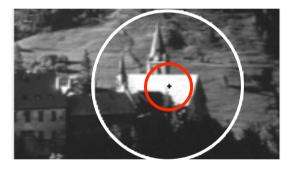
Overview

- Introduction to local features
- Harris interest points + SSD, ZNCC, SIFT
- Scale & affine invariant interest point detectors
- Evaluation and comparison of different detectors
- Region descriptors and their performance

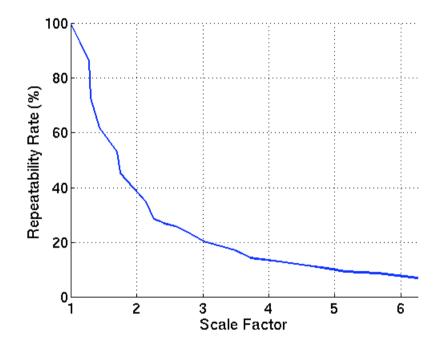
Scale invariance - motivation

• Description regions have to be adapted to scale changes



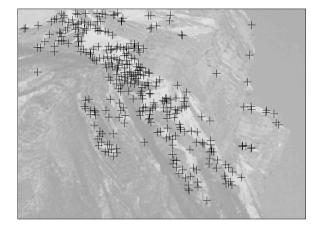
• Interest points have to be repeatable for scale changes

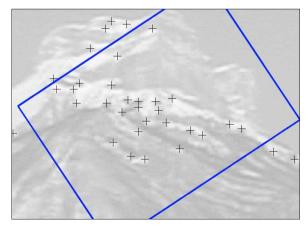
Harris detector + scale changes



Repeatability rate

$$R(\varepsilon) = \frac{|\{(\mathbf{a}_i, \mathbf{b}_i) | dist(H(\mathbf{a}_i), \mathbf{b}_i) < \varepsilon\}|}{\max(|\mathbf{a}_i|, |\mathbf{b}_i|)}$$





Scale change between two images

$$I_1\begin{pmatrix} x_1\\ y_1 \end{pmatrix} = I_2\begin{pmatrix} x_2\\ y_2 \end{pmatrix} = I_2\begin{pmatrix} SX_1\\ SY_1 \end{pmatrix}$$

Scale adapted derivative calculation

Scale change between two images

$$I_1\begin{pmatrix} x_1\\ y_1 \end{pmatrix} = I_2\begin{pmatrix} x_2\\ y_2 \end{pmatrix} = I_2\begin{pmatrix} sx_1\\ sy_1 \end{pmatrix}$$

Scale adapted derivative calculation

$$I_1\begin{pmatrix} x_1\\ y_1 \end{pmatrix} \otimes G_{i_1...i_n}(\boldsymbol{\sigma}) = \boldsymbol{s}^n I_2\begin{pmatrix} x_2\\ y_2 \end{pmatrix} \otimes G_{i_1...i_n}(\boldsymbol{s}\boldsymbol{\sigma})$$

$$G(\widetilde{\sigma}) \otimes \begin{bmatrix} L_x^2(\sigma) & L_x L_y(\sigma) \\ L_x L_y(\sigma) & L_y^2(\sigma) \end{bmatrix}$$

where $L_i(\sigma)$ are the derivatives with Gaussian convolution

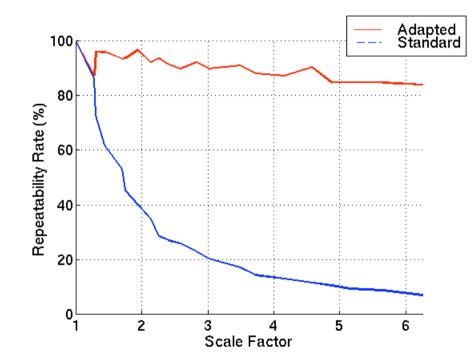
$$G(\widetilde{\sigma}) \otimes \begin{bmatrix} L_x^2(\sigma) & L_x L_y(\sigma) \\ L_x L_y(\sigma) & L_y^2(\sigma) \end{bmatrix}$$

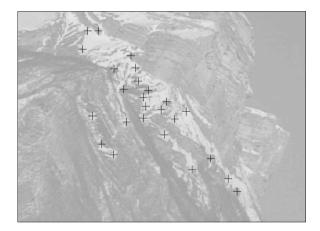
where $L_i(\sigma)$ are the derivatives with Gaussian convolution

