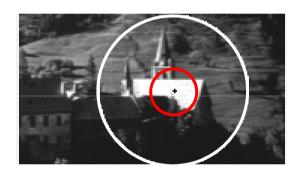
Overview

- Introduction to local features
- Harris interest points + SSD, ZNCC, SIFT
- Scale & affine invariant interest point detectors
- Evaluation and comparison of different detectors
- Region descriptors and their performance

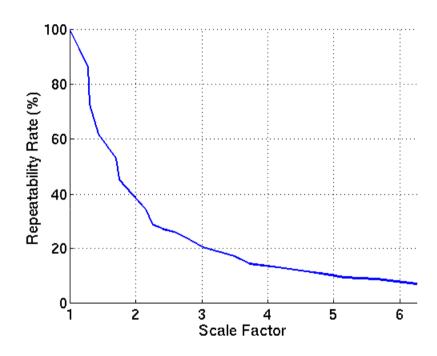
Scale invariance - motivation

Description regions have to be adapted to scale changes



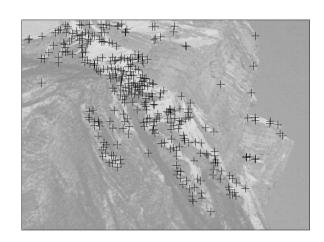
Interest points have to be repeatable for scale changes

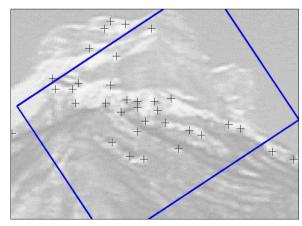
Harris detector + scale changes



Repeatability rate

$$R(\varepsilon) = \frac{|\{(\mathbf{a}_i, \mathbf{b}_i) | dist(H(\mathbf{a}_i), \mathbf{b}_i) < \varepsilon\}|}{\max(|\mathbf{a}_i|, |\mathbf{b}_i|)}$$





Scale change between two images

$$I_{1}\begin{pmatrix} x_{1} \\ y_{1} \end{pmatrix} = I_{2}\begin{pmatrix} x_{2} \\ y_{2} \end{pmatrix} = I_{2}\begin{pmatrix} SX_{1} \\ SY_{1} \end{pmatrix}$$

Scale adapted derivative calculation

Scale change between two images

$$I_{1}\begin{pmatrix} x_{1} \\ y_{1} \end{pmatrix} = I_{2}\begin{pmatrix} x_{2} \\ y_{2} \end{pmatrix} = I_{2}\begin{pmatrix} SX_{1} \\ SY_{1} \end{pmatrix}$$

Scale adapted derivative calculation

$$I_1 \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \otimes G_{i_1...i_n}(\boldsymbol{\sigma}) = s^n I_2 \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \otimes G_{i_1...i_n}(s\boldsymbol{\sigma})$$

$$G(\widetilde{\sigma}) \otimes egin{bmatrix} L_{x}^{2}(\sigma) & L_{x}L_{y}(\sigma) \ L_{x}L_{y}(\sigma) & L_{y}^{2}(\sigma) \end{bmatrix}$$

where $L_i(\sigma)$ are the derivatives with Gaussian convolution

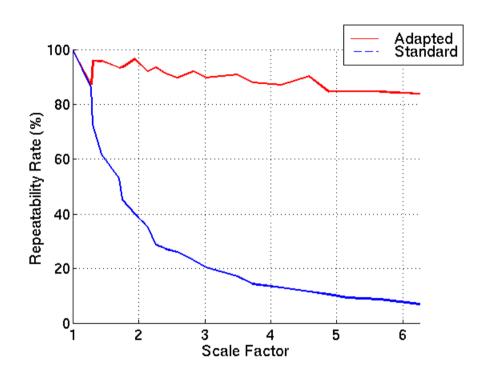
$$G(\widetilde{\sigma}) \otimes egin{bmatrix} L_x^2(\sigma) & L_x L_y(\sigma) \ L_x L_y(\sigma) & L_y^2(\sigma) \end{bmatrix}$$

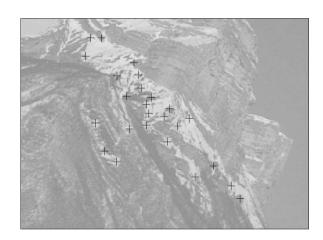
where $L_i(\sigma)$ are the derivatives with Gaussian convolution

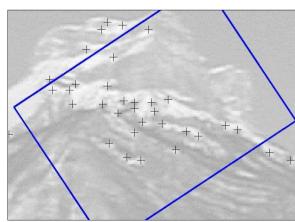
Scale adapted auto-correlation matrix

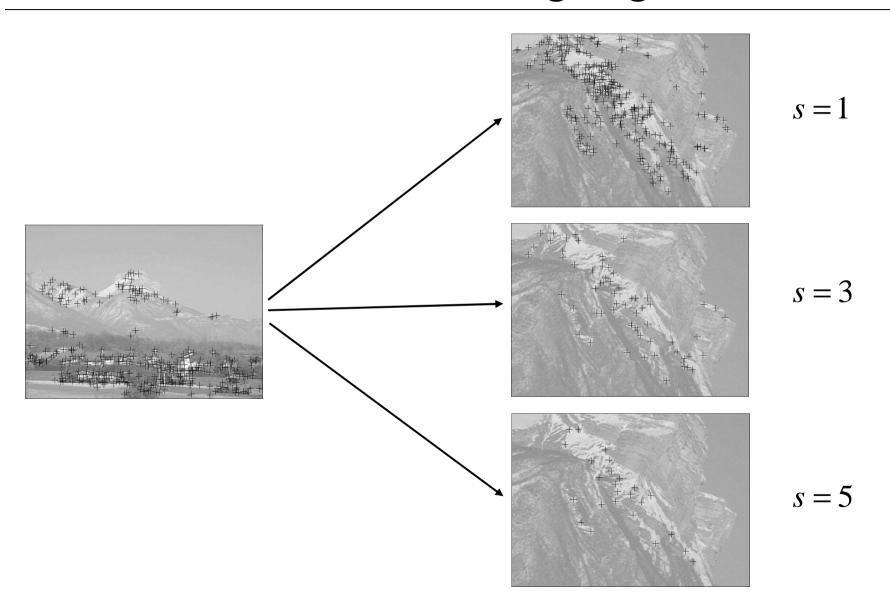
$$s^2G(s\boldsymbol{\tilde{\sigma}}) \otimes egin{bmatrix} L_x^2(s\boldsymbol{\sigma}) & L_xL_y(s\boldsymbol{\sigma}) \ L_xL_y(s\boldsymbol{\sigma}) & L_y^2(s\boldsymbol{\sigma}) \end{bmatrix}$$

