

Reconnaissance d'objets et vision artificielle

Jean Ponce (ponce@di.ens.fr) http://www.di.ens.fr/~ponce

Equipe-projet WILLOW
ENS/INRIA/CNRS UMR 8548
Laboratoire d'Informatique Ecole Normale Supérieure, Paris

Outline

- Motivation: Making mosaics
- Perspetive and weak perspective
- Coordinates changes
- Intrinsic and extrensic parameters
- Affine registration
- Projective registration

Feature-based alignment outline

Feature-based alignment outline

Extract features

Feature-based alignment outline

Extract features

Compute putative matches

Feature-based alignment outline

Extract features

Compute putative matches
Loop:

- Hypothesize transformation T (small group of putative matches that are related by T)

Feature-based alignment outline

Extract features

Compute putative matches
Loop:

- Hypothesize transformation T (small group of putative matches that are related by T)
- Verify transformation (search for other matches consistent with T)

Feature-based alignment outline

Extract features

Compute putative matches
Loop:

- Hypothesize transformation T (small group of putative matches that are related by T)
- Verify transformation (search for other matches consistent with T)

2D transformation models

Similarity
(translation, scale, rotation)

Affine

Projective (homography)

Why these transformations ???

Pinhole perspective equation

$$
\left\{\begin{array}{r}
x^{\prime}=f^{\prime \prime}-\frac{X}{Z} \\
y^{\prime}=f^{\prime} \underline{Z}
\end{array}\right.
$$

NOTE: z is always negative..

Affine models: Weak perspective projection

$$
\left\{\begin{array}{l}
x^{\prime}=-m x \\
y^{\prime}=-m y
\end{array} \text { where } \quad m=-\frac{f^{\prime}}{z_{0}}\right.
$$

is the magnification.

When the scene relief is small compared its distance from the Camera, m can be taken constant: weak perspective projection.

Affine models: Orthographic projection

$$
\left\{\begin{array}{l}
x^{\prime}=x \\
y^{\prime}=y
\end{array}\right.
$$

When the camera is at a (roughly constant) distance from the scene, take $m=1$.

Analytical camera geometry

Coordinate Changes: Pure Translations

$$
\overrightarrow{O_{B} P}={\overrightarrow{O_{B}} O_{A}}+\overrightarrow{O_{A} P}, \quad B P={ }^{A} P+B O_{A}
$$

Coordinate Changes: Pure Rotations

$$
{ }_{A}^{B} R=\left[\begin{array}{c|c|c}
\mathbf{i}_{A} \cdot \mathbf{i}_{B} & \mathbf{j}_{A} \cdot \mathbf{i}_{B} & \mathbf{k}_{A} \cdot \mathbf{i}_{B} \\
\hline \mathbf{i}_{A} \cdot \mathbf{j}_{B} & \mathbf{j}_{A} \cdot \mathbf{j}_{B} & \mathbf{k}_{A} \cdot \mathbf{j}_{B} \\
\hline \mathbf{i}_{A} \cdot \mathbf{k}_{B} & \mathbf{j}_{A} \cdot \mathbf{k}_{B} & \mathbf{k}_{A} \cdot \mathbf{k}_{B}
\end{array}\right]=\left[\begin{array}{r}
{ }^{A} \mathbf{i}_{B}^{T} \\
{ }^{B A} \mathbf{i}_{A B}^{T} \\
{ }^{A}{ }^{A} \mathbf{k}_{B}^{T}
\end{array}\right]{ }^{B} \mathbf{j}_{A} \quad{ }^{B} \mathbf{k}_{A-}
$$

Coordinate Changes: Rotations about

 the z Axis
${ }_{A}^{B} R=\left[\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$

A rotation matrix is characterized by the following properties:

- Its inverse is equal to its transpose, and
- its determinant is equal to 1.

Or equivalently:

- Its rows (or columns) form a right-handed orthonormal coordinate system.

Coordinate changes: pure rotations

$$
\overrightarrow{O P}=\left[\begin{array}{lll}
\mathbf{i}_{A} & \mathbf{j}_{A} & \mathbf{k}_{A}
\end{array}\right]\left[\begin{array}{c}
{ }^{A} x \\
{ }^{A} y \\
{ }^{A} z
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{i}_{B} & \mathbf{j}_{B} & \mathbf{k}_{B}
\end{array}\right]\left[\begin{array}{c}
{ }^{B} x \\
{ }^{B} y \\
{ }^{B} z
\end{array}\right]
$$

$$
\Rightarrow \quad{ }^{B} P={ }_{A}^{B} R^{A} P
$$

Coordinate Changes: Rigid Transformations

Pinhole perspective equation

$$
\left\{\begin{array}{r}
x^{\prime}=f^{\prime \prime}-\frac{X}{Z} \\
y^{\prime}=f^{\prime} \underline{Z}
\end{array}\right.
$$

NOTE: z is always negative..