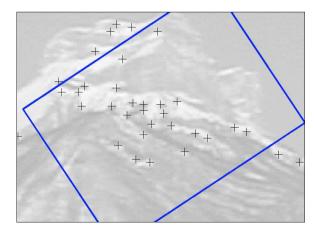
Scale adapted auto-correlation matrix

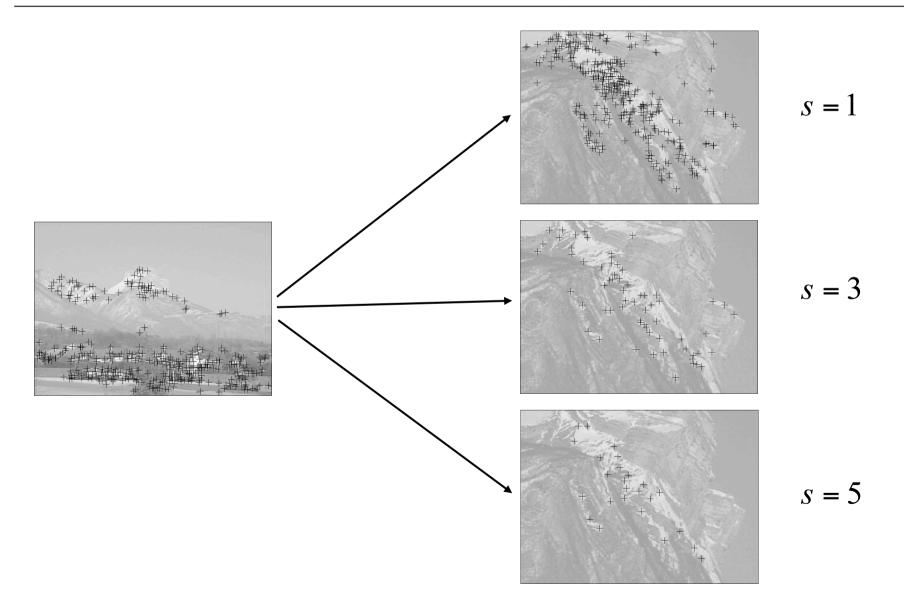
$$s^{2}G(s\widetilde{\sigma})\otimes \begin{bmatrix} L_{x}^{2}(s\sigma) & L_{x}L_{y}(s\sigma) \\ L_{x}L_{y}(s\sigma) & L_{y}^{2}(s\sigma) \end{bmatrix}$$