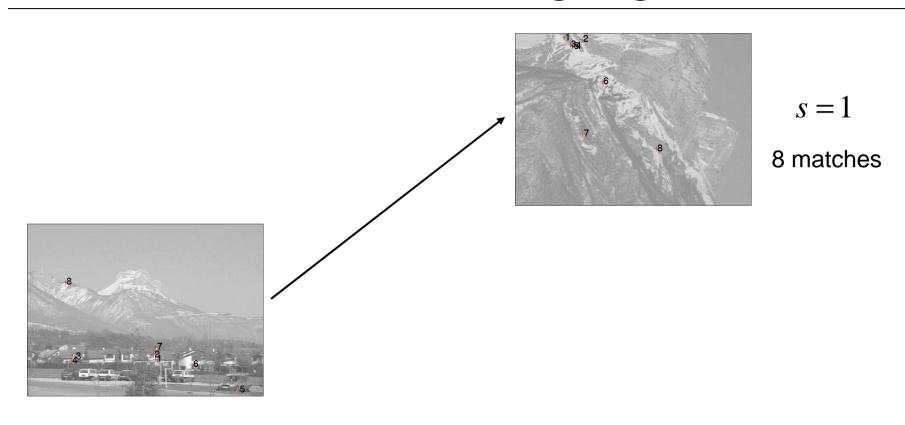
Harris detector – adaptation to scale



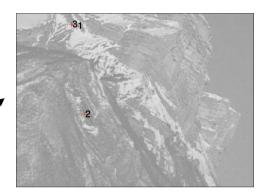




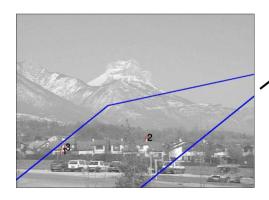






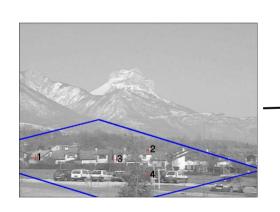


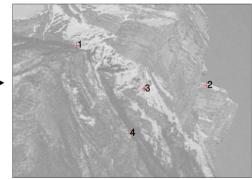
s = 1 3 matches



s = 1

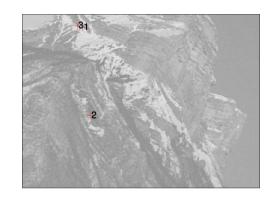
3 matches



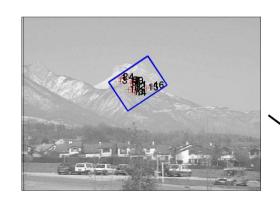


s = 3

4 matches



3 matches

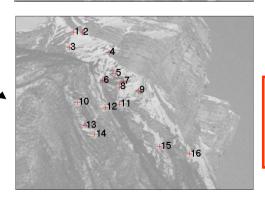


$$s = 3$$

4 matches

highest number of matches

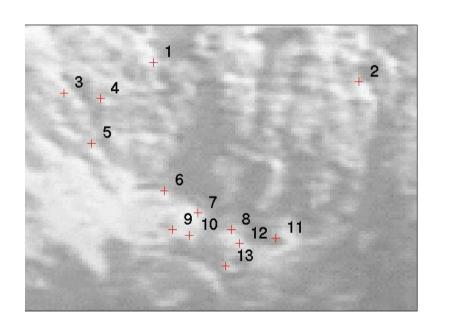
correct scale

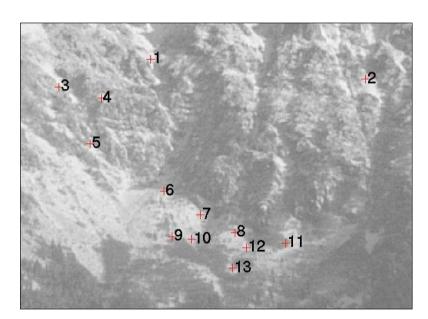


$$s = 5$$

16 matches

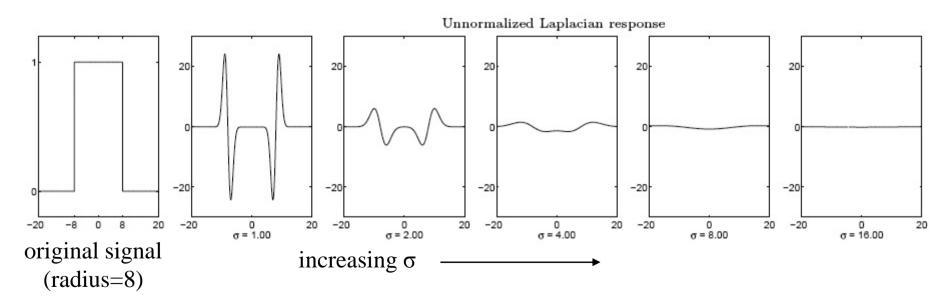
Scale change of 5.7





100% correct matches (13 matches)

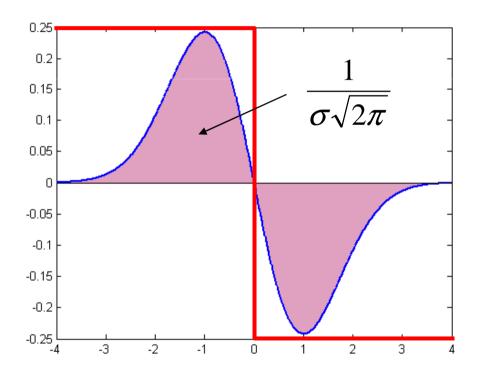
- We want to find the characteristic scale of the blob by convolving it with Laplacians at several scales and looking for the maximum response
- However, Laplacian response decays as scale increases:



Why does this happen?