The intrinsic parameters of a camera

```
Units:
k,l: pixel/m
f:m
\alpha,\beta: pixel
```


$$
\left\{\begin{array}{l}
\hat{u}=\frac{x}{z} \\
\hat{v}=\frac{y}{z}
\end{array} \Leftrightarrow \hat{\boldsymbol{p}}=\frac{1}{z}\left(\begin{array}{ll}
\operatorname{Id} & \mathbf{0}
\end{array}\right)\binom{\boldsymbol{P}}{1}\right.
$$

Normalized image coordinates

Physical image coordinates

$$
\left\{\begin{array}{l}
u=k f \frac{x}{z} \\
v=l f \frac{y}{z}
\end{array}\right.
$$

The intrinsic parameters of a camera

Calibration matrix
$\boldsymbol{p}=\mathcal{K} \hat{\boldsymbol{p}}, \quad$ where $\quad \boldsymbol{p}=\left(\begin{array}{l}u \\ v \\ 1\end{array}\right)$ and $\mathcal{K} \stackrel{\text { def }}{=}\left(\begin{array}{ccc}\alpha & -\alpha \cot \theta & u_{0} \\ 0 & \frac{\beta}{\sin \theta} & v_{0} \\ 0 & 0 & 1\end{array}\right)$
The perspective projection equation

$$
\boldsymbol{p}=\frac{1}{z} \mathcal{M} \boldsymbol{P}, \quad \text { where } \quad \mathcal{M} \stackrel{\text { def }}{=}\left(\begin{array}{ll}
\mathcal{K} & \mathbf{0}
\end{array}\right)
$$

The extrinsic parameters of a camera

- When the camera frame (C) is different from the world frame (W),

$$
\binom{{ }^{C} P}{1}=\left(\begin{array}{cc}
C \\
W & \mathcal{R} \\
{ }^{C} O_{W} \\
\mathbf{0}^{T} & 1
\end{array}\right)\binom{{ }^{W} P}{1}
$$

- Thus,

$$
\boldsymbol{p}=\frac{1}{z} \mathcal{M} \boldsymbol{P}, \quad \text { where }\left\{\begin{array}{l}
\mathcal{M}=\mathcal{K}(\mathcal{R} \quad \boldsymbol{t}) \\
\mathcal{R}={ }_{W}^{C} \mathcal{R} \\
\boldsymbol{t}={ }^{C} O_{W} \\
\boldsymbol{P}=\binom{W}{1}
\end{array}\right.
$$

- Note: z is not independent of \mathcal{M} and \boldsymbol{P} :

$$
\mathcal{M}=\left(\begin{array}{c}
\boldsymbol{m}_{1}^{T} \\
\boldsymbol{m}_{2}^{T} \\
\boldsymbol{m}_{3}^{T}
\end{array}\right) \Longrightarrow z=\boldsymbol{m}_{3} \cdot \boldsymbol{P}, \quad \text { or } \quad\left\{\begin{array}{l}
u=\frac{\boldsymbol{m}_{1} \cdot \boldsymbol{P}}{\boldsymbol{m}_{3} \cdot \boldsymbol{P}} \\
v=\frac{\boldsymbol{m}_{2} \cdot \boldsymbol{P}}{\boldsymbol{m}_{3} \cdot \boldsymbol{P}}
\end{array}\right.
$$

Perspective projections induce projective

 transformations between planes

Affine cameras

Weak-perspective projection

Paraperspective projection

More affine cameras

Orthographic projection

Parallel projection

Weak-perspective projection model

$\boldsymbol{p}=\frac{1}{z_{\mathrm{r}}} \mathcal{M} \boldsymbol{P}$

(p and P are in homogeneous coordinates)
$p=M P$
(P is in homogeneous coordinates)
$p=A P+b$
(neither p nor P is in hom. coordinates)

Affine projections induce affine transformations from planes onto their images.

Affine transformations

An affine transformation maps a parallelogram onto another parallelogram

$$
\left[\begin{array}{c}
u^{\prime} \\
v^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} & a_{12} & b_{1} \\
a_{21} & a_{22} & b_{2} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]
$$

Fitting an affine transformation

Assume we know the correspondences, how do we get the transformation?