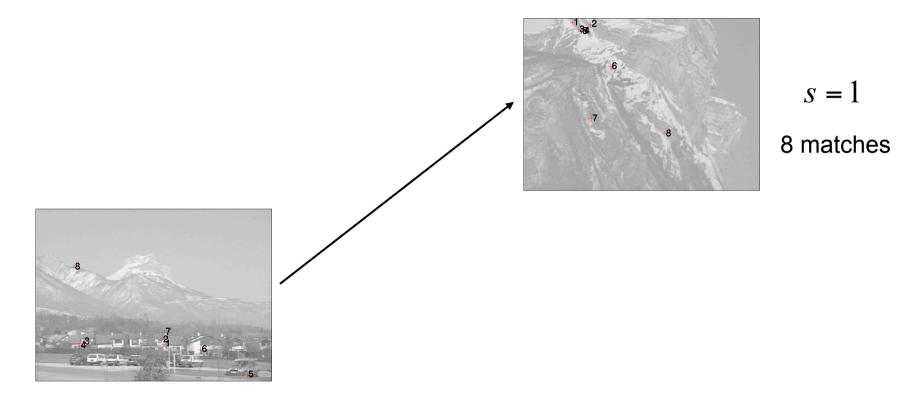
Harris detector – adaptation to scale

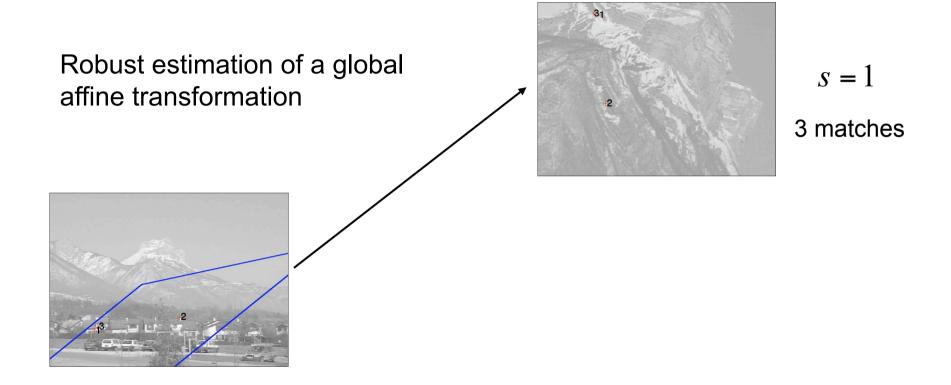


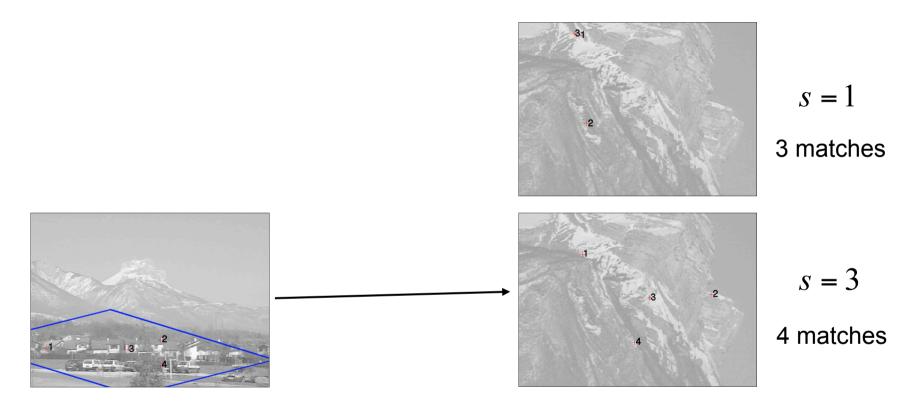


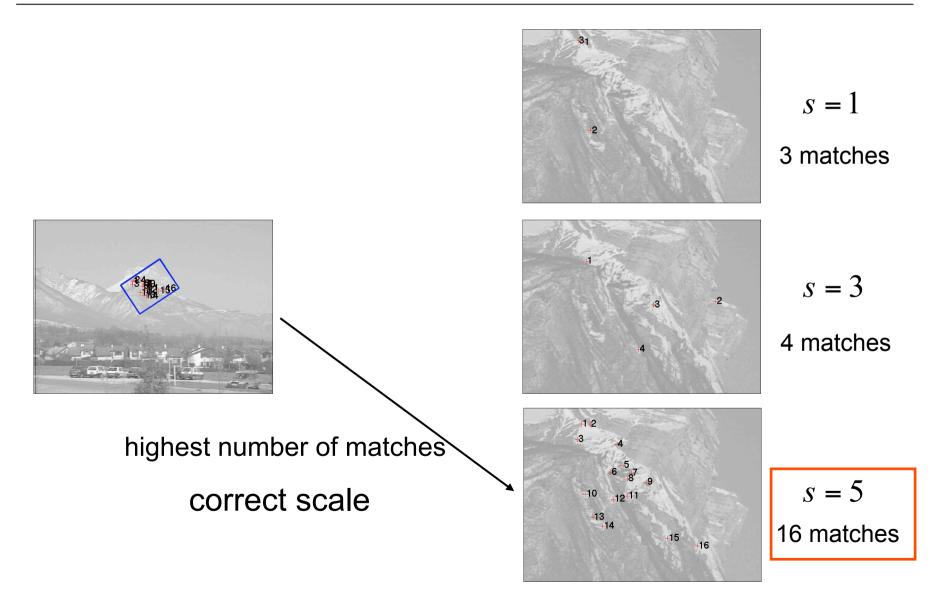




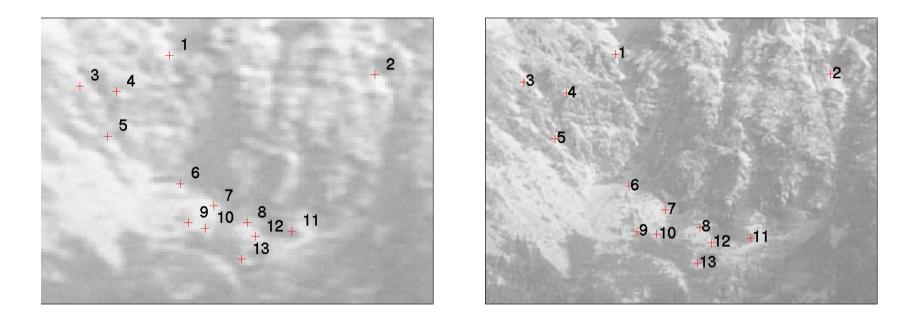






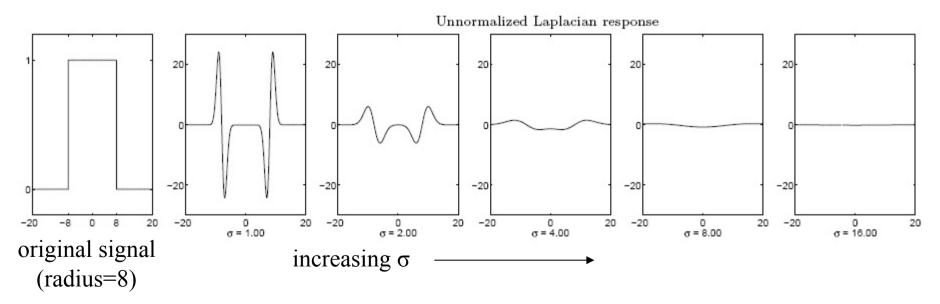


Scale change of 5.7



100% correct matches (13 matches)

