
Instance-level recognition II.

Josef Sivic
http://www.di.ens.fr/~josef

INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548
Laboratoire d’Informatique, Ecole Normale Supérieure, Paris

With slides from: O. Chum, K. Grauman, S. Lazebnik, B. Leibe, D. Lowe, J.
Philbin, J. Ponce, D. Nister, C. Schmid, N. Snavely, A. Zisserman

Reconnaissance d’objets et vision artificielle 2010

Outline – the rest of the lecture

Part 1. Matching and recognition with local features
 Correspondence
 Semi-local and global geometric relations
 Robust estimation – RANSAC and Hough Transform

Part 2. Going large-scale
 Approximate nearest neighbour matching
 Bag-of-visual-words representation
 Efficient visual search and extensions
 Applications

Example II: Two images again

1000+ descriptors per image

 Match regions between frames using SIFT descriptors and
spatial consistency

Multiple regions overcome problem of partial occlusion

Approach - review

1.  Establish tentative (or putative) correspondence based
on local appearance of individual features (now)

2. Verify matches based on semi-local / global geometric
relations (You have just seen this).

What about multiple images?

•  So far, we have seen successful matching of a query
image to a single target image using local features.

•  How to generalize this strategy to multiple target images
with reasonable complexity?

•  10, 102, 103, …, 107, … 1010 images?

“Charade” [Donen, 1963]

Visually defined query

“Find this bag”

Example: Visual search in an entire feature length movie

Demo:
http://www.robots.ox.ac.uk/~vgg/research/vgoogle/index.html

History of “large scale” visual search with local regions

 Schmid and Mohr ’97 – 1k images
 Sivic and Zisserman’03 – 5k images
 Nister and Stewenius’06 – 50k images (1M)
 Philbin et al.’07 – 100k images
 Chum et al.’07 + Jegou et al.’07 – 1M images
 Chum et al.’08 – 5M images
Jegou et al. ’09 – 10M images

All on a single machine in ~ 1 second!

Two strategies

1. Efficient approximate nearest neighbour search on local
feature descriptors.

2. Quantize descriptors into a “visual vocabulary” and use
efficient techniques from text retrieval.
 (Bag-of-words representation)

Images

Local features invariant
descriptor

vectors

1.  Compute local features in each image independently (Part 1)
2.  “Label” each feature by a descriptor vector based on its intensity (Part 1)
3.  Finding corresponding features is transformed to finding nearest neighbour vectors
4.  Rank matched images by number of (tentatively) corresponding regions
5.  Verify top ranked images based on spatial consistency (Part 2)

Strategy I: Efficient approximate NN search

invariant
descriptor

vectors

Finding nearest neighbour vectors

Establish correspondences between object model image and images in the
database by nearest neighbour matching on SIFT vectors

128D descriptor
space

Model image Image database

Solve following problem for all feature vectors, , in the query image:

where, , are features from all the database images.

Quick look at the complexity of the NN-search

N … images
M … regions per image (~1000)
D … dimension of the descriptor (~128)

Exhaustive linear search: O(M NMD)

Example:
•  Matching two images (N=1), each having 1000 SIFT descriptors
 Nearest neighbors search: 0.4 s (2 GHz CPU, implemenation in C)
•  Memory footprint: 1000 * 128 = 128kB / image

N = 1,000 … ~7min (~100MB)
N = 10,000 … ~1h7min (~ 1GB)
…
N = 107 ~115 days (~ 1TB)
…
All images on Facebook:
N = 1010 … ~300 years (~ 1PB)

of images CPU time Memory req.

Nearest-neighbor matching

Solve following problem for all feature vectors, xj, in the query image:

where xi are features in database images.

Nearest-neighbour matching is the major computational bottleneck
•  Linear search performs dn operations for n features in the

database and d dimensions
•  No exact methods are faster than linear search for d>10

•  Approximate methods can be much faster, but at the cost of
missing some correct matches. Failure rate gets worse for
large datasets.