Scale normalization

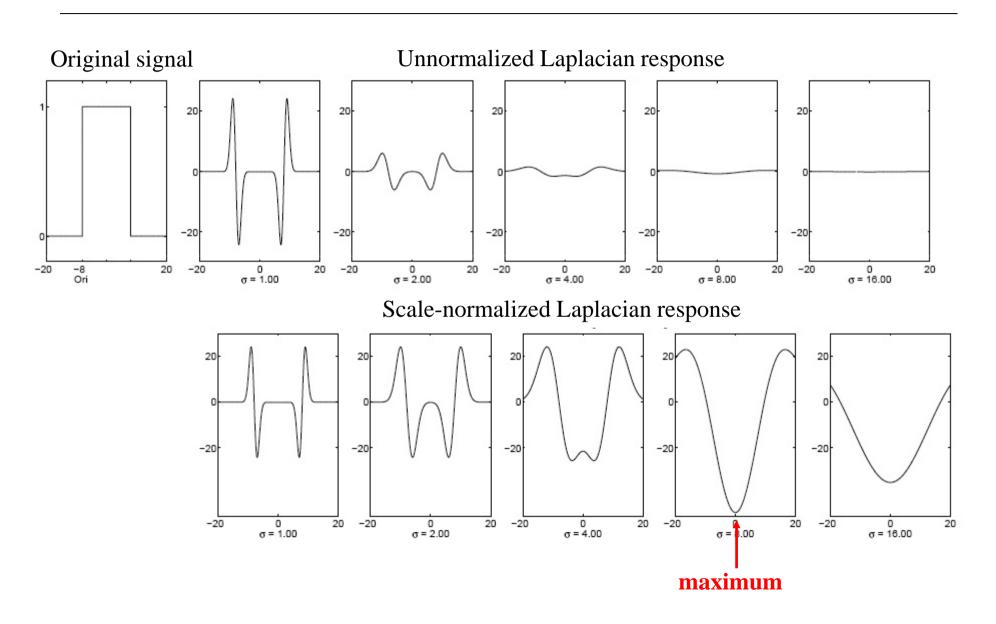
• The response of a derivative of Gaussian filter to a perfect step edge decreases as σ increases



Scale normalization

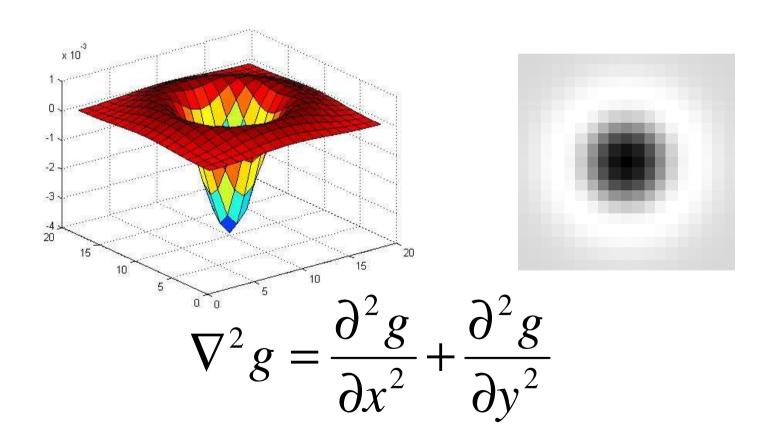
- The response of a derivative of Gaussian filter to a perfect step edge decreases as σ increases
- To keep response the same (scale-invariant), must multiply Gaussian derivative by σ
- Laplacian is the second Gaussian derivative, so it must be multiplied by σ^2

Effect of scale normalization



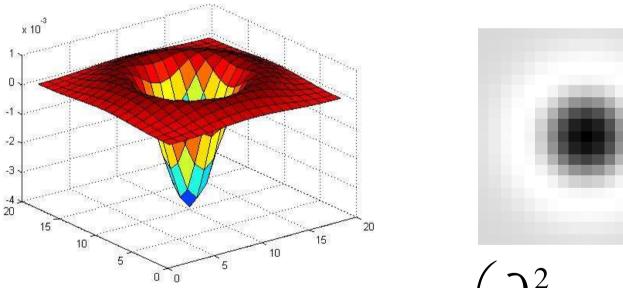
Blob detection in 2D

 Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D



Blob detection in 2D

Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

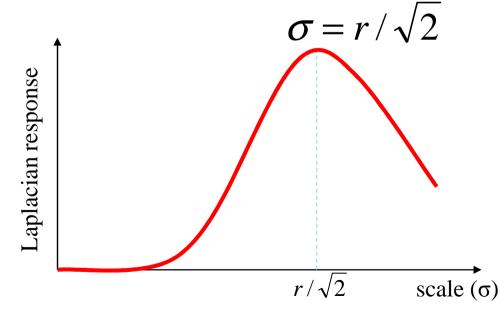


Scale-normalized:
$$\nabla^{2}_{\text{norm}} g = \sigma^{2} \left(\frac{\partial^{2} g}{\partial x^{2}} + \frac{\partial^{2} g}{\partial y^{2}} \right)$$

• The 2D Laplacian is given by $(x^2+y^2-2\sigma^2)\,e^{-(x^2+y^2)/2\sigma^2} \quad \text{(up to scale)}$

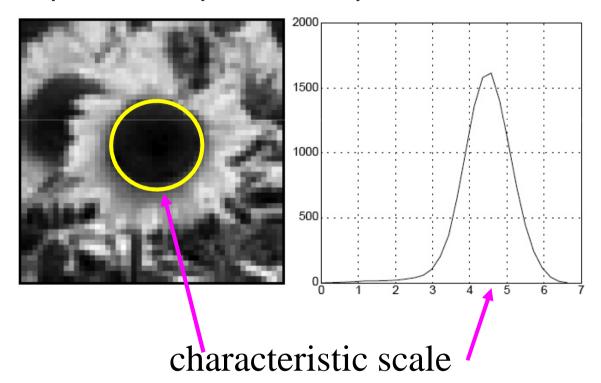
For a binary circle of radius r, the Laplacian achieves a maximum at

image



Characteristic scale

 We define the characteristic scale as the scale that produces peak of Laplacian response



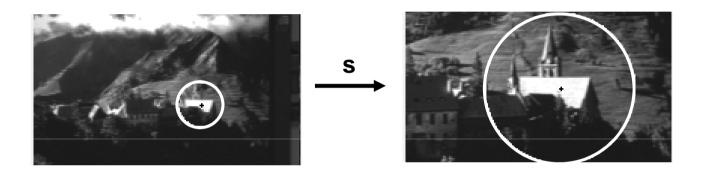
T. Lindeberg (1998). Feature detection with automatic scale selection. *International Journal of Computer Vision* **30** (2): pp 77--116.