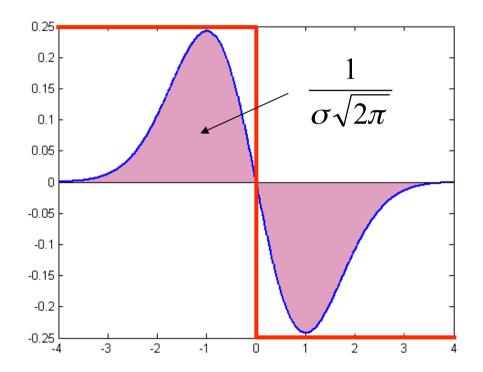
- We want to find the characteristic scale of the blob by convolving it with Laplacians at several scales and looking for the maximum response
- However, Laplacian response decays as scale increases:



Why does this happen?

Scale normalization

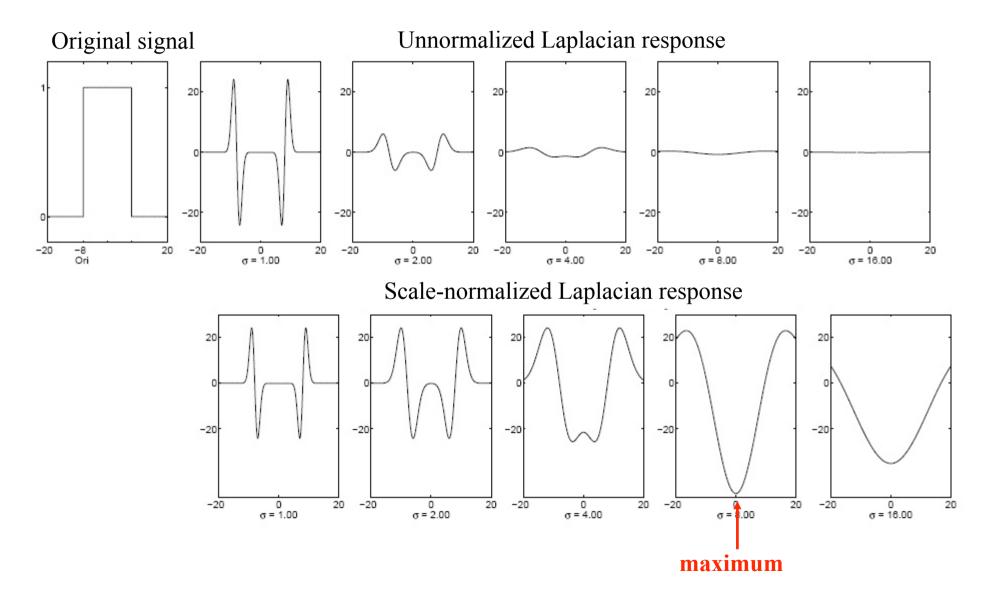
• The response of a derivative of Gaussian filter to a perfect step edge decreases as σ increases



Scale normalization

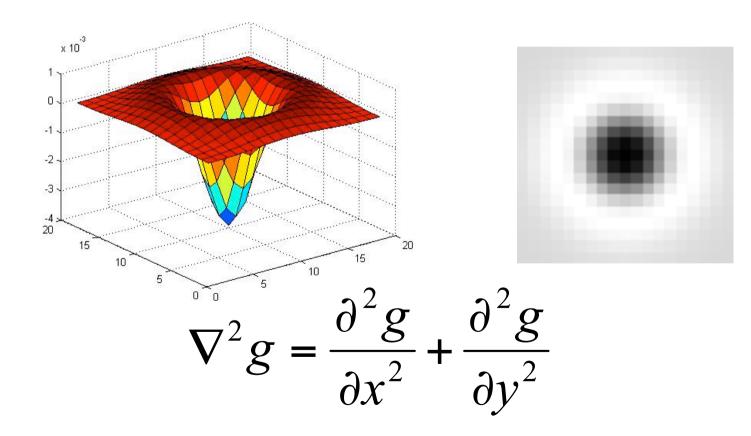
- The response of a derivative of Gaussian filter to a perfect step edge decreases as σ increases
- To keep response the same (scale-invariant), must multiply Gaussian derivative by $\boldsymbol{\sigma}$
- Laplacian is the second Gaussian derivative, so it must be multiplied by σ^2

