
Instance level recognition IV:
Very large databases

Cordelia Schmid
LEAR – INRIA Grenoble

Visual search

……

change in viewing angle

Matches

22 correct matches

Image search system for large datasets

Large image dataset
(one million images or more)

Image search
system

ranked image listquery

• Issues for very large databases
• to reduce the query time
• to reduce the storage requirements
• with minimal loss in retrieval accuracy

Large scale object/scene recognition

Image search
system

ranked image list

Image dataset:
> 1 million images

query

• Each image described by approximately 2000 descriptors
– 2 * 109 descriptors to index for one million images!

• Database representation in RAM:
– Size of descriptors : 1 TB, search+memory intractable

Bag-of-features [Sivic&Zisserman’03]

Harris-Hessian-Laplace
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

sparse frequency vector

centroids
(visual words)

Set of SIFT
descriptors

Query
image

• Visual Words

querying
Inverted

file

ranked image
short-list

Geometric
verification

Re-ranked
list

• Visual Words
– 1 word (index) per local descriptor
– only images ids in inverted file
⇒8 GB for a million images, fits in RAM

[Chum & al. 2007]

• Problem
– Matching approximation

Visual words – approximate NN search

• Map descriptors to words by quantizing the feature space
– Quantize via k-means clustering to obtain visual words
– Assign descriptors to closest visual words

• Bag-of-features as approximate nearest neighbor search • Bag-of-features as approximate nearest neighbor search

Bag-of-features matching function

Descriptor matching with k-nearest neighbors

where q(x) is a quantizer, i.e., assignment to a visual word and
δa,b is the Kronecker operator (δa,b=1 iff a=b)

Approximate nearest neighbor search evaluation
•ANN algorithms usually returns a short-list of nearest neighbors

– this short-list is supposed to contain the NN with high probability
– exact search may be performed to re-order this short-list

•Proposed quality evaluation of ANN search: trade-off between
– Accuracy : NN recall = probability that the NN is in this list

againstagainst
– Ambiguity removal = proportion of vectors in the short-list

- the lower this proportion, the more information we have about the
vector

- the lower this proportion, the lower the complexity if we perform exact
search on the short-list

•ANN search algorithms usually have some parameters to handle this trade-off

ANN evaluation of bag-of-features
•ANN algorithms
returns a list of
potential neighbors

•Accuracy : NN recall
= probability that the
NN is in this list

N
N

 r
ec

al
l

0.4

0.5

0.6

0.7

k=100

200

500

1000

2000
NN is in this list

•Ambiguity removal :
= proportion of vectors
in the short-list

•In BOF, this trade-off
is managed by the
number of clusters k

N
N

 r
ec

al
l

0

0.1

0.2

0.3

0.4

1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1
rate of points retrieved

2000

5000

10000
20000

30000
50000

BOW

Vocabulary size

• The intrinsic matching scheme performed by BOF is weak
– for a “small” visual dictionary: too many false matches
– for a “large” visual dictionary: complexity, true matches are missed

• No good trade-off between “small” and “large” !• No good trade-off between “small” and “large” !
– either the Voronoi cells are too big
– or these cells can’t absorb the descriptor noise
→ intrinsic approximate nearest neighbor search of BOF is not

sufficient

20K visual word: false matches

200K visual word: good matches missed

Hamming Embedding [Jegou et al. ECCV’08]

Representation of a descriptor x
– Vector-quantized to q(x) as in standard BOF
+ short binary vector b(x) for an additional localization in the Voronoi cell

Two descriptors x and y match iif

h(a,b) Hamming distance

Term frequency – inverse document frequency

• Weighting with tf-idf score: weight visual words based on their frequency

•Tf: normalized term (word) frequency ti in a document dj

∑= kjijij nntf /

Image credit: A. Zisserman K. Grauman, B. Leibe

•Idf: inverse document frequency, total number of documents divided by
number of documents containing the term ti

Tf-Idf:

∑=
k

kjijij nntf /

{ }dtd

D
idf

i
i ∈

=
:

log

iijij idftfidftf ⋅=−

Hamming Embedding [Jegou et al. ECCV’08]

•Nearest neighbors for Hamming distance ≈ those for Euclidean distance
→ a metric in the embedded space reduces dimensionality curse effects

•Efficiency
– Hamming distance = very few operations
– Fewer random memory accesses: 3 x faster that BOF with same

dictionary size!

