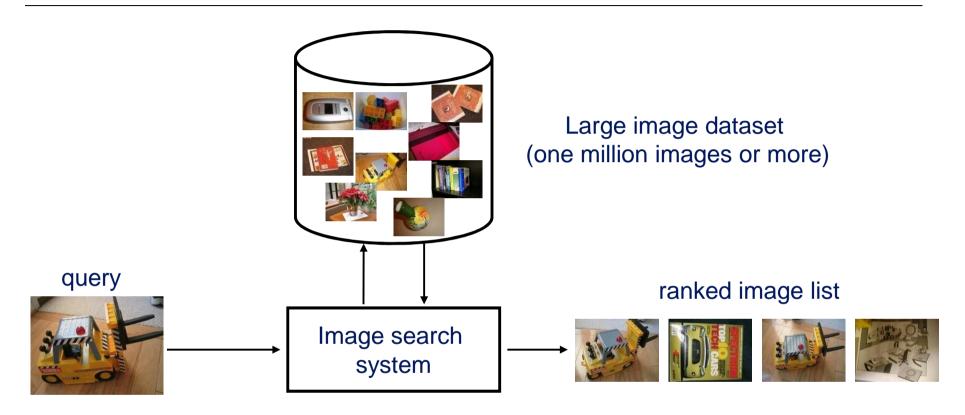
change in viewing angle

Matches



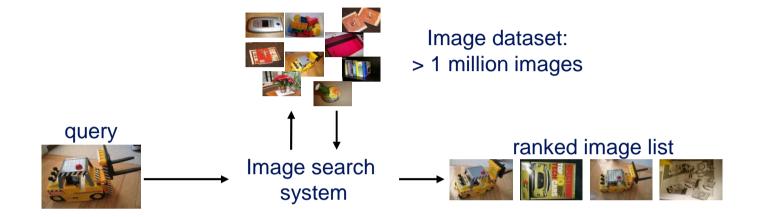
22 correct matches

Image search system for large datasets



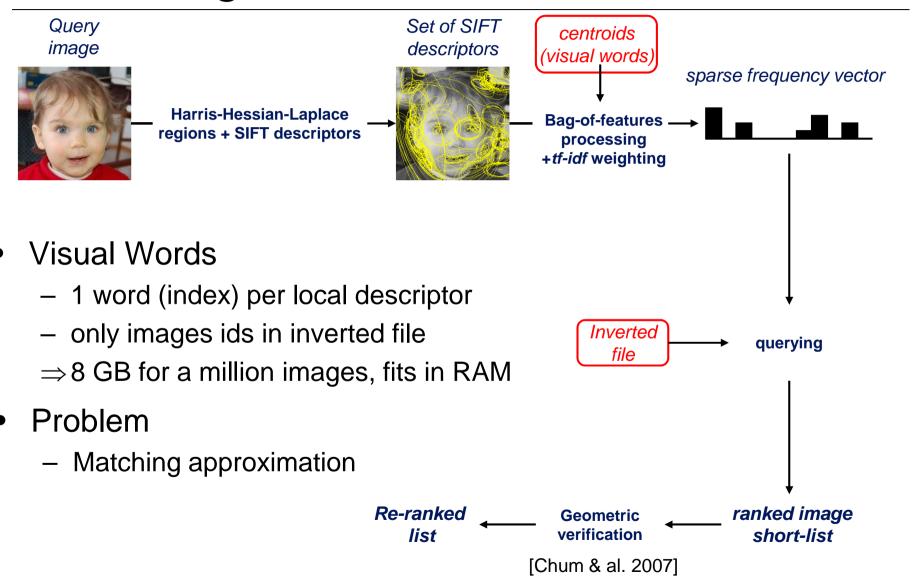
- **Issues** for very large databases
 - to reduce the query time
 - to reduce the storage requirements
 - with minimal loss in retrieval accuracy

Large scale object/scene recognition



- Each image described by approximately 2000 descriptors
 - 2 * 10⁹ descriptors to index for one million images!
- Database representation in RAM:
 - Size of descriptors: 1 TB, search+memory intractable

Bag-of-features [Sivic&Zisserman'03]



Visual words – approximate NN search

- Map descriptors to words by quantizing the feature space
 - Quantize via k-means clustering to obtain visual words
 - Assign descriptors to closest visual words
- Bag-of-features as approximate nearest neighbor search

Descriptor matching with *k*-nearest neighbors

$$f_{k\text{-NN}}(x,y) = \begin{cases} 1 & \text{if } x \text{ is a } k\text{-NN of } y \\ 0 & \text{otherwise} \end{cases}$$

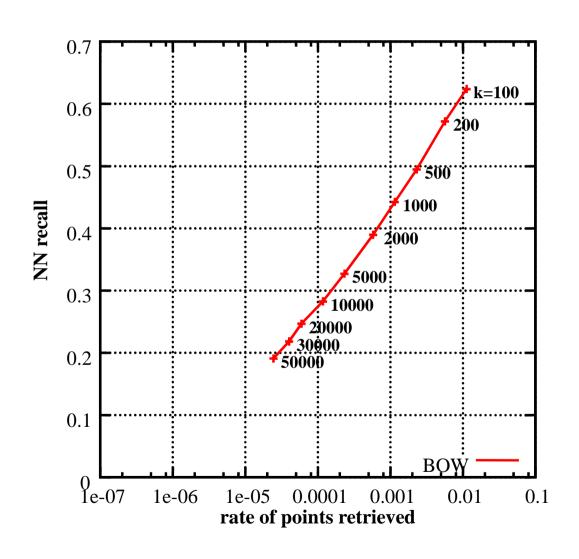
Bag-of-features matching function $f_q(x,y) = \delta_{q(x),q(y)}$

where q(x) is a quantizer, i.e., assignment to a visual word and $\delta_{a,b}$ is the Kronecker operator ($\delta_{a,b}$ =1 iff a=b)