Effect of scale normalization



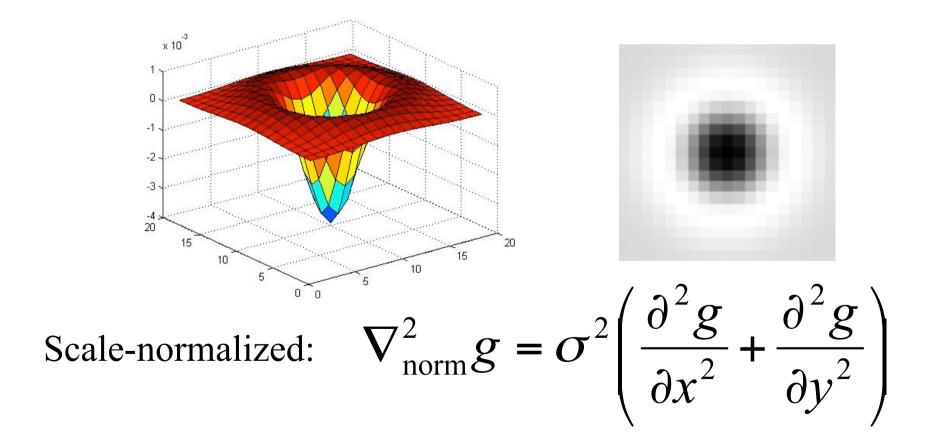
Blob detection in 2D

 Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

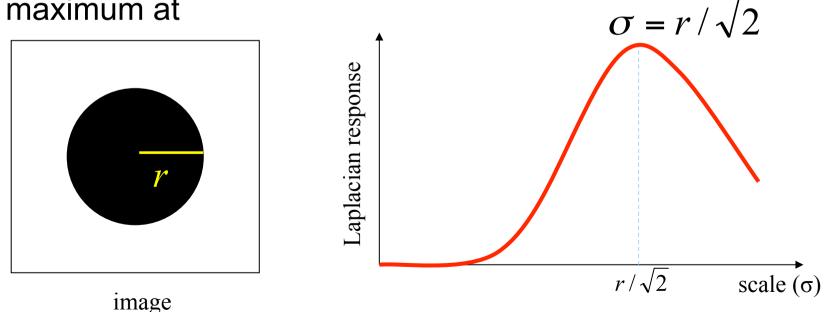


Blob detection in 2D

 Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

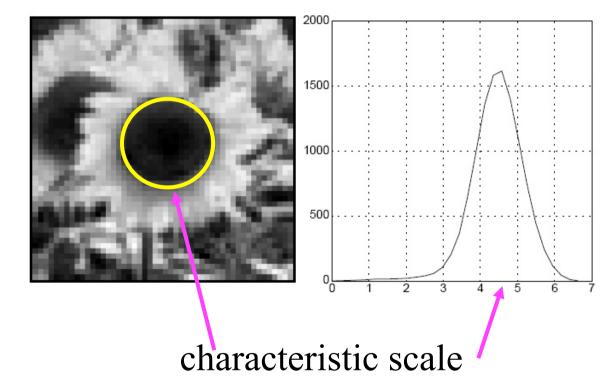


- The 2D Laplacian is given by $(x^2 + y^2 - 2\sigma^2) e^{-(x^2 + y^2)/2\sigma^2}$ (up to scale)
- For a binary circle of radius r, the Laplacian achieves a maximum at $\sigma = r/\sqrt{2}$



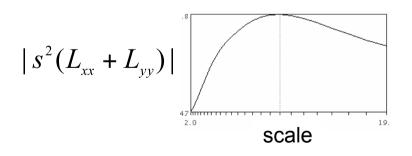
Characteristic scale

• We define the characteristic scale as the scale that produces peak of Laplacian response



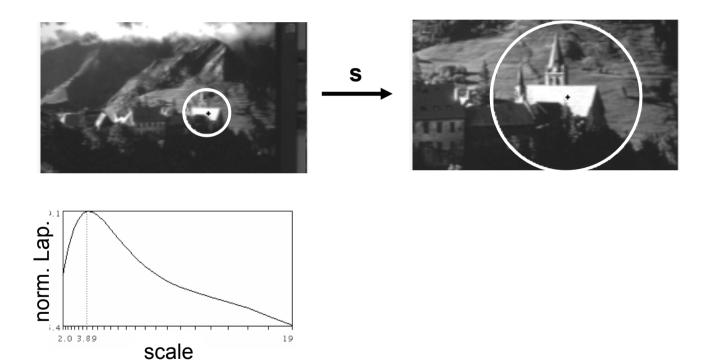
T. Lindeberg (1998). Feature detection with automatic scale selection. *International Journal of Computer Vision* **30** (2): pp 77--116.

