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Class webpage: 
http://www.di.ens.fr/willow/teaching/recvis11/ 

http://www.di.ens.fr/willow/teaching/recvis11/ 



Object recognition and computer vision 2011 

Class webpage: 
http://www.di.ens.fr/willow/teaching/recvis11/ 

Grading:  
•  3 programming assignments (60%) 

•  Panorama stitching 
•  Image classification 
•  Basic face detector 

•  Final project (40%) 
More independent work, resulting in the report and a class 

presentation.  



Matlab tutorial 

Friday 30/09/2011 at 10:30-12:00. 

The tutorial will be at 23 avenue d'Italie - Salle Rose. 

Come if you have no/limited experience with Matlab. 



Research 

Both WILLOW (J. Ponce, I. Laptev, J. Sivic) and LEAR (C. 
Schmid) groups are active in computer vision and visual 
recognition research. 

http://www.di.ens.fr/willow/ 
http://lear.inrialpes.fr/ 

with close links to SIERRA – machine learning (F. Bach) 
http://www.di.ens.fr/sierra/ 

There will be master internships available. Talk to us if you 
are interested. 



Outline 

Part I - Camera geometry – image formation 
•  Perspective projection 
•  Affine projection 
•  Projection of planes 

Part II - Image matching and recognition with local features 
•  Correspondence 
•  Semi-local and global geometric relations 
•  Robust estimation – RANSAC and Hough Transform 



Reading: Part I. Camera geometry 

Forsyth&Ponce – Chapters 1 and 2 

Hartley&Zisserman – Chapter 6: “Camera models” 



Motivation: Stitching panoramas 



Feature-based alignment outline 
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Feature-based alignment outline 

Extract features 
Compute putative matches 
Loop: 

•  Hypothesize transformation T (small group of putative 
matches that are related by T) 

•  Verify transformation (search for other matches 
consistent with T) 



2D transformation models 

Similarity 
(translation,  
scale, rotation) 

Affine 

Projective 
(homography) 

Why these transformations ??? 



Camera geometry 



Images are two-dimensional patterns of brightness values. 

They are formed by the projection of 3D objects. 



Animal eye: a looonnng time ago. 

Pinhole perspective projection: Brunelleschi, XVth Century. 
Camera obscura: XVIth Century. 

Photographic camera: 
Niepce, 1816. 





Massaccio’s Trinity, 1425 

Pompei painting, 2000 years ago. 

Van Eyk, XIVth Century 

Brunelleschi, 1415 



Pinhole Perspective Equation 

NOTE: z is always negative.. 

Camera center 

Image plane 
(retina) 

Principal axis 

Camera co-
ordinate system 
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Affine projection models: Weak perspective projection 

is the magnification. 

When the scene relief is small compared its distance from the 
Camera, m can be taken constant: weak perspective projection. 



Affine projection models: Orthographic projection 

When the camera is at a 
(roughly constant) distance 
from the scene, take m=1. 



Strong perspective:  
Angles are not preserved 
The projections of parallel lines intersect at one point 



From Zisserman & Hartley 



Strong perspective:  
Angles are not preserved 
The projections of parallel 
lines intersect at one point 

Weak perspective:  
Angles are better preserved 
The projections of parallel lines 
are (almost) parallel 



Beyond pinhole camera model: Geometric Distortion 



Rectification 



Radial Distortion Model 



Perspective 
Projection 

x,y: World coordinates 
x’,y’: Image coordinates 
f: pinhole-to-retina distance 

Weak-Perspective 
Projection (Affine) 

x,y: World coordinates 
x’,y’: Image coordinates 
m: magnification 

Orthographic 
Projection (Affine) 

x,y: World coordinates 
x’,y’: Image coordinates 

Common distortion 
model 

x’,y’: Ideal image 
coordinates 
x’’,y’’: Actual image 
coordinates 



Cameras and their parameters 

Images from M. Pollefeys 



The Intrinsic Parameters of a Camera 

Normalized Image 
Coordinates 

Physical Image Coordinates  

Units: 
k,l : pixel/m 
f  : m 
α,β 
: pixel




The Intrinsic Parameters of a Camera 

Calibration Matrix 

The Perspective 
Projection Equation 



Notation 

Euclidean Geometry 



Recall:  
Coordinate Changes and Rigid Transformations 



The Extrinsic Parameters of a Camera 
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Explicit Form of the Projection Matrix 

Note: 

M is only defined up to scale in this setting!! 