Approximate nearest neighbor search evaluation

- •ANN algorithms usually returns a short-list of nearest neighbors
 - this short-list is supposed to contain the NN with high probability
 - exact search may be performed to re-order this short-list
- Proposed quality evaluation of ANN search: trade-off between
 - Accuracy: NN recall = probability that the NN is in this list
 against
 - Ambiguity removal = proportion of vectors in the short-list
 - the lower this proportion, the more information we have about the vector
 - the lower this proportion, the lower the complexity if we perform exact search on the short-list
- •ANN search algorithms usually have some parameters to handle this trade-off

ANN evaluation of bag-of-features

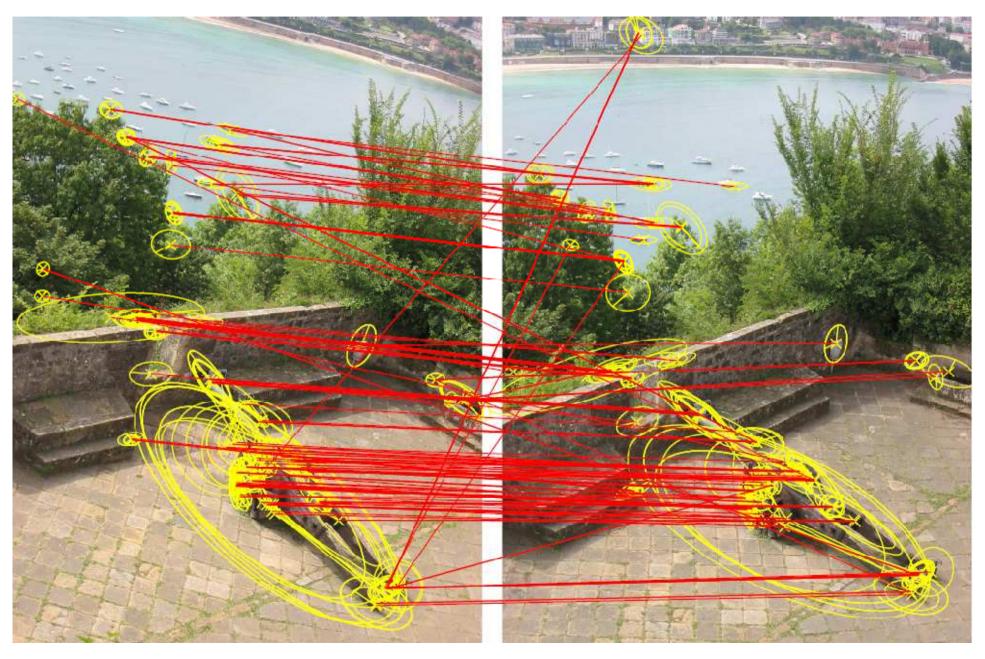


- •ANN algorithms returns a list of potential neighbors
- •Accuracy: NN recall = probability that *the* NN is in this list
- •Ambiguity removal: = proportion of vectors in the short-list
- •In BOF, this trade-off is managed by the number of clusters *k*

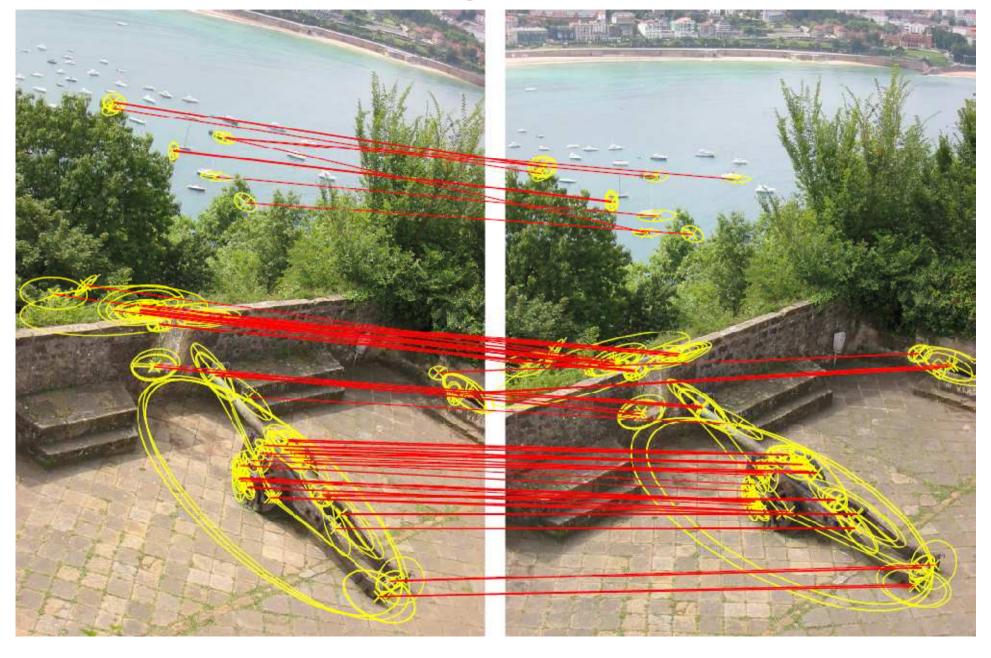
Vocabulary size

- The intrinsic matching scheme performed by BOF is weak
 - for a "small" visual dictionary: too many false matches
 - for a "large" visual dictionary: complexity, true matches are missed
- No good trade-off between "small" and "large"!
 - either the Voronoi cells are too big
 - or these cells can't absorb the descriptor noise
 - → intrinsic approximate nearest neighbor search of BOF is not sufficient