- For a point compute a value (gradient, Laplacian etc.) at several scales
- Normalization of the values with the scale factor e.g. Laplacian $|s^2(L_{xx} + L_{yy})|$
- Select scale s^* at the maximum \rightarrow characteristic scale

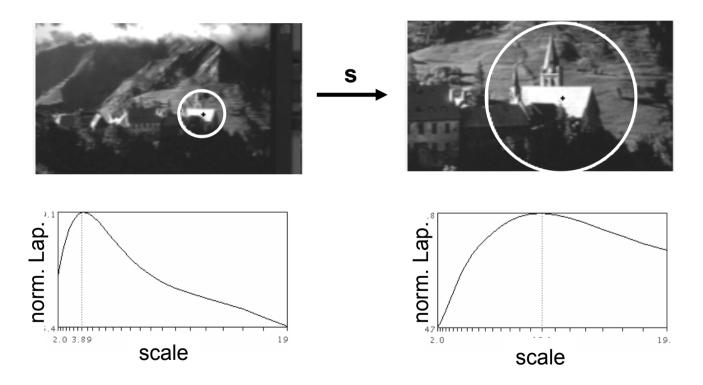


• Exp. results show that the Laplacian gives best results

• Scale invariance of the characteristic scale



• Scale invariance of the characteristic scale



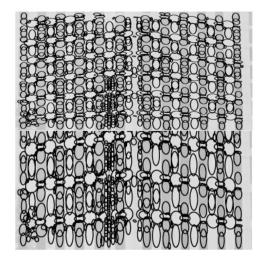
• Relation between characteristic scales $s \cdot s_1^* = s_2^*$

Scale-invariant detectors

- Harris-Laplace (Mikolajczyk & Schmid'01)
- Laplacian detector (Lindeberg'98)
- Difference of Gaussian (Lowe'99)

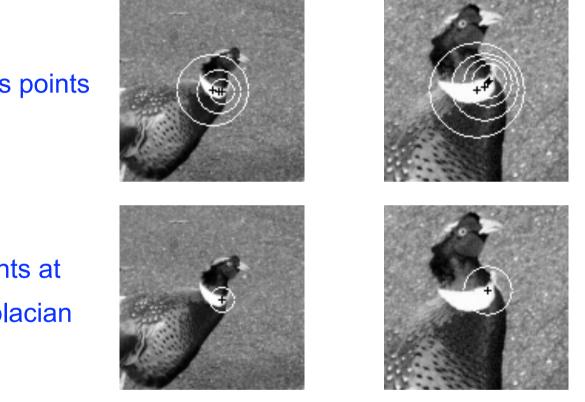
				-				-	_	-	_
		00	00	20		00		00			
0	00	00	00					00	0.0	00	00
•	00									00	00
				00	00	00	00				
	00	00	00	00		00	00	00	00	0-	
-	00	00					.0	00	00		00
											00
			- 0	00	00	00	00	00			
0	00	00	00	00	•••	00	00	20	00	00	20
	00	00				00			00	00	00
		00	00	00	00	00	00	00	0.0		
	00		00	000		00	00	00		00	00
0	00	20							00	00	00
		00	00	00	00	00	00	00	00	00	
00	00		00	00	00	00	00	00	00	00	00
•	00									00	00
	0 .	•••	00	00	00	00	00	00	00	90	
00	õ	00	00	00		00	00	00	00	00	
0	~										
	0										
				- 0	00		0.0				
		- 0	00				-0	00	00		
0	00	00		000	00	00	0.0		00	00	00
		-0	00	0-9	00			00	00		00
-0	00								-0	00	00
											~~
					~ ~						
			~ ~	00	00	00	00	0.0			
	00	00	00	-					00	00	
00			00	00	00	00	00	00			00
	00	00	00		00			00	00	00	
0	0-									~ ~	00
					- 0	0.0					
	0	~ ~	00	00	00	00	00	00	0.0		
-0	00	00			00	00				00	00
00	-		00	00	00	00	00	00	00		-
	0	00			00				20	00	00
0	1000										
	0										