Weak perspective (affine) camera 

€ 

zr = m3
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Observations: 

  is the equation of a plane of normal direction a1 

•  From the projection equation, it is also  
   the plane defined by: u = 0 

•  Similarly:  
•  (a2,b2) describes the plane defined by: v = 0 
•  (a3,b3) describes the plane defined by:  

  That is the plane parallel to image plane  
passing through the pinhole (z = 0) – principal 

           plane 

Geometric Interpretation 
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Projection  
equation: 
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Geometric Interpretation: The rows of 
the projection matrix describe the three 
planes defined by the image coordinate 
system 

a1 

a2 



Other useful geometric properties 

Principal axis of the camera: 
The ray passing through the camera centre 
 with direction vector  a3 

a3 



Other useful geometric properties 

Depth of points:  
How far a point lies from the principal plane of a camera? 
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But for general camera matrices:  
-  need to be careful about the sign. 
-  need to normalize matrix to have  
||a3||=1 



p P 

Other useful geometric properties 

Q: Can we compute the position of the camera center Ω? 

A: 

Q: Given an image point p, what is the  
direction of the corresponding ray in space? 

A: 

Hint: Start from the projection equation. Show that the right 
null-space of camera matrix M is the camera center. 

Hint: Start from a projection equation and write all points 
along direction w, that project to point p. 



Re-cap: imaging and camera geometry 
(with a slight change of notation) 

•   perspective projection 

•   camera centre, image point and 
scene point are collinear 

•   an image point back projects to a 
ray in 3-space 

•   depth of the scene point is 
unknown camera 

centre image plane 

image 
point 

scene 
point 

C 

X 
x 

Slide credit: A. Zisserman 



Slide credit: A. Zisserman 



How a “scene plane” projects into an image? 



Plane projective transformations 

Slide credit: A. Zisserman 



Projective transformations continued 

•  This is the most general transformation between the world 
and image plane under imaging by a perspective camera. 

•  It is often only the 3 x 3 form of the matrix that is important in 
establishing properties of this transformation. 

•  A projective transformation is also called a ``homography'' 
and a ``collineation''. 

•   H has 8 degrees of freedom. 

Slide credit: A. Zisserman 



Planes under affine projection 

€ 

x1
x2

 

 
 

 

 
 =

a11 a12 a13 b1
a21 a22 a23 b2

 

 
 

 

 
 

x
y
0
1

 

 

 
 
 
 

 

 

 
 
 
 

=
a11 a12
a21 a22

 

 
 

 

 
 
x
y
 

 
 
 

 
 +

b1
b2

 

 
 

 

 
 = A2×2P + b2×1

Points on a world plane map with a 2D affine geometric 
transformation (6 parameters) 



•  Affine projections induce affine 
transformations from planes  
onto their images. 

•  Perspective projections 
induce projective 
transformations from planes 
onto their images. 

Summary 



2D transformation models 

Similarity 
(translation,  
scale, rotation) 

Affine 

Projective 
(homography) 



When is homography a valid transformation 
model? 



Case I: Plane projective transformations 

Slide credit: A. Zisserman 



Case I: Projective transformations continued 

•  This is the most general transformation between the world 
and image plane under imaging by a perspective camera. 

•  It is often only the 3 x 3 form of the matrix that is important in 
establishing properties of this transformation. 

•  A projective transformation is also called a ``homography'' 
and a ``collineation''. 

•   H has 8 degrees of freedom. 

Slide credit: A. Zisserman 



Case II: Cameras rotating about their centre 

image plane 1 

image plane 2 

•  The two image planes are related by a homography H 

•  H depends only on the relation between the image 
planes and camera centre, C, not on the 3D structure  

P = K [ I | 0 ]   P’ = K’ [ R | 0 ] 

H = K’ R K^(-1) 

Slide credit: A. Zisserman 



Case II: Cameras rotating about their centre 

image plane 1 

image plane 2 
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Slide credit: A. Zisserman 