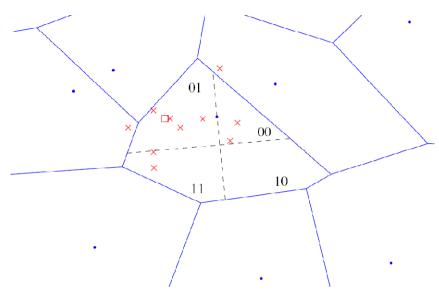
20K visual word: false matches



200K visual word: good matches missed



Hamming Embedding [Jegou et al. ECCV'08]



Representation of a descriptor *x*

- Vector-quantized to q(x) as in standard BOF
- + short binary vector b(x) for an additional localization in the Voronoi cell

Two descriptors x and y match iif

$$f_{\mathrm{HE}}(x,y) = \begin{cases} & (\mathrm{tf\text{-}idf}(q(x)))^2 & \text{if } q(x) = q(y) \\ & \text{and } h\left(b(x),b(y)\right) \leq h_t & \text{h(a,b)} \text{ Hamming distance} \\ 0 & \text{otherwise} \end{cases}$$

Term frequency – inverse document frequency

- Weighting with tf-idf score: weight visual words based on their frequency
 - Tf: normalized term (word) frequency ti in a document dj

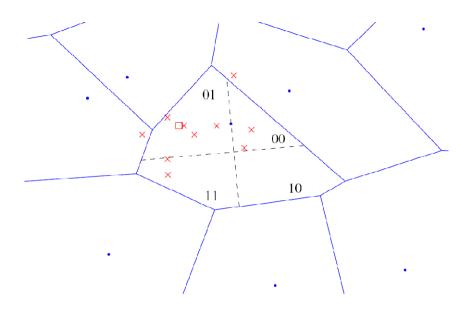
$$tf_{ij} = n_{ij} / \sum_{k} n_{kj}$$

•ldf: inverse document frequency, total number of documents divided by number of documents containing the term ti

$$idf_i = \log \frac{|D|}{|\{d : t_i \in d\}|}$$

Tf-Idf:
$$tf - idf_{ij} = tf_{ij} \cdot idf_{i}$$

Hamming Embedding [Jegou et al. ECCV'08]



- •Nearest neighbors for Hamming distance ≈ those for Euclidean distance
- → a metric in the embedded space reduces dimensionality curse effects

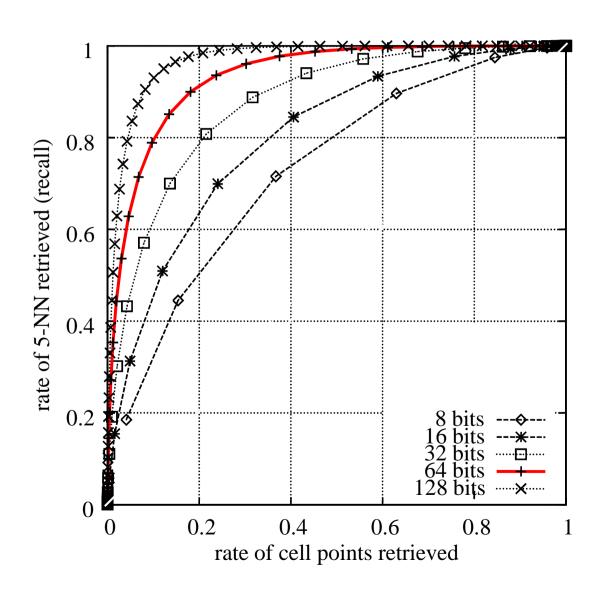
Efficiency

- Hamming distance = very few operations
- Fewer random memory accesses: 3 x faster that BOF with same dictionary size!

Hamming Embedding

- Off-line (given a quantizer)
 - draw an orthogonal projection matrix P of size $d_b \times d$
 - → this defines d_b random projection directions
 - for each Voronoi cell and projection direction, compute the median value for a learning set
- •On-line: compute the binary signature b(x) of a given descriptor
 - project x onto the projection directions as $z(x) = (z_1, ..., z_{db})$
 - $-b_i(x) = 1$ if $z_i(x)$ is above the learned median value, otherwise 0

Hamming neighborhood

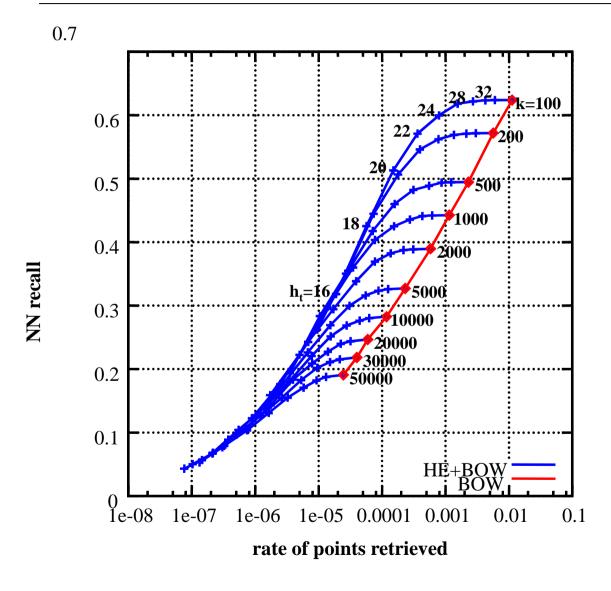


Trade-off between memory usage and accuracy

→ More bits yield higher accuracy

In practice, 64 bits (8 byte)