Indexing local features:
approximate nearest neighbor search

14
K. Grauman, B. Leibe

Best-Bin First (BBF), a variant of k-d
trees that uses priority queue to
examine most promising branches
first [Beis & Lowe, CVPR 1997]

Locality-Sensitive Hashing (LSH), a
randomized hashing technique using
hash functions that map similar
points to the same bin, with high
probability [Indyk & Motwani, 1998]

l1

l8

1

l2 l3

l4 l5 l7 l6

l9 l10

3

2 5 4 11

9 10

8

6 7

4
7

6

5

1

3

2

9

8

10

11

l1

l2

Images: Anna Atramentov

K-d tree
•  K-d tree is a binary tree data structure for organizing a set of points in
a K-dimensional space.

•  Each internal node is associated with an axis aligned hyper-plane
splitting its associated points into two sub-trees.

•  Dimensions with high variance are chosen first.

•  Position of the splitting hyper-plane is chosen as the mean/median of
the projected points – balanced tree.

4
7

6

5

1

3

2

9

8

10

11

l5
l1 l9

l6

l3

l10 l7

l4

l8

l2

l1

l8

1

l2 l3

l4 l5 l7 l6

l9 l10

3

2 5 4 11

9 10

8

6 7

Slide credit: Anna Atramentov

K-d tree construction

Simple 2D example

4
7

6

5

1

3

2

9

8

10

11

l5
l1 l9

l6

l3

l10 l7

l4

l8

l2

l1

l8

1

l2 l3

l4 l5 l7 l6

l9 l10

3

2 5 4 11

9 10

8

6 7

q

K-d tree query

Slide credit: Anna Atramentov

K-d tree: Backtracking

Backtracking is necessary as the true nearest neighbor
may not lie in the query cell.

But in some cases, almost all cells need to be inspected.

Figure: A. Moore

Solution: Approximate nearest neighbor K-d tree

Key ideas:

•  Search k-d tree bins in order
of distance from query

•  Requires use of a priority
queue

•  Limit the number of
neighbouring k-d tree bins to
explore: only approximate NN
is found

•  Reduce the boundary effects by randomization

Randomized K-d trees

  Multiple randomized trees increase the chances of finding
nearby points

Query point

True nearest neighbour
found? No No

True nearest
neighbour

Yes

  How to choose the dimension to split and the splitting point?
  Pick dimension with the highest variance
  Split at the mean/median

Approximate NN search using a randomized forest
of K-d trees: Algorithm summary

1. Descent all (typically 8) trees to the leaf node

2. Search k-d tree bins in order of distance from query
•  Distance between the query and the bin is defined as the minimum

distance between the query and any point on the bin boundary

•  Requires the use of a priority queue:
>  During lookup an entry is added to the priority queue about the option

not taken
>  For multiple trees, the queue is shared among the trees

•  Limit the number of neighbouring K-d tree bins to explore
(parameter of the algorithm, typically set to 512)

Experimental evaluation for SIFT matching
http://www.cs.ubc.ca/~lowe/papers/09muja.pdf

Randomized K-d trees

Performance w.r.t. the number of trees

Precision: percentage of true nearest neighbours found
d=128, n=100K

Randomized K-d trees

Performance w.r.t. the number of dimensions

Randomized K-d trees: discussion

•  Find approximate nearest neighbor in O(logN) time,
where N is the number of data points.

•  Increased memory requirements: needs to store multiple
(~8) trees

•  Good performance in practice for recognition problems
(NN-search for SIFT descriptors and image patches).

•  Code available online:
 http://people.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN

Variation: K-means tree [Muja&Lowe, 2009]

•  Partition of the space is determined by recursive
application of k-means clustering.

•  Cell boundaries are not axis aligned, but given by the set
of cluster centers.

•  Also called “tree structured vector quantization”.

•  Finding nearest neighbor to a query point involves
recursively finding nearest cluster center.