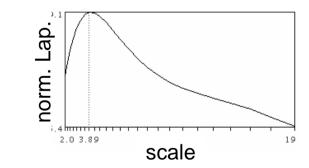
- For a point compute a value (gradient, Laplacian etc.) at several scales
- Normalization of the values with the scale factor e.g. Laplacian $|s^2(L_{xx}+L_{yy})|$
- Select scale s^* at the maximum \rightarrow characteristic scale

$$|s^{2}(L_{xx}+L_{yy})|$$
scale

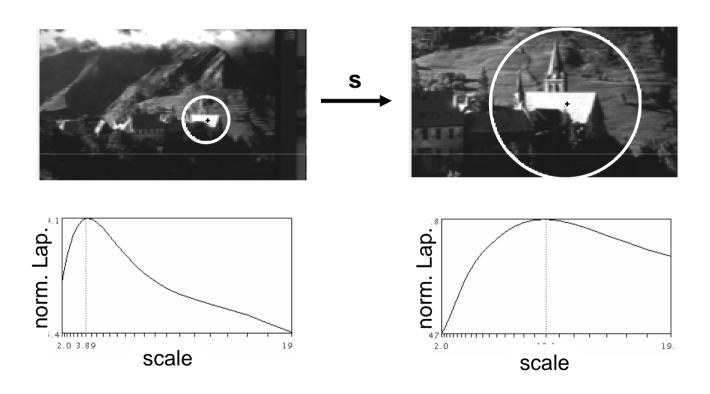
Exp. results show that the Laplacian gives best results

• Scale invariance of the characteristic scale





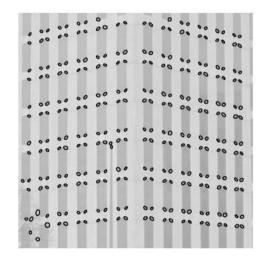
Scale invariance of the characteristic scale



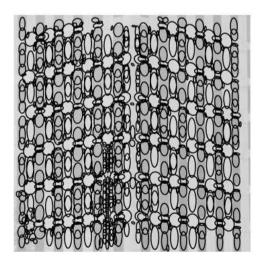
• Relation between characteristic scales $s \cdot s_1^* = s_2^*$

Scale-invariant detectors

- Harris-Laplace (Mikolajczyk & Schmid'01)
- Laplacian detector (Lindeberg'98)
- Difference of Gaussian (Lowe'99)



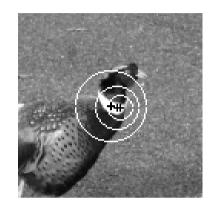
Harris-Laplace

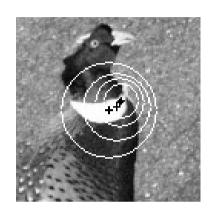


Laplacian

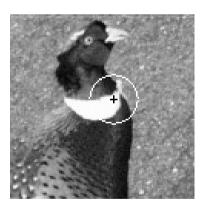
Harris-Laplace

multi-scale Harris points

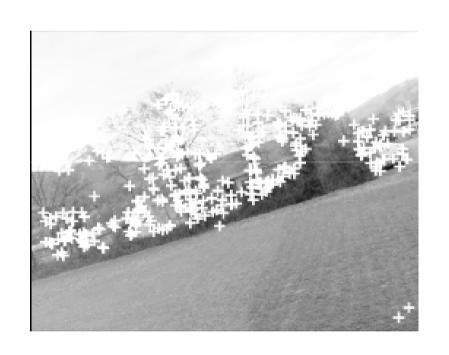




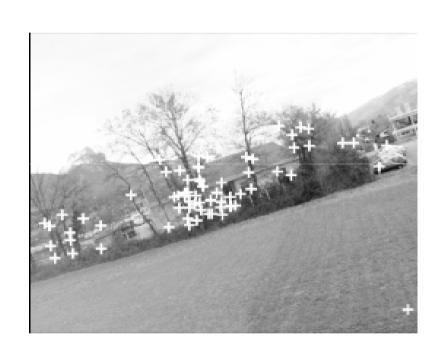
selection of points at maximum of Laplacian



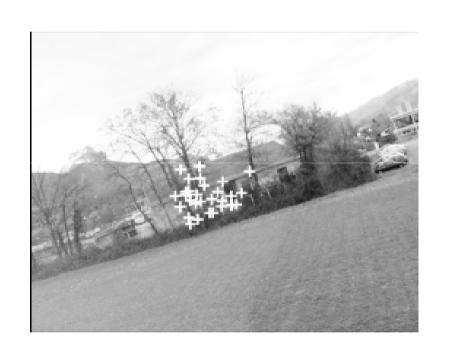
invariant points + associated regions [Mikolajczyk & Schmid'01]



213 / 190 detected interest points



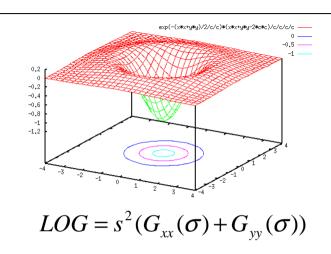
58 points are initially matched



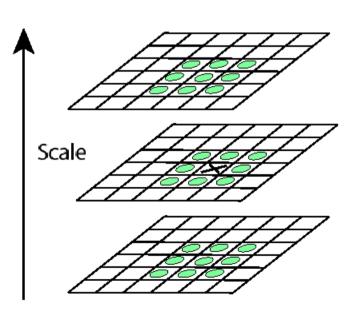
32 points are matched after verification – all correct

