

Reconnaissance d'objets et vision artificielle

Jean Ponce (ponce@di.ens.fr) http://www.di.ens.fr/~ponce Equipe-projet WILLOW ENS/INRIA/CNRS UMR 8548 Laboratoire d'Informatique Ecole Normale Supérieure, Paris

Outline

- Motivation: Making mosaics
- Perspetive and weak perspective
- Coordinates changes
- Intrinsic and extrensic parameters
- Affine registration
- Projective registration

Extract features

Extract features Compute *putative matches*

Extract features Compute *putative matches* Loop:

• *Hypothesize* transformation *T* (small group of putative matches that are related by *T*)

Extract features Compute *putative matches* Loop:

- *Hypothesize* transformation *T* (small group of putative matches that are related by *T*)
- *Verify* transformation (search for other matches consistent with *T*)

Extract features

Compute *putative matches*

Loop:

- *Hypothesize* transformation *T* (small group of putative matches that are related by *T*)
- *Verify* transformation (search for other matches consistent with *T*)

2D transformation models

Similarity (translation, scale, rotation)

Affine

Projective (homography)

Why these transformations ???

Pinhole perspective equation

$$\begin{cases} x' = f' \frac{x}{z} \\ y' = f' \frac{y}{z} \end{cases}$$

NOTE: z is always negative..

Affine models: Weak perspective projection

When the scene relief is small compared its distance from the Camera, *m* can be taken constant: weak perspective projection.

Affine models: Orthographic projection

$$\begin{cases} x' = x \\ y' = y \end{cases}$$

When the camera is at a (roughly constant) distance from the scene, take *m*=1.

Analytical camera geometry

Coordinate Changes: Pure Translations

 $\overrightarrow{O_B P} = \overrightarrow{O_B O_A} + \overrightarrow{O_A P}, \quad BP = AP + BO_A$

Coordinate Changes: Pure Rotations

Coordinate Changes: Rotations about the z Axis \dot{J}_B e (B) \dot{J}_B (A) θ 0 ${}^{B}_{A}R = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \\ 0 & 0 \end{bmatrix}$ 00 0 -5

A rotation matrix is characterized by the following properties:

• Its inverse is equal to its transpose, and

• its determinant is equal to 1.

Or equivalently:

• Its rows (or columns) form a right-handed orthonormal coordinate system.

$$\overrightarrow{OP} = \begin{bmatrix} \mathbf{i}_A & \mathbf{j}_A & \mathbf{k}_A \end{bmatrix} \begin{bmatrix} A \\ A \\ A \\ A \\ Z \end{bmatrix} = \begin{bmatrix} \mathbf{i}_B & \mathbf{j}_B & \mathbf{k}_B \end{bmatrix} \begin{bmatrix} B \\ B \\ Y \\ B \\ Z \end{bmatrix}$$

$$\Rightarrow {}^{B}P = {}^{B}_{A}R^{A}P$$

Coordinate Changes: Rigid Transformations

Pinhole perspective equation

$$\begin{cases} x' = f' \frac{x}{z} \\ y' = f' \frac{y}{z} \end{cases}$$

NOTE: z is always negative..

The intrinsic parameters of a camera

Units: k,l: pixel/m f: m α,β : pixel

$$\begin{cases} \hat{u} = \frac{x}{z} \\ \hat{v} = \frac{y}{z} \end{cases} \iff \hat{p} = \frac{1}{z} (\text{Id} \quad \mathbf{0}) \begin{pmatrix} \mathbf{P} \\ 1 \end{pmatrix}$$

Physical image coordinates

Normalized image coordinates

$$\left\{ \begin{array}{l} u = kf\frac{x}{z} \\ v = lf\frac{y}{z} \end{array} \right.$$

The intrinsic parameters of a camera

Calibration matrix

$$\boldsymbol{p} = \mathcal{K}\hat{\boldsymbol{p}}, \quad ext{where} \quad \boldsymbol{p} = \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} \quad ext{and} \quad \mathcal{K} \stackrel{ ext{def}}{=} \begin{pmatrix} lpha & -lpha \cot heta & u_0 \\ 0 & rac{eta}{\sin heta} & v_0 \\ 0 & 0 & 1 \end{pmatrix}$$

The perspective projection equation

$$\boldsymbol{p} = \frac{1}{z} \mathcal{M} \boldsymbol{P}, \text{ where } \mathcal{M} \stackrel{\text{def}}{=} (\mathcal{K} \quad \boldsymbol{0})$$

The extrinsic parameters of a camera

• When the camera frame (C) is different from the world frame (W), $\begin{pmatrix} C \\ P \end{pmatrix} = \begin{pmatrix} C \\ C \\ \mathcal{R} \end{pmatrix} \begin{pmatrix} W \\ P \end{pmatrix}$

$$\begin{pmatrix} {}^{C}P\\ 1 \end{pmatrix} = \begin{pmatrix} {}^{W}\mathcal{R} & {}^{C}O_{W}\\ \mathbf{0}^{T} & 1 \end{pmatrix} \begin{pmatrix} {}^{W}P\\ 1 \end{pmatrix}.$$

• Thus,

$$oldsymbol{p} = rac{1}{z} \mathcal{M} oldsymbol{P}, ext{ where } egin{cases} \mathcal{M} = \mathcal{K} \left(\mathcal{R} \quad oldsymbol{t}
ight), \ \mathcal{R} = {}^C_W \mathcal{R}, \ oldsymbol{t} = {}^C O_W, \ oldsymbol{t} = {}^C O_W, \ oldsymbol{P} = \left({}^W P \ 1
ight). \end{cases}$$