•  Look-up complexity O(logN)

•  Also used for vocabulary quantization (see later)
[Nister&Stewenius’06]

28
K. Grauman, B. Leibe

Example

3-nary tree construction:

Figure credit: David Nister

Query look-up:

29
K. Grauman, B. Leibe

Example

Figure credit: David Nister

Indexing local features:
approximate nearest neighbor search

30
K. Grauman, B. Leibe

Best-Bin First (BBF), a variant of k-d
trees that uses priority queue to
examine most promising branches
first [Beis & Lowe, CVPR 1997]

Locality-Sensitive Hashing (LSH), a
randomized hashing technique using
hash functions that map similar
points to the same bin, with high
probability [Indyk & Motwani, 1998]

Idea: construct hash functions g: Rd→Zk such that

for any points p,q:

If ||p-q|| ≤ r, then Pr[g(p)=g(q)] is “high” or “not-so-small”
If ||p-q|| > cr, then Pr[g(p)=g(q)] is “small”

Example of g: linear projections

g(p)=<h1(p),h2(p),…,hk(p)>, where hX,b(p)=(p*X+b)/w

. is the “floor” operator.
Xi are sampled from a Gaussian.
w is the width of each quantization bin.
b is sampled from uniform distr. [0,w].

Locality Sensitive Hashing (LSH)

[Datar-Immorlica-Indyk-Mirrokni’04]

Locality Sensitive Hashing (LSH)

  Choose a random projection

  Project points

  Points close in the original space
remain close under the projection

  Unfortunately, converse not true

  Answer: use multiple quantized projections which define a
high-dimensional “grid”

Slide: Philbin, Chum, Isard, Zissrman

Locality Sensitive Hashing (LSH)

  Cell contents can be efficiently
indexed using a hash table

  Repeat to avoid quantization errors
near the cell boundaries

  Point that shares at least one cell = potential candidate

  Compute distance to all candidates

Slide: Philbin, Chum, Isard, Zissrman

LSH: discussion

In theory, query time is O(kL), where k is the number of projections and L is the
number of hash tables, i.e. independent of the number of points, N.

In practice, LSH has high memory requirements as large number of projections/
hash tables are needed.

Code and more materials available online:
http://www.mit.edu/~andoni/LSH/

Hashing functions could be also data-dependent (PCA) or learnt from labeled
point pairs (close/far).

Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in NIPS, 2008.
R. Salakhutdinov and G. Hinton, “Semantic Hashing,” ACM SIGIR, 2007.

See also:
http://cobweb.ecn.purdue.edu/~malcolm/yahoo Slaney2008(LSHTutorialDraft).pdf
http://www.sanjivk.com/EECS6898/ApproxNearestNeighbors_2.pdf

Dataset: 100K SIFT descriptors

Code for all methods available online, see Muja&Lowe’09

Comparison of approximate NN-search methods

Figure: Muja&Lowe’09

Approximate nearest neighbour search (references)

J. L. Bentley. Multidimensional binary search trees used for associative searching.
Comm. ACM, 18(9), 1975.

Freidman, J. H., Bentley, J. L., and Finkel, R. A. An algorithm for finding best matches in
logarithmic expected time. ACM Trans. Math. Softw., 3:209–226, 1977.

Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., and Wu, A. Y. An optimal
algorithm for approximate nearest neighbor searching in fixed dimensions. Journal of
the ACM, 45:891–923, 1998.

C. Silpa-Anan and R. Hartley. Optimised KD-trees for fast image descriptor matching. In
CVPR, 2008.

M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic algorithm
configuration. In VISAPP, 2009.

P. Indyk and R. Motwani, “Approximate nearest neighbors: towards removing the curse of
dimensionality,” in Proc. of 30th ACM Symposium on Theory of Computing, 1998

G. Shakhnarovich, P. Viola, and T. Darrell, “Fast pose estimation with parameter-
sensitive hashing,” in Proc. of the IEEE International Conference on Computer Vision,
2003.

R. Salakhutdinov and G. Hinton, “Semantic Hashing,” ACM SIGIR, 2007.

Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in NIPS, 2008.

ANN - search (references continued)

O. Chum, J. Philbin, and A. Zisserman. Near duplicate image detection: min-hash and tf-
idf weighting. BMVC., 2008.

M. Raginsky and S. Lazebnik, “Locality-Sensitive Binary Codes from Shift-Invariant
Kernels,” in Proc. of Advances in neural information processing systems, 2009.

B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing for scalable image
search,” Proc. of the IEEE International Conference on Computer Vision, 2009.

J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing for scalable image
retrieval,” in IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), 2010.

J. Wang, S. Kumar, and S.-F. Chang, “Sequential projection learning for hashing with
compact codes,” in Proceedings of the 27th International Conference on Machine
Learning, 2010.