ANN evaluation of Hamming Embedding



compared to BOW: at least 10 times less points in the short-list for the same level of accuracy

Hamming Embedding provides a much better trade-off between recall and ambiguity removal

Matching points - 20k word vocabulary

201 matches 240 matches



Many matches with the non-corresponding image!

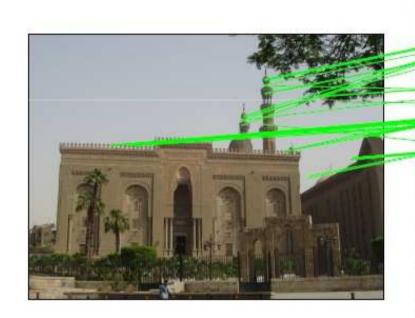
Matching points - 200k word vocabulary

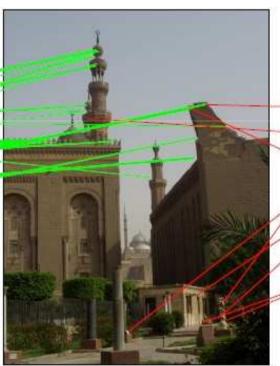
69 matches 35 matches

Still many matches with the non-corresponding one

Matching points - 20k word vocabulary + HE

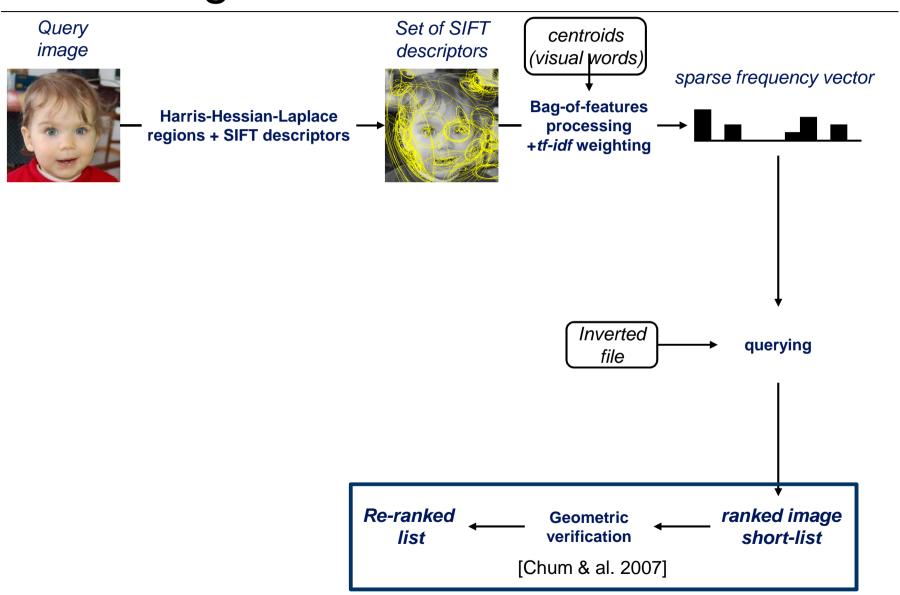
83 matches 8 matches





10x more matches with the corresponding image!

Bag-of-features [Sivic&Zisserman'03]



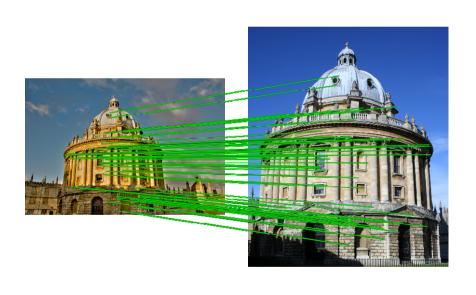
Geometric verification

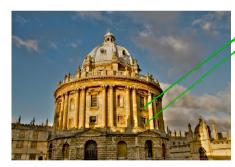
Use the **position** and **shape** of the underlying features to improve retrieval quality

Both images have many matches – which is correct?

Geometric verification

We can measure **spatial consistency** between the query and each result to improve retrieval quality



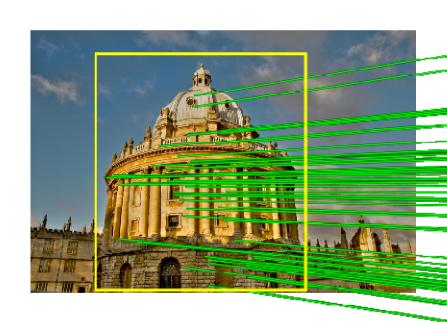


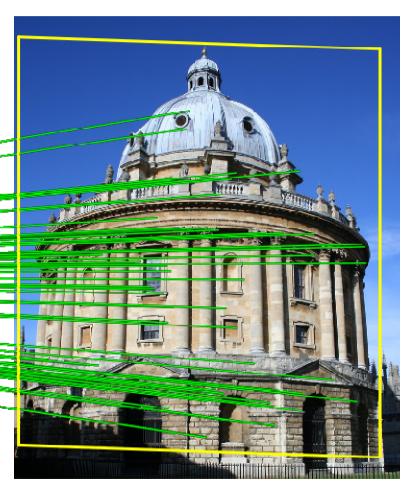
Many spatially consistent matches – **correct result**