Hamming Embedding

•Off-line (given a quantizer)
– draw an orthogonal projection matrix P of size db × d

→ this defines db random projection directions
– for each Voronoi cell and projection direction, compute the median – for each Voronoi cell and projection direction, compute the median

value for a learning set

•On-line : compute the binary signature b(x) of a given
descriptor

– project x onto the projection directions as z(x) = (z1,…zdb)
– bi(x) = 1 if zi(x) is above the learned median value, otherwise 0

Hamming neighborhood

0.6

0.8

1

N
N

 r
et

rie
ve

d
(r

ec
al

l)

Trade-off between memory
usage and accuracy

0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8 1

ra
te

 o
f 5

-N
N

 r
et

rie
ve

d
(r

ec
al

l)

rate of cell points retrieved

8 bits
16 bits
32 bits
64 bits

128 bits

�More bits yield higher
accuracy

In practice, 64 bits (8 byte)

ANN evaluation of Hamming Embedding
0.7

0.4

0.5

0.6
k=100

200

500

1000

2000

18

20

22

32 28
24 compared to BOW: at least

10 times less points in the
short-list for the same level
of accuracy

N
N

 r
ec

al
l

0

0.1

0.2

0.3

0.4

1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

rate of points retrieved

2000

5000

10000
20000

30000
50000

ht=16

HE+BOW
BOW

Hamming Embedding
provides a much better
trade-off between recall
and ambiguity removal

Matching points - 20k word vocabulary

201 matches 240 matches

Many matches with the non-corresponding image!

Matching points - 200k word vocabulary

69 matches 35 matches

Still many matches with the non-corresponding one

Matching points - 20k word vocabulary + HE

83 matches 8 matches

10x more matches with the corresponding image!

Bag-of-features [Sivic&Zisserman’03]

Harris-Hessian-Laplace
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

sparse frequency vector

centroids
(visual words)

Set of SIFT
descriptors

Query
image

querying
Inverted

file

ranked image
short-list

Geometric
verification

Re-ranked
list

[Chum & al. 2007]

Geometric verification

Use the position and shape of the underlying features
to improve retrieval quality

Both images have many matches – which is correct?

Geometric verification

We can measure spatial consistency between the query
and each result to improve retrieval quality

Many spatially consistent
matches –correct result

Few spatially consistent
matches –incorrect

result

Geometric verification

Gives localization of the object

Weak geometry consistency
• Re-ranking based on full geometric verification

– works very well
– but performed on a short-list only (typically, 100 images)
→ for very large datasets, the number of distracting images is so

high that relevant images are not even short-listed!

1
short-list size:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 10000 100000 1000000
dataset size

ra
te

 o
f r

el
ev

an
t i

m
ag

es
 s

ho
rt

-li
st

ed 20 images

100 images

1000 images

short-list size:

Weak geometry consistency

• Weak geometric information used for all images (not only the short-list)

• Each invariant interest region detection has a scale and rotation angle
associated, here characteristic scale and dominant gradient orientation

Scale change 2
Rotation angle ca. 20 degrees

• Each matching pair results in a scale and angle difference

• For the global image scale and rotation changes are roughly consistent

WGC: orientation consistency

Max = rotation angle between images

WGC: scale consistency

Weak geometry consistency

• Integration of the geometric verification into the BOF
– votes for an image in two quantized subspaces, i.e. for angle & scale
– these subspace are show to be roughly independent
– final score: filtering for each parameter (angle and scale)

• Only matches that do agree with the main difference of
orientation and scale will be taken into account in the final
score

• Re-ranking using full geometric transformation still adds
information in a final stage

INRIA holidays dataset

• Evaluation for the INRIA holidays dataset, 1491 images
– 500 query images + 991 annotated true positives
– Most images are holiday photos of friends and family

• 1 million & 10 million distractor images from Flickr
• Vocabulary construction on a different Flickr set • Vocabulary construction on a different Flickr set
• Almost real-time search speed

• Evaluation metric: mean average precision (in [0,1],
bigger = better)
– Average over precision/recall curve