LOG detector

Convolve image with scalenormalized Laplacian at several scales



Detection of maxima and minima of Laplacian in scale space



Hessian detector

Hessian matrix
$$H(x) = \begin{bmatrix} L_{xx} & L_{xy} \\ L_{xy} & L_{yy} \end{bmatrix}$$

Determinant of Hessian matrix

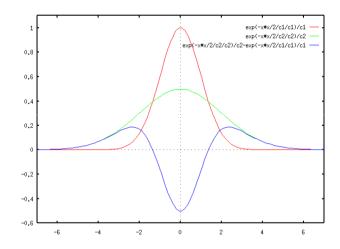
$$DET = L_{xx}L_{yy} - L_{xy}^{2}$$

Penalizes/eliminates long structures

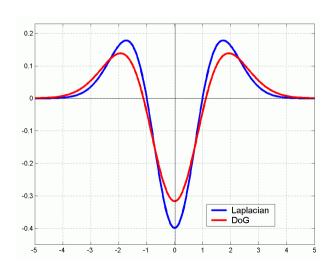
with small derivative in a single direction

Efficient implementation

• Difference of Gaussian (DOG) approximates the Laplacian $DOG = G(k\sigma) - G(\sigma)$

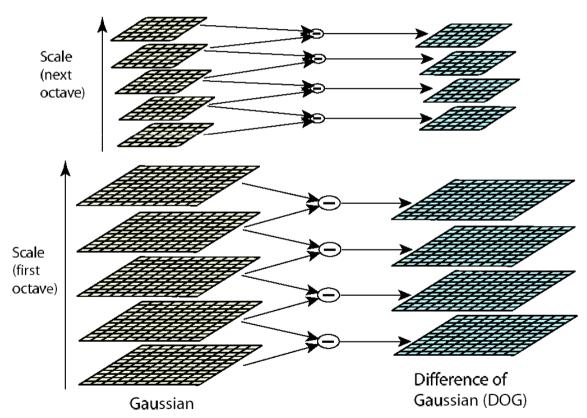


Error due to the approximation



DOG detector

Fast computation, scale space processed one octave at a time



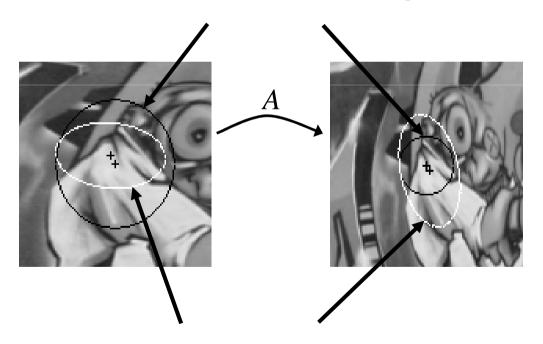
David G. Lowe. "Distinctive image features from scale-invariant keypoints." IJCV 60 (2).

Local features - overview

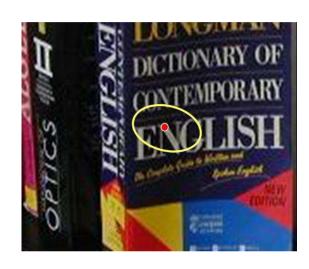
- Scale invariant interest points
- Affine invariant interest points
- Evaluation of interest points
- Descriptors and their evaluation

Scale invariance is not sufficient for large baseline changes

detected scale invariant region



projected regions, viewpoint changes can locally be approximated by an affine transformation A



Affine invariant regions - Example

Harris/Hessian/Laplacian-Affine

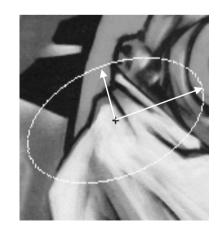
- Initialize with scale-invariant Harris/Hessian/Laplacian points
- Estimation of the affine neighbourhood with the second moment matrix [Lindeberg'94]
- Apply affine neighbourhood estimation to the scaleinvariant interest points [Mikolajczyk & Schmid'02, Schaffalitzky & Zisserman'02]
- Excellent results in a comparison [Mikolajczyk et al.'05]

Affine invariant regions

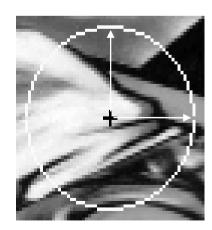
Based on the second moment matrix (Lindeberg'94)

$$M = \mu(\mathbf{x}, \boldsymbol{\sigma}_{I}, \boldsymbol{\sigma}_{D}) = \boldsymbol{\sigma}_{D}^{2} G(\boldsymbol{\sigma}_{I}) \otimes \begin{bmatrix} L_{x}^{2}(\mathbf{x}, \boldsymbol{\sigma}_{D}) & L_{x} L_{y}(\mathbf{x}, \boldsymbol{\sigma}_{D}) \\ L_{x} L_{y}(\mathbf{x}, \boldsymbol{\sigma}_{D}) & L_{y}^{2}(\mathbf{x}, \boldsymbol{\sigma}_{D}) \end{bmatrix}$$

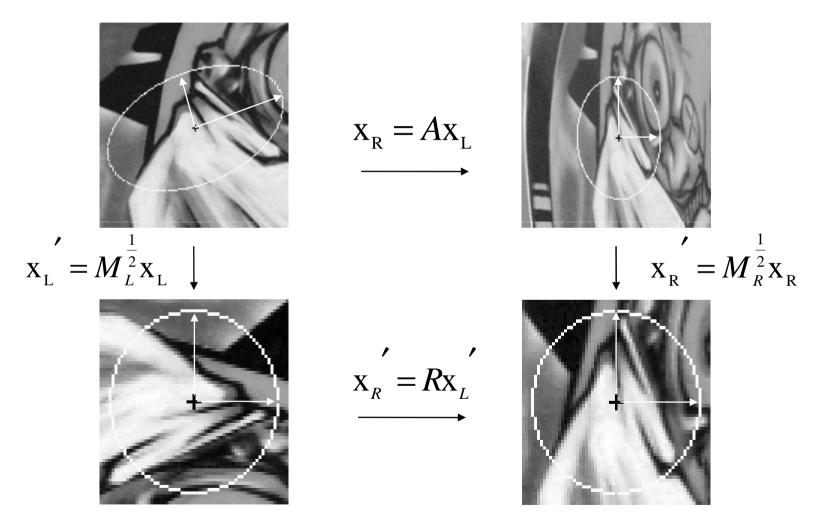
Normalization with eigenvalues/eigenvectors