Few spatially consistent matches – **incorrect result**

Geometric verification

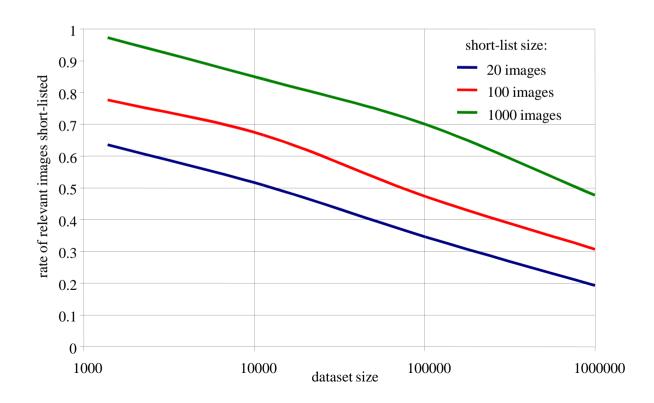
Gives localization of the object





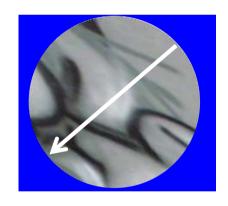
Weak geometry consistency

- Re-ranking based on full geometric verification
 - works very well
 - but performed on a short-list only (typically, 100 images)
 - → for very large datasets, the number of distracting images is so high that relevant images are not even short-listed!



Weak geometry consistency

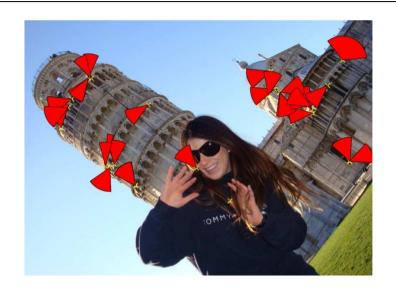
- Weak geometric information used for all images (not only the short-list)
- Each invariant interest region detection has a scale and rotation angle associated, here characteristic scale and dominant gradient orientation



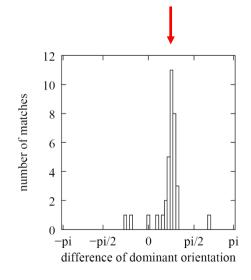
Scale change 2 Rotation angle ca. 20 degrees

- Each matching pair results in a scale and angle difference
- For the global image scale and rotation changes are roughly consistent

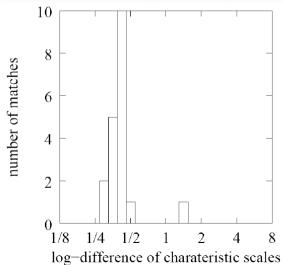
WGC: orientation consistency



Max = rotation angle between images



WGC: scale consistency



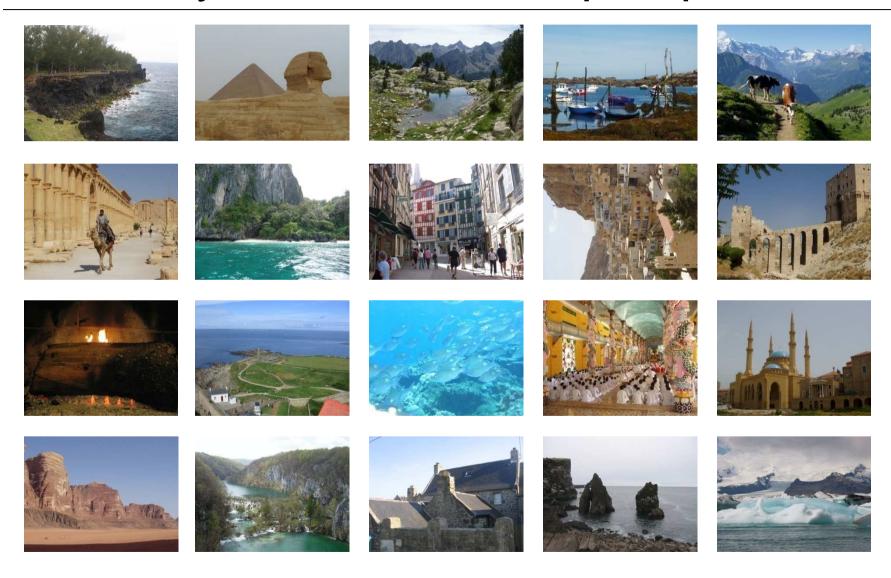
Weak geometry consistency

- Integration of the geometric verification into the BOF
 - votes for an image in two quantized subspaces, i.e. for angle & scale
 - these subspace are show to be roughly independent
 - final score: filtering for each parameter (angle and scale)
- Only matches that do agree with the main difference of orientation and scale will be taken into account in the final score
- Re-ranking using full geometric transformation still adds information in a final stage

INRIA holidays dataset

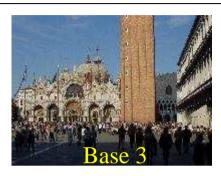
- Evaluation for the INRIA holidays dataset, 1491 images
 - 500 query images + 991 annotated true positives
 - Most images are holiday photos of friends and family
- 1 million & 10 million distractor images from Flickr
- Vocabulary construction on a different Flickr set
- Almost real-time search speed
- Evaluation metric: mean average precision (in [0,1], bigger = better)
 - Average over precision/recall curve