Harris-Laplace



Laplacian

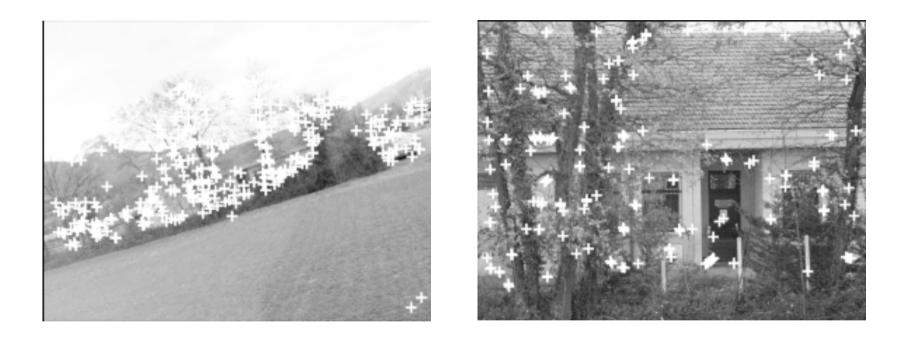
Harris-Laplace



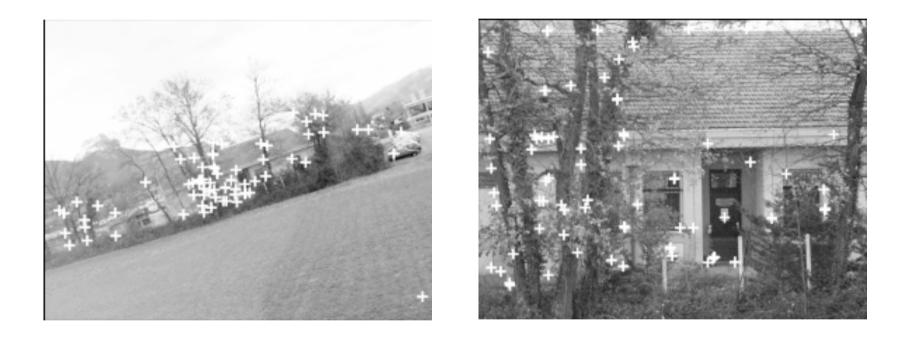
multi-scale Harris points

selection of points at maximum of Laplacian

invariant points + associated regions [Mikolajczyk & Schmid'01]

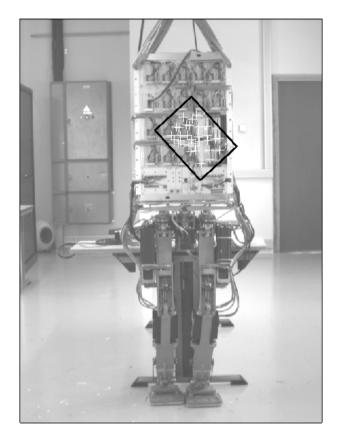


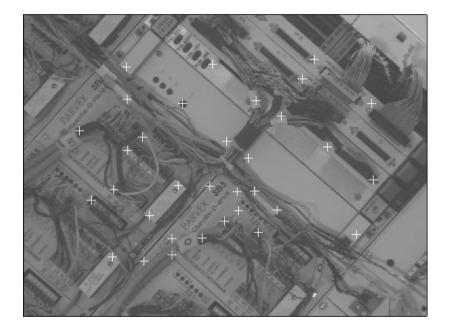
213 / 190 detected interest points



58 points are initially matched

32 points are matched after verification – all correct

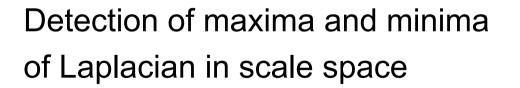


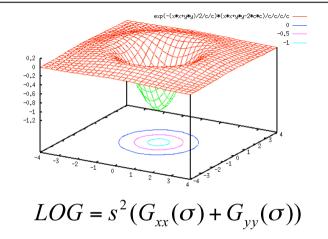


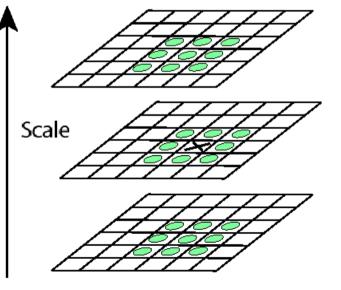
all matches are correct (33)

LOG detector

Convolve image with scalenormalized Laplacian at several scales

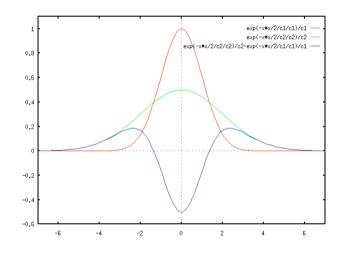




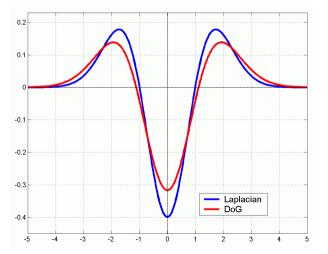


Efficient implementation

• Difference of Gaussian (DOG) approximates the Laplacian $DOG = G(k\sigma) - G(\sigma)$

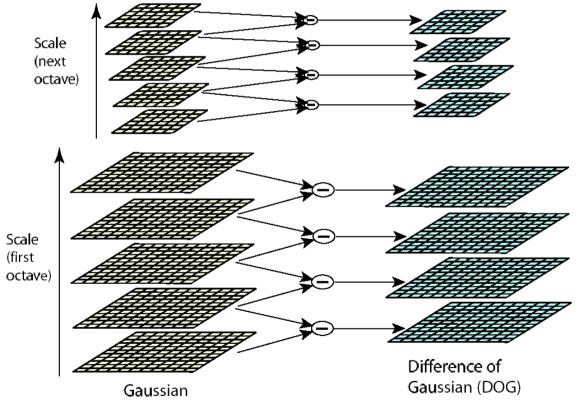


• Error due to the approximation



DOG detector

• Fast computation, scale space processed one octave at a time ...