$$\mathbf{x'} = M^{\frac{1}{2}}\mathbf{x}$$



Affine invariant regions



Isotropic neighborhoods related by image rotation

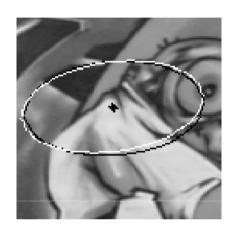
Iterative estimation – initial points

Iterative estimation – iteration #1

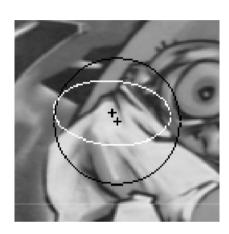
Iterative estimation – iteration #2

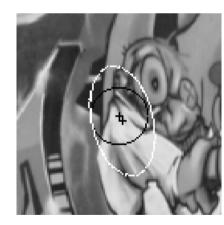
Iterative estimation – iteration #3, #4

Harris-Affine versus Harris-Laplace



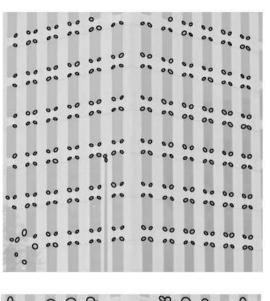
Harris-Affine

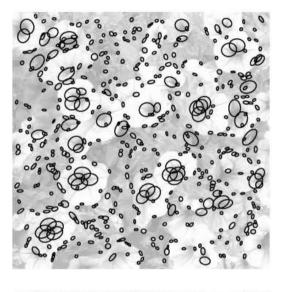




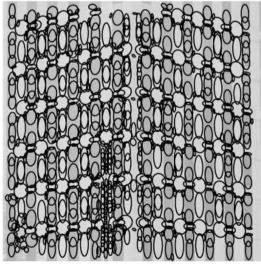
Harris-Laplace

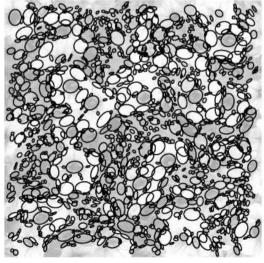
Harris/Hessian-Affine





Harris-Affine

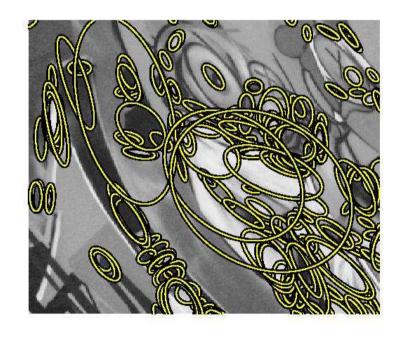




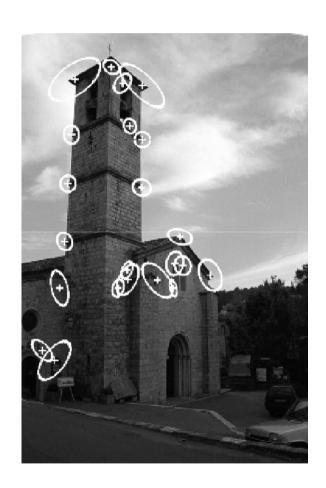
Hessian-Affine

Harris-Affine

Hessian-Affine



Matches



22 correct matches

Matches

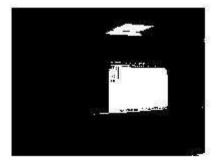
33 correct matches

Maximally stable extremal regions (MSER) [Matas'02]

- Extremal regions: connected components in a thresholded image (all pixels above/below a threshold)
- Maximally stable: minimal change of the component (area) for a change of the threshold, i.e. region remains stable for a change of threshold
- Excellent results in a recent comparison

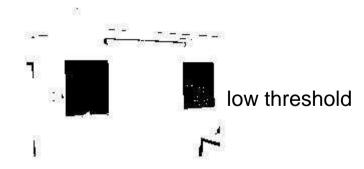
Maximally stable extremal regions (MSER)

Examples of thresholded images

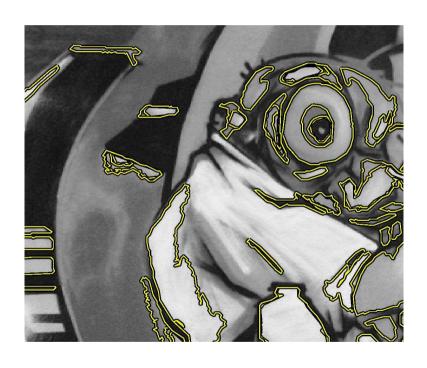


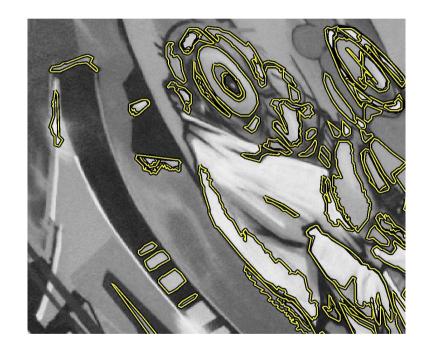
high threshold





MSER





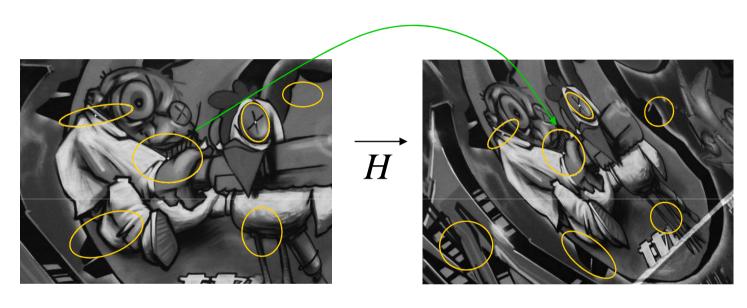
Overview

- Introduction to local features
- Harris interest points + SSD, ZNCC, SIFT
- Scale & affine invariant interest point detectors
- Evaluation and comparison of different detectors
- Region descriptors and their performance