Holiday dataset – example queries



Dataset: Venice Channel

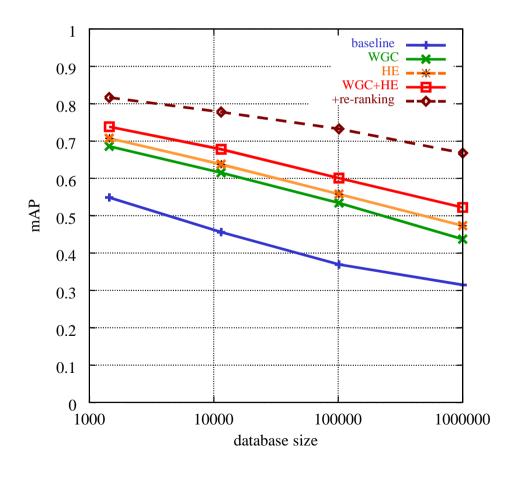
Dataset: San Marco square



Example distractors - Flickr

Experimental evaluation

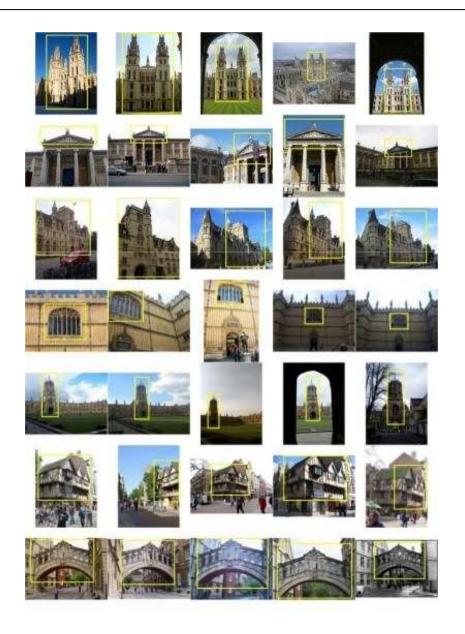
- Evaluation on our holidays dataset, 500 query images, 1 million distracter images
- Metric: mean average precision (in [0,1], bigger = better)



Average query time (4 CPU cores)	
Compute descriptors	880 ms
Quantization	600 ms
Search – baseline	620 ms
Search – WGC	2110 ms
Search – HE	200 ms
Search - HE+WGC	650 ms

Results – Venice Channel

Comparison with the state of the art: Oxford dataset [Philbin et al. CVPR'07]



Evaluation measure:
Mean average precision (mAP)

Comparison with the state of the art: Kentucky dataset [Nister et al. CVPR'06]

4 images per object

Evaluation measure: among the 4 best retrieval results how many are correct (ranges from 1 to 4)

Comparison with the state of the art

dataset	Oxford		Kentucky	
distractors	0	100K	0	1M
soft assignment [14]	0.493	0.343		
ours	0.615	0.516		
soft + geometrical re-ranking [14]	0.598	0.480		
ours + geometrical re-ranking	0.667	0.591		
soft + query expansion [14]	0.718	0.605		
ours + query expansion	0.747	0.687		
hierarchical vocabulary [6]			3.19	
CDM [11]			3.61	2.93
ours			3.42	3.10
ours + geometrical re-ranking			3.55	3.40

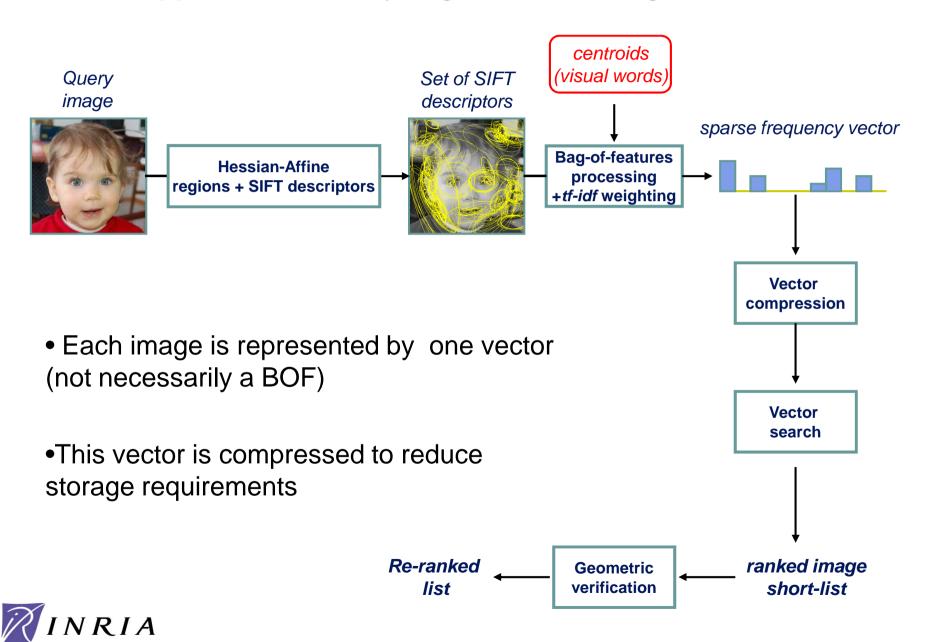
On-line demonstration

Demo at http://bigimbaz.inrialpes.fr

Towards larger databases?