Fitting an affine transformation

Linear system with six unknowns
Each match gives us two linearly independent equations: need at least three to solve for the transformation parameters

Beyond affine transformations

What is the transformation between two views of a planar surface?

What is the transformation between images from two cameras that share the same center?

Perspective projections induce projective

 transformations between planes

Beyond affine transformations

Homography: plane projective transformation (transformation taking a quad to another arbitrary quad)

Fitting a homography

Recall: homogenenous coordinates

$$
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right.
$$

Converting to homogenenous image coordinates
$\left[\begin{array}{c}x \\ y \\ w\end{array}\right] \Rightarrow(x / w, y / w)$

Converting from homogenenous image coordinates

Fitting a homography

Recall: homogenenous coordinates

$$
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Converting to homogenenous image coordinates
$\left[\begin{array}{c}x \\ y \\ w\end{array}\right] \Rightarrow(x / w, y / w)$

Converting from homogenenous image coordinates

Equation for homography:
$\lambda\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{lll}h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33}\end{array}\right]\left[\begin{array}{c}x \\ y \\ 1\end{array}\right]$

Fitting a homography

Equation for homography:

$\lambda\left[\begin{array}{c}x_{i}^{\prime} \\ y_{i}^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{lll}h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33}\end{array}\right]\left[\begin{array}{c}x_{i} \\ y_{i} \\ 1\end{array}\right]$

$$
\lambda \mathbf{x}_{i}^{\prime}=\mathbf{H} \mathbf{x}_{i}=\left[\begin{array}{l}
\mathbf{h}_{1}^{T} \\
\mathbf{h}_{2}^{T} \\
\mathbf{h}_{3}^{T}
\end{array}\right] \mathbf{x}_{i}
$$

9 entries, 8 degrees of freedom (scale is arbitrary)

$$
\mathbf{x}_{i}^{\prime} \times \mathbf{H} \mathbf{x}_{i}=0
$$

$$
\mathbf{x}_{i}^{\prime} \times \mathbf{H} \mathbf{x}_{i}=\left[\begin{array}{c}
y_{i}^{\prime} \mathbf{h}_{3}^{T} \mathbf{x}_{i}-\mathbf{h}_{2}^{T} \mathbf{x}_{i} \\
\mathbf{h}_{1}^{T} \mathbf{x}_{i}-x_{i}^{\prime} \mathbf{h}_{3}^{T} \mathbf{x}_{i} \\
x_{i}^{\prime} \mathbf{h}_{2}^{T} \mathbf{x}_{i}-y_{i}^{\prime} \mathbf{h}_{1}^{T} \mathbf{x}_{i}
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
0^{T} & -\mathbf{x}_{i}^{T} & y_{i}^{\prime} \mathbf{x}_{i}^{T} \\
\mathbf{x}_{i}^{T} & 0^{T} & -x_{i}^{\prime} \mathbf{x}_{i}^{T} \\
-y_{i}^{\prime} \mathbf{x}_{i}^{T} & x_{i}^{\prime} \mathbf{x}_{i}^{T} & 0^{T}
\end{array}\right]\left(\begin{array}{l}
\mathbf{h}_{1} \\
\mathbf{h}_{2} \\
\mathbf{h}_{3}
\end{array}\right)=0
$$

3 equations, only 2 linearly independent

Direct linear transform

$$
\left[\begin{array}{ccc}
0^{T} & \mathbf{x}_{1}^{T} & -y_{1}^{\prime} \mathbf{x}_{1}^{T} \\
\mathbf{x}_{1}^{T} & 0^{T} & -x_{1}^{\prime} \mathbf{x}_{1}^{T} \\
\cdots & \cdots & \cdots \\
0^{T} & \mathbf{x}_{n}^{T} & -y_{n}^{\prime} \mathbf{x}_{n}^{T} \\
\mathbf{x}_{n}^{T} & 0^{T} & -x_{n}^{\prime} \mathbf{x}_{n}^{T}
\end{array}\right]\left(\begin{array}{l}
\mathbf{h}_{1} \\
\mathbf{h}_{2} \\
\mathbf{h}_{3}
\end{array}\right)=0 \quad \mathbf{A} \mathbf{h}=0
$$

H has 8 degrees of freedom (9 parameters, but scale is arbitrary)
One match gives us two linearly independent equations Four matches needed for a minimal solution (null space of 8×9 matrix)
More than four: homogeneous least squares

Application: Panorama stitching

Images courtesy of A. Zisserman.