Evaluation of interest points

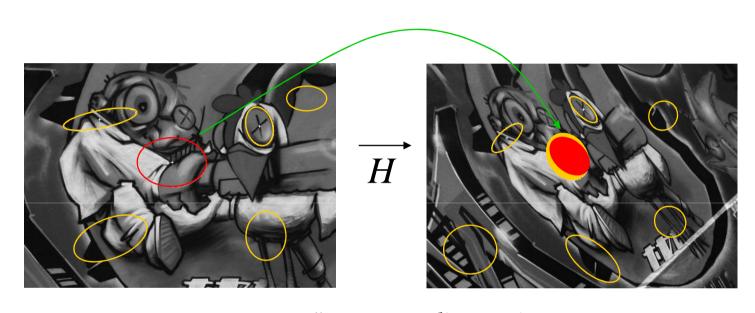
- Quantitative evaluation of interest point/region detectors
 - points / regions at the same relative location and area
- Repeatability rate: percentage of corresponding points
- Two points/regions are corresponding if
 - location error small
 - area intersection large
- [K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas,
 F. Schaffalitzky, T. Kadir & L. Van Gool '05]

Evaluation criterion



$$repeatability = \frac{\#corresponding\ regions}{\#detected\ regions} \cdot 100\%$$

Evaluation criterion



$$repeatability = \frac{\#corresponding\ regions}{\#detected\ regions} \cdot 100\%$$

$$overlap\ error = (1 - \frac{intersection}{union}) \cdot 100\%$$

10%

20%

30%

40%

50%

60%

Dataset

- Different types of transformation
 - Viewpoint change
 - Scale change
 - Image blur
 - JPEG compression
 - Light change
- Two scene types
 - Structured
 - Textured
- Transformations within the sequence (homographies)
 - Independent estimation

Viewpoint change (0-60 degrees)

structured scene



textured scene

Zoom + rotation (zoom of 1-4)

structured scene

textured scene

Blur, compression, illumination

blur - structured scene

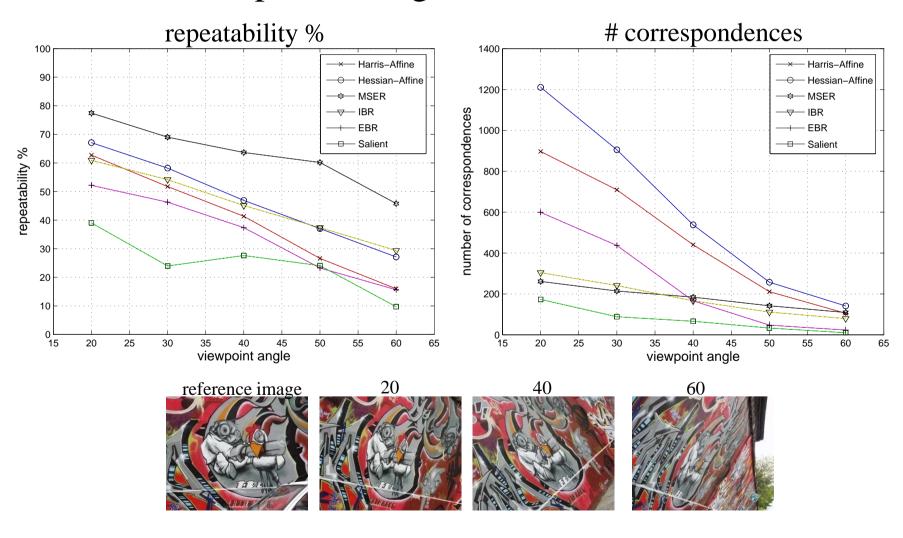
blur - textured scene

light change - structured scene

jpeg compression - structured scene

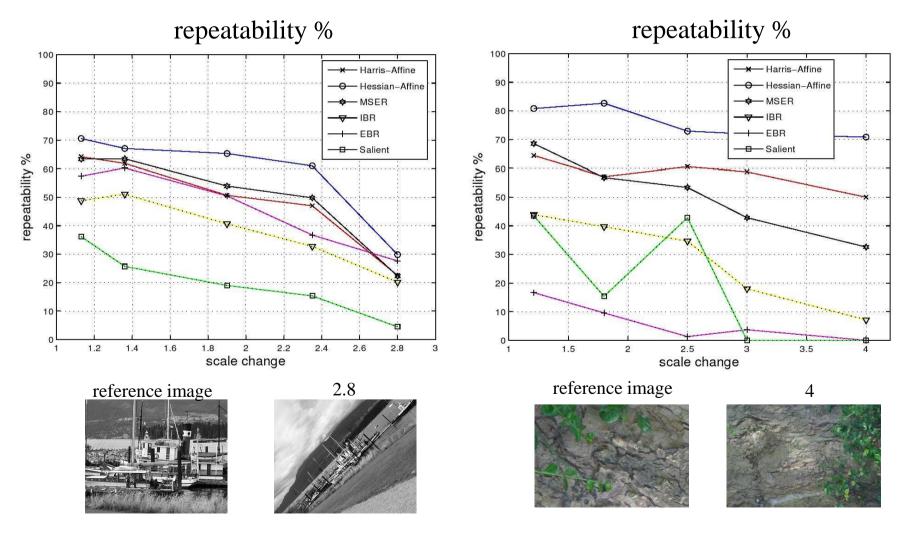
Comparison of affine invariant detectors

Viewpoint change - structured scene



Comparison of affine invariant detectors

Scale change



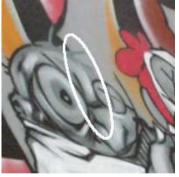
Conclusion - detectors

- Good performance for large viewpoint and scale changes
- Results depend on transformation and scene type, no one best detector
- Detectors are complementary
 - MSER adapted to structured scenes
 - Harris and Hessian adapted to textured scenes
- Performance of the different scale invariant detectors is very similar (Harris-Laplace, Hessian, LoG and DOG)
- Scale-invariant detector sufficient up to 40 degrees of viewpoint change