Holiday dataset – example queries

Dataset : Venice Channel

Query Base 2Base 1

Base 4Base 3

Dataset : San Marco square

Query Base 1 Base 3Base 2

Base 9Base 8

Base 4 Base 5 Base 7Base 6

Example distractors - Flickr

Experimental evaluation

• Evaluation on our holidays dataset, 500 query images, 1 million distracter
images

• Metric: mean average precision (in [0,1], bigger = better)

0.8

0.9

1
baseline

WGC
HE

WGC+HE
+re-ranking

Average query time (4 CPU cores)

Compute descriptors 880 ms

Quantization 600 ms

Search – baseline 620 ms

Search – WGC 2110 ms

Search – HE 200 ms

Search – HE+WGC 650 ms
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1000000100000100001000

m
A

P

database size

Results – Venice Channel

Base 1 Flickr

Flickr Base 4

Query

Comparison with the state of the art: Oxford dataset [Philbin et al. CVPR’07]

Evaluation measure:

Mean average precision (mAP)

Comparison with the state of the art: Kentucky dataset [Nister et al. CVPR’06]

4 images per object

Evaluation measure: among the 4 best retrieval results how

many are correct (ranges from 1 to 4)

Comparison with the state of the art

[14] Philbin et al., CVPR’08; [6] Nister et al., CVPR’06; [10] Harzallah et al., CVPR’07

On-line demonstration

Demo at http://bigimbaz.inrialpes.fr

Towards larger databases?

� BOF can handle up to ~10 M d’images
► with a limited number of descriptors per image

► 40 GB of RAM
► search = 2 s

� Web-scale = billions of images� Web-scale = billions of images
► With 100 M per machine

→ search = 20 s, RAM = 400 GB
→ not tractable!

Recent approaches for very large scale indexing

Hessian-Affine
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

Vector

sparse frequency vector

centroids
(visual words)Set of SIFT

descriptors
Query
image

compression

ranked image
short-list

Geometric
verification

Re-ranked
list

Vector
search

• Each image is represented by one vector
(not necessarily a BOF)

•This vector is compressed to reduce
storage requirements

Related work on very large scale image search

� Min-hash and geometrical min-hash [Chum et al. 07-09]
� Compressing the BoF representation (miniBof) [Jegou et al. 09]

� these approaches require hundreds of bytes to obtain a “reasonable quality”

� GIST descriptors with Spectral Hashing [Weiss et al.’08]� GIST descriptors with Spectral Hashing [Weiss et al.’08]
� very limited invariance to scale/rotation/crop

Global scene context – GIST descriptor

� The “gist” of a scene: Oliva & Torralba (2001)

� 5 frequency bands and 6 orientations for each image location
� Tiling of the image to describe the image

GIST descriptor + spectral hashing

� The position of the descriptor in the image is encoded in the representation

Gist

Torralba et al. (2003)

� Spectral hashing produces binary codes similar to spectral clusters

Related work on very large scale image search

� Min-hash and geometrical min-hash [Chum et al. 07-09]
� Compressing the BoF representation (miniBof) [Jegou et al. 09]

� require hundreds of bytes are required to obtain a “reasonable quality”

� GIST descriptors with Spectral Hashing [Weiss et al.’08]� GIST descriptors with Spectral Hashing [Weiss et al.’08]
� very limited invariance to scale/rotation/crop

� Aggregating local descriptors into a compact image representation [Jegou &al.‘10]

� Efficient object category recognition using classemes [Torresani et al.’10]

Compact image representation

� Aim: improving the tradeoff between
► search speed
► memory usage
► search quality

� Approach: joint optimization of three stages
► local descriptor aggregation
► dimension reduction► dimension reduction
► indexing algorithm

Image representation
VLAD

PCA +
PQ codes

(Non) – exhaustive
search

[H. Jegou et al., Aggregating local desc into a com pact image representation, CVPR’10]

Aggregation of local descriptors

� Problem: represent an image by a single fixed-size vector:

set of n local descriptors → 1 vector

� Most popular idea: BoF representation [Sivic & Zisserman 03]
► sparse vector
► highly dimensional

→ high dimensionality reduction/compression introduces loss→ high dimensionality reduction/compression introduces loss

� Alternative : vector of locally aggregated descriptors (VLAD)
► non sparse vector
► excellent results with a small vector dimensionality

VLAD : vector of locally aggregated descriptors

� Learning: a vector quantifier (k-means)
► output: k centroids (visual words): c1,…,ci,…ck

► centroid ci has dimension d

� For a given image
► assign each descriptor to closest center ci

► accumulate (sum) descriptors per cell► accumulate (sum) descriptors per cell
vi := vi + (x - ci)

� VLAD (dimension D = k x d)

� The vector is L2-normalized

� Alternative: Fisher vector

ci

x

VLADs for corresponding images

v1 v2 v3 ...