• Note: z is *not* independent of \mathcal{M} and \mathbf{P} :

$$\mathcal{M} = egin{pmatrix} oldsymbol{m}_1^T \ oldsymbol{m}_2^T \ oldsymbol{m}_3^T \end{pmatrix} \Longrightarrow z = oldsymbol{m}_3 \cdot oldsymbol{P}, \quad ext{or} \quad \left\{ egin{array}{c} u = rac{oldsymbol{m}_1 \cdot oldsymbol{P}}{oldsymbol{m}_3 \cdot oldsymbol{P}}, \ v = rac{oldsymbol{m}_2 \cdot oldsymbol{P}}{oldsymbol{m}_3 \cdot oldsymbol{P}}. \end{array}
ight.$$

Perspective projections induce projective transformations between planes

Affine cameras

Weak-perspective projection

Paraperspective projection

More affine cameras

Orthographic projection

Parallel projection

Weak-perspective projection model

$$oldsymbol{p} = rac{1}{z_{
m r}} \mathcal{M} oldsymbol{P}$$

p = M P

(p and P are in homogeneous coordinates)

(*P* is in homogeneous coordinates)

p = A P + b (neither p nor P is in hom. coordinates)

Affine projections induce affine transformations from planes onto their images.

Affine transformations

An affine transformation maps a parallelogram onto another parallelogram

Fitting an affine transformation

Assume we know the correspondences, how do we get the transformation?

Fitting an affine transformation

Linear system with six unknowns

Each match gives us two linearly independent equations: need at least three to solve for the transformation parameters

Beyond affine transformations

What is the transformation between two views of a planar surface?

What is the transformation between images from two cameras that share the same center?

Perspective projections induce projective transformations between planes

Beyond affine transformations

Homography: plane projective transformation (transformation taking a quad to another arbitrary quad)

Fitting a homography

Recall: homogenenous coordinates

$$(x,y) \Rightarrow \begin{bmatrix} x\\ y\\ 1 \end{bmatrix}$$

Converting to homogenenous image coordinates

 $\Rightarrow (x/w, y/w)$

image coordinates

x

y

Fitting a homography

Recall: homogenenous coordinates

$$(x,y) \Rightarrow \left[egin{array}{c} x \\ y \\ 1 \end{array}
ight]$$

Converting *to* homogenenous image coordinates

 $\Rightarrow (x/w, y/w)$

 \mathcal{X}

y

w

Equation for homography:

$$\lambda \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Fitting a homography

Equation for homography:

$$\lambda \begin{bmatrix} x'_i \\ y'_i \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix} \qquad \lambda \mathbf{x}'_i = \mathbf{H} \mathbf{x}_i =$$

9 entries, 8 degrees of freedom (scale is arbitrary)

$$\mathbf{x}_i' \times \mathbf{H} \mathbf{x}_i = \mathbf{0}$$

$$\mathbf{x}_{i}' \times \mathbf{H} \, \mathbf{x}_{i} = \begin{bmatrix} y_{i}' \, \mathbf{h}_{3}^{T} \, \mathbf{x}_{i} - \mathbf{h}_{2}^{T} \, \mathbf{x}_{i} \\ \mathbf{h}_{1}^{T} \, \mathbf{x}_{i} - x_{i}' \, \mathbf{h}_{3}^{T} \, \mathbf{x}_{i} \\ x_{i}' \, \mathbf{h}_{2}^{T} \, \mathbf{x}_{i} - y_{i}' \, \mathbf{h}_{1}^{T} \, \mathbf{x}_{i} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{0}^T & -\mathbf{x}_i^T & y_i' \mathbf{x}_i^T \\ \mathbf{x}_i^T & \mathbf{0}^T & -x_i' \mathbf{x}_i^T \\ -y_i' \mathbf{x}_i^T & x_i' \mathbf{x}_i^T & \mathbf{0}^T \end{bmatrix} \begin{pmatrix} \mathbf{h}_1 \\ \mathbf{h}_2 \\ \mathbf{h}_3 \end{pmatrix} = \mathbf{0}$$

3 equations, only 2 linearly independent

 \mathbf{h}_{1}^{T}

 \mathbf{h}_2^T

 \mathbf{h}_3^T

 \mathbf{X}_{i}

Direct linear transform

$$\begin{bmatrix} 0^{T} & \mathbf{x}_{1}^{T} & -y_{1}' \, \mathbf{x}_{1}^{T} \\ \mathbf{x}_{1}^{T} & 0^{T} & -x_{1}' \, \mathbf{x}_{1}^{T} \\ \cdots & \cdots & \cdots \\ 0^{T} & \mathbf{x}_{n}^{T} & -y_{n}' \, \mathbf{x}_{n}^{T} \\ \mathbf{x}_{n}^{T} & 0^{T} & -x_{n}' \, \mathbf{x}_{n}^{T} \end{bmatrix} \begin{pmatrix} \mathbf{h}_{1} \\ \mathbf{h}_{2} \\ \mathbf{h}_{3} \end{pmatrix} = 0 \quad \mathbf{A} \mathbf{h} = \mathbf{h}$$

H has 8 degrees of freedom (9 parameters, but scale is arbitrary)

One match gives us two linearly independent equations Four matches needed for a minimal solution (null space of 8x9 matrix)

More than four: homogeneous least squares

Application: Panorama stitching

Images courtesy of A. Zisserman.