- BOF can handle up to ~10 M d'images
 - with a limited number of descriptors per image
 - ▶ 40 GB of RAM
 - \triangleright search = 2 s
- Web-scale = billions of images
 - ▶ With 100 M per machine
 - \rightarrow search = 20 s, RAM = 400 GB
 - → not tractable!

Recent approaches for very large scale indexing

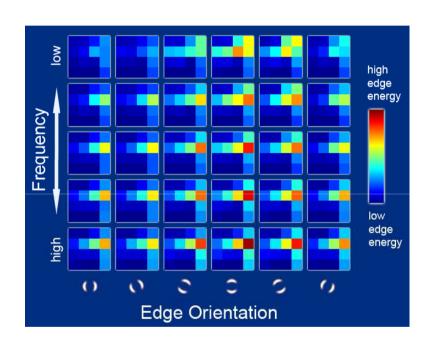


Related work on very large scale image search

- Min-hash and geometrical min-hash [Chum et al. 07-09]
- Compressing the BoF representation (miniBof) [Jegou et al. 09]
 - → these approaches require hundreds of bytes to obtain a "reasonable quality"
- GIST descriptors with Spectral Hashing [Weiss et al.'08]
 - → very limited invariance to scale/rotation/crop

Global scene context – GIST descriptor

• The "gist" of a scene: Oliva & Torralba (2001)

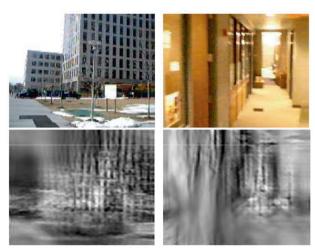


- 5 frequency bands and 6 orientations for each image location
- Tiling of the image to describe the image

GIST descriptor + spectral hashing

• The position of the descriptor in the image is encoded in the representation

Gist



Torralba et al. (2003)

Spectral hashing produces binary codes similar to spectral clusters

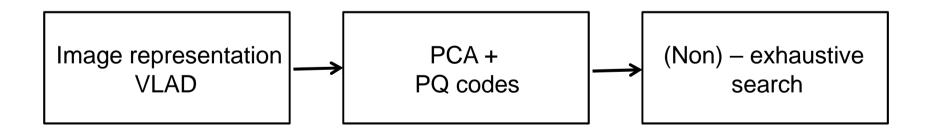
Related work on very large scale image search

- Min-hash and geometrical min-hash [Chum et al. 07-09]
- Compressing the BoF representation (miniBof) [Jegou et al. 09]
 - → require hundreds of bytes are required to obtain a "reasonable quality"

- GIST descriptors with Spectral Hashing [Weiss et al.'08]
 - → very limited invariance to scale/rotation/crop
- Aggregating local descriptors into a compact image representation [Jegou &al.'10]
- Efficient object category recognition using classemes [Torresani et al.'10]

Compact image representation

- Aim: improving the tradeoff between
 - search speed
 - memory usage
 - search quality
- Approach: joint optimization of three stages
 - local descriptor aggregation
 - dimension reduction
 - indexing algorithm



[H. Jegou et al., Aggregating local desc into a compact image representation, CVPR'10]

Aggregation of local descriptors

• Problem: represent an image by a single fixed-size vector:

set of *n* local descriptors \rightarrow 1 vector

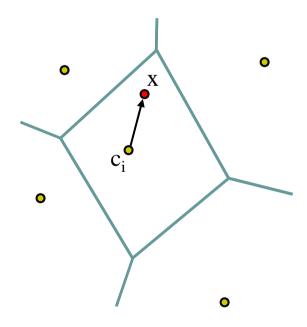
- Most popular idea: BoF representation [Sivic & Zisserman 03]
 - sparse vector
 - highly dimensional
- → high dimensionality reduction/compression introduces loss
- Alternative : vector of locally aggregated descriptors (VLAD)
 - non sparse vector
 - excellent results with a small vector dimensionality

VLAD: vector of locally aggregated descriptors

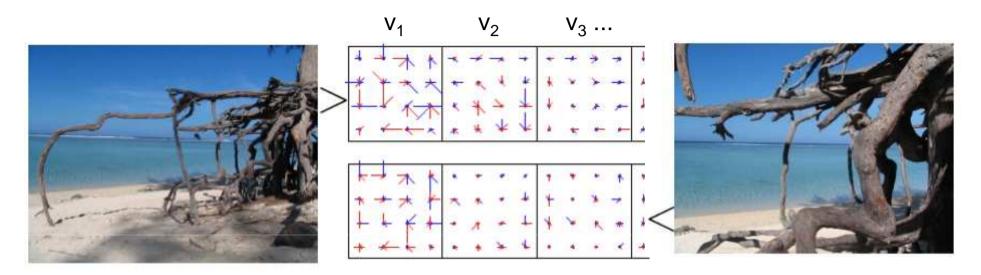
- Learning: a vector quantifier (*k*-means)
 - output: k centroids (visual words): c₁,...,c_i,...c_k
 - centroid c_i has dimension d
- For a given image
 - assign each descriptor to closest center c_i
 - accumulate (sum) descriptors per cell

$$V_i := V_i + (X - C_i)$$

- VLAD (dimension $D = k \times d$)
- The vector is L2-normalized
- Alternative: Fisher vector



VLADs for corresponding images



SIFT-like representation per centroid (+ components: blue, - components: red)

good coincidence of energy & orientations

VLAD performance and dimensionality reduction

- We compare VLAD descriptors with BoF: INRIA Holidays Dataset (mAP,%)
- Dimension is reduced to from D to D' dimensions with PCA