SIFT-like representation per centroid (+ components: blue, - components: red)

� good coincidence of energy & orientations

VLAD performance and dimensionality reduction

� We compare VLAD descriptors with BoF: INRIA Holidays Dataset (mAP,%)
� Dimension is reduced to from D to D’ dimensions with PCA

Aggregator k D D’=D
(no reduction)

D’=128 D’=64

BoF 1,000 1,000 41.4 44.4 43.4

BoF 20,000 20,000 44.6 45.2 44.5

BoF 200,000 200,000 54.9 43.2 41.6

� Observations:
► VLAD better than BoF for a given descriptor size

→ comparable to Fisher kernels for these operating points
► Choose a small D if output dimension D’ is small

BoF 200,000 200,000 54.9 43.2 41.6

VLAD 16 2,048 49.6 49.5 49.4

VLAD 64 8,192 52.6 51.0 47.7

VLAD 256 32,768 57.5 50.8 47.6

� Vector split into m subvectors:

� Subvectors are quantized separately by quantizers
where each is learned by k-means with a limited number of centroids

� Example: y = 128-dim vector split in 8 subvectors of dimension 16
► each subvector is quantized with 256 centroids -> 8 bit
► very large codebook 256^8 ~ 1.8x10^19

Product quantization for nearest neighbor search

► very large codebook 256^8 ~ 1.8x10^19

8 bits

16 components

⇒ 8 subvectors x 8 bits = 64-bit quantization index

y1 y2 y3 y4 y5 y6 y7 y8

q1 q2 q3 q4 q5 q6 q7 q8

q1(y1) q2(y2) q3(y3) q4(y4) q5(y5) q6(y6) q7(y7) q8(y8)

256

centroids

Joint optimization of VLAD and dimension reduction-indexing

� For VLAD
► The larger k, the better the raw search performance
► But large k produce large vectors, that are harder to index

� Optimization of the vocabulary size
► Fixed output size (in bytes)
► D’ computed from k via the joint optimization of reduction/indexing
► Only k has to be set► Only k has to be set

� end-to-end parameter optimization

Results on the Holidays dataset with various quantization parameters

Results on standard datasets

� Datasets
► University of Kentucky benchmark score: nb relevant images, max: 4
► INRIA Holidays dataset score: mAP (%)

Method bytes UKB Holidays

BoF, k=20,000 10K 2.92 44.6

BoF, k=200,000 12K 3.06 54.9BoF, k=200,000 12K 3.06 54.9

miniBOF 20 2.07 25.5

miniBOF 160 2.72 40.3

VLAD k=16, ADC 16 x 8 16 2.88 46.0

VLAD k=64, ADC 32 x10 40 3.10 49.5

miniBOF: “Packing Bag-of-Features”, ICCV’09

D’ =64 for k=16 and D’ =96 for k=64

ADC (subvectors) x (bits to encode each subvector)

Large scale experiments (10 million images)

� Exhaustive search of VLADs, D’=64
► 4.77s

� With the product quantizer
► Exhaustive search with ADC: 0.29s
► Non-exhaustive search with IVFADC: 0.014s

IVFADC -- Combination with an inverted file IVFADC -- Combination with an inverted file

Large scale experiments (10 million images)

0.4

0.5

0.6

0.7

0.8
re

ca
ll@

1
0

0

Timings

0

0.1

0.2

0.3

0.4

1000 10k 100k 1M 10M

re
ca

ll@
1

0
0

Database size: Holidays+images from Flickr

BOF D=200k
VLAD k=64

VLAD k=64, D'=96
VLAD k=64, ADC 16 bytes

VLAD+Spectral Hashing, 16 bytes

4.768s

ADC: 0.286s

IVFADC: 0.014s

Timings

SH ≈ 0.267s