Overview

- Introduction to local features
- Harris interest points + SSD, ZNCC, SIFT
- Scale & affine invariant interest point detectors
- Evaluation and comparison of different detectors
- Region descriptors and their performance

Region descriptors



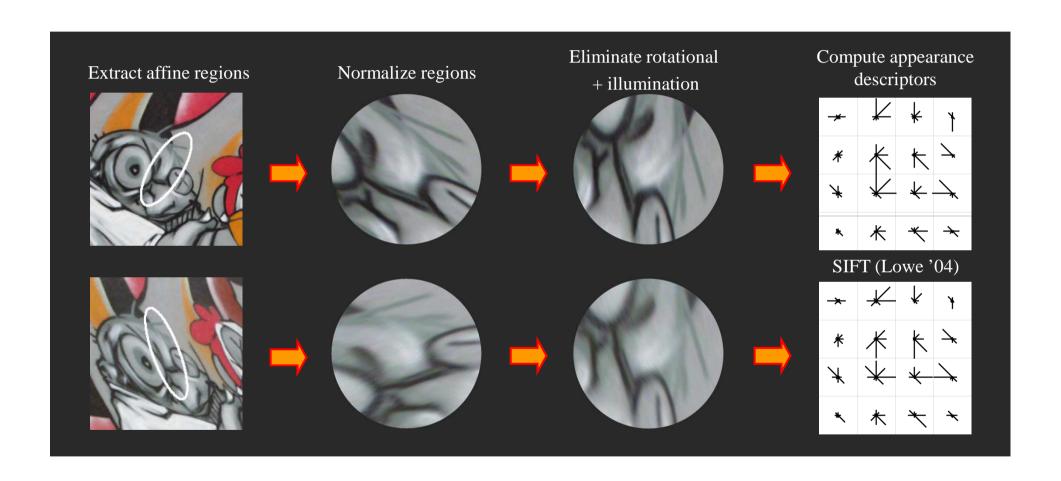
- Normalized regions are
 - invariant to geometric transformations except rotation
 - not invariant to photometric transformations

Descriptors

- Regions invariant to geometric transformations except rotation
 - rotation invariant descriptors
 - normalization with dominant gradient direction

- Regions not invariant to photometric transformations
 - invariance to affine photometric transformations
 - normalization with mean and standard deviation of the image patch

Descriptors

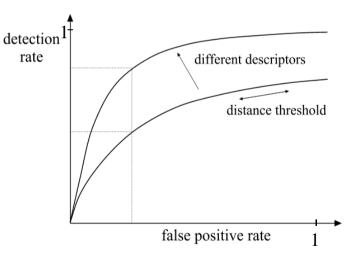


Descriptors

- Gaussian derivative-based descriptors
 - Differential invariants (Koenderink and van Doorn'87)
 - Steerable filters (Freeman and Adelson'91)
- SIFT (Lowe'99)
- Moment invariants [Van Gool et al.'96]
- Shape context [Belongie et al.'02]
- SIFT with PCA dimensionality reduction
- Gradient PCA [Ke and Sukthankar'04]
- SURF descriptor [Bay et al.'08]
- DAISY descriptor [Tola et al.'08, Windler et al'09]

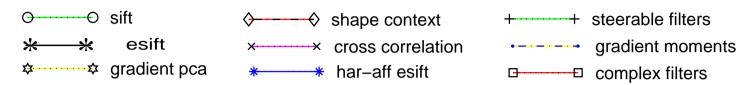
Comparison criterion

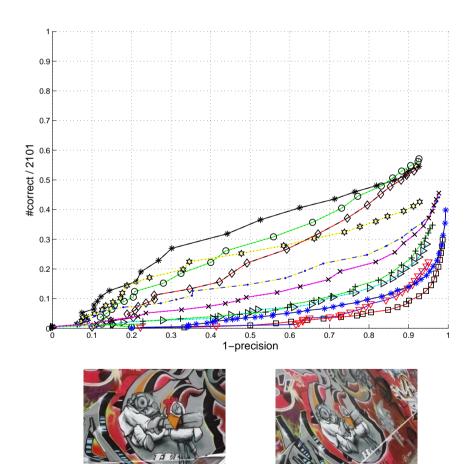
- Descriptors should be
 - Distinctive
 - Robust to changes on viewing conditions as well as to errors of the detector
- Detection rate (recall)
 - #correct matches / #correspondences
- False positive rate
 - #false matches / #all matches
- Variation of the distance threshold
 - distance (d1, d2) < threshold



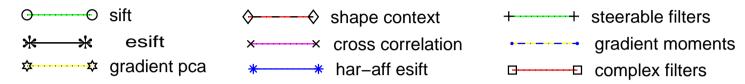
[K. Mikolajczyk & C. Schmid, PAMI'05]

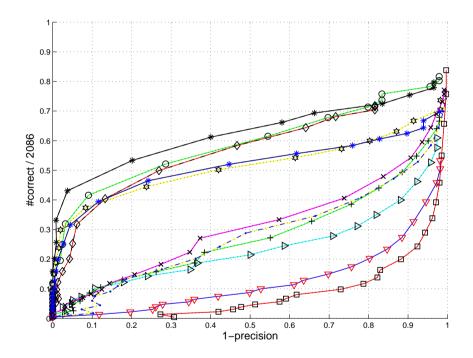
Viewpoint change (60 degrees)





Scale change (factor 2.8)





Conclusion - descriptors

- SIFT based descriptors perform best
- Significant difference between SIFT and low dimension descriptors as well as cross-correlation
- Robust region descriptors better than point-wise descriptors
- Performance of the descriptor is relatively independent of the detector

Available on the internet

http://lear.inrialpes.fr/software

- Binaries for detectors and descriptors
 - Building blocks for recognition systems
- Carefully designed test setup
 - Dataset with transformations
 - Evaluation code in matlab
 - Benchmark for new detectors and descriptors