Aggregator	k	D	D'=D (no reduction)	D'=128	D'=64
BoF	1,000	1,000	41.4	44.4	43.4
BoF	20,000	20,000	44.6	45.2	44.5
BoF	200,000	200,000	54.9	43.2	41.6
VLAD	16	2,048	49.6	49.5	49.4
VLAD	64	8,192	52.6	51.0	47.7
VLAD	256	32,768	57.5	50.8	47.6

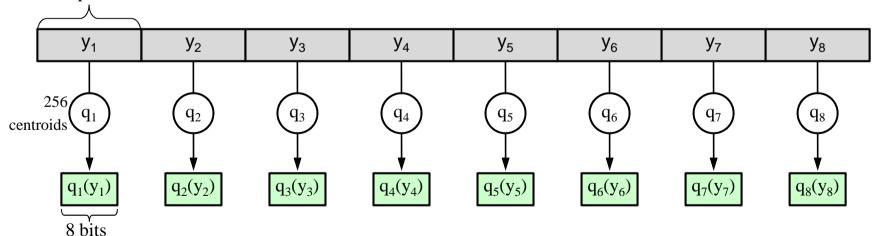
Observations:

- VLAD better than BoF for a given descriptor size
 - → comparable to Fisher kernels for these operating points
- Choose a small D if output dimension D' is small

Product quantization for nearest neighbor search

- Vector split into m subvectors: $y \to [y_1 | \dots | y_m]$
- Subvectors are quantized separately by quantizers $q(y) = [q_1(y_1)| \dots | q_m(y_m)]$ where each q_i is learned by k-means with a limited number of centroids
- Example: y = 128-dim vector split in 8 subvectors of dimension 16
 - each subvector is quantized with 256 centroids -> 8 bit
 - very large codebook 256^8 ~ 1.8x10^19

16 components

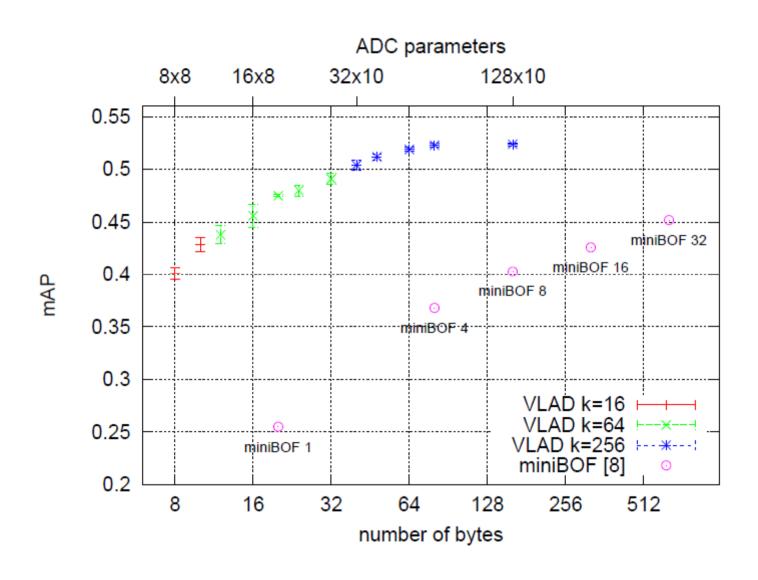


 \Rightarrow 8 subvectors x 8 bits = 64-bit quantization index

Joint optimization of VLAD and dimension reduction-indexing

- For VLAD
 - \blacktriangleright The larger k, the better the raw search performance
 - ▶ But large *k* produce large vectors, that are harder to index
- Optimization of the vocabulary size
 - Fixed output size (in bytes)
 - \triangleright D' computed from k via the joint optimization of reduction/indexing
 - \triangleright Only k has to be set
 - → end-to-end parameter optimization

Results on the Holidays dataset with various quantization parameters



Results on standard datasets

Datasets

University of Kentucky benchmark

► INRIA Holidays dataset

score: nb relevant images, max: 4

score: mAP (%)

Method	bytes	UKB	Holidays
BoF, k=20,000	10K	2.92	44.6
BoF, k=200,000	12K	3.06	54.9
miniBOF	20	2.07	25.5
miniBOF	160	2.72	40.3
VLAD k=16, ADC 16 x 8	16	2.88	46.0
VLAD k=64, ADC 32 x10	40	3.10	49.5

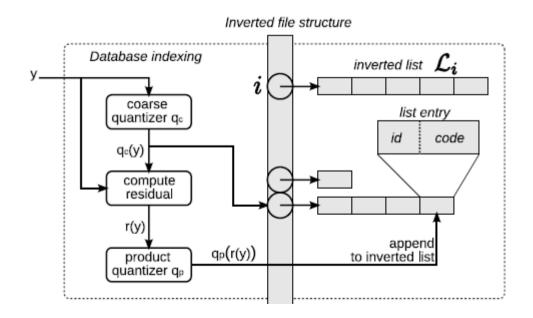
D' = 64 for k = 16 and D' = 96 for k = 64

ADC (subvectors) x (bits to encode each subvector)

Large scale experiments (10 million images)

- Exhaustive search of VLADs, D'=64
 - ▶ 4.77s
- With the product quantizer
 - **Exhaustive search with ADC:** 0.29s
 - Non-exhaustive search with IVFADC: 0.014s

IVFADC -- Combination with an inverted file



Large scale experiments (10 million images)