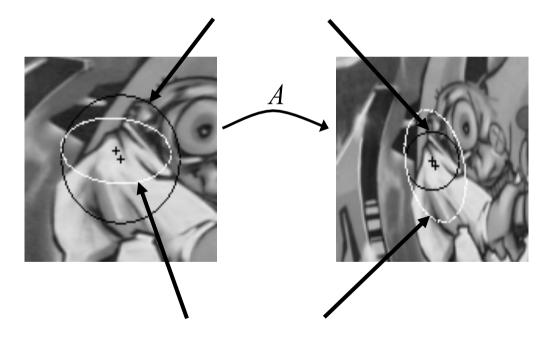
David G. Lowe. "Distinctive image features from scale-invariant keypoints." IJCV 60 (2).

Local features - overview

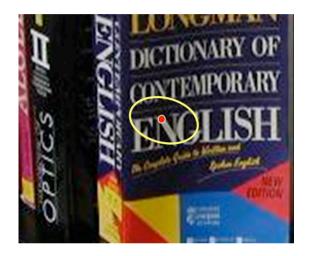
- Scale invariant interest points
- Affine invariant interest points
- Evaluation of interest points
- Descriptors and their evaluation

• Scale invariance is not sufficient for large baseline changes

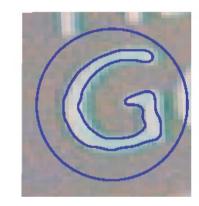
detected scale invariant region

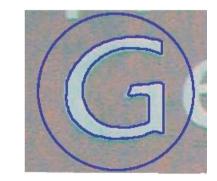


projected regions, viewpoint changes can locally be approximated by an affine transformation A



Affine invariant regions - Example





Harris/Hessian/Laplacian-Affine

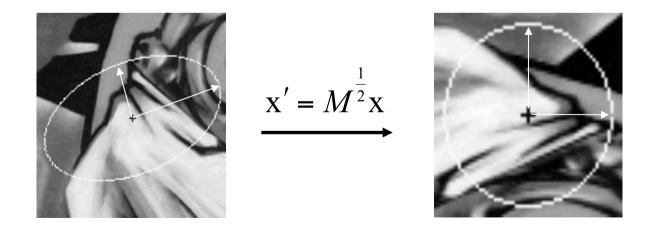
- Initialize with scale-invariant Harris/Hessian/Laplacian points
- Estimation of the affine neighbourhood with the second moment matrix [Lindeberg'94]
- Apply affine neighbourhood estimation to the scaleinvariant interest points [Mikolajczyk & Schmid'02, Schaffalitzky & Zisserman'02]
- Excellent results in a recent comparison

Affine invariant regions

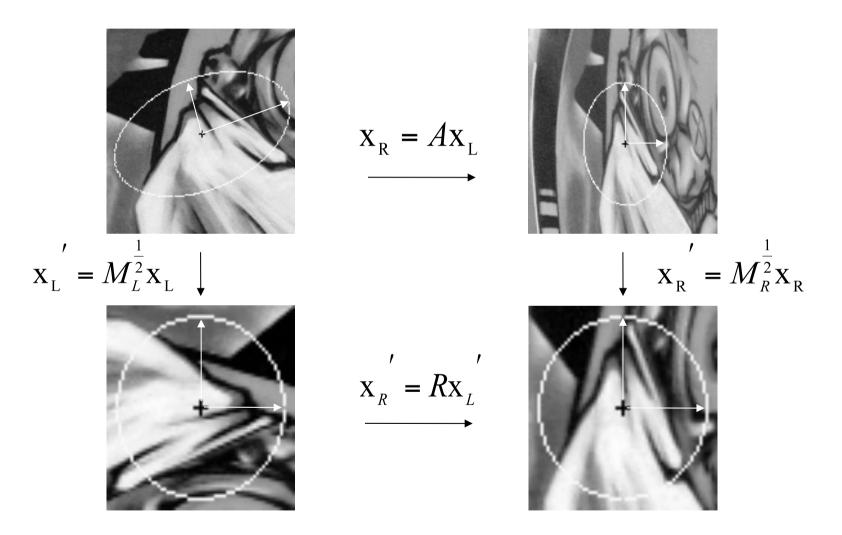
• Based on the second moment matrix (Lindeberg'94)

$$M = \mu(\mathbf{x}, \sigma_{I}, \sigma_{D}) = \sigma_{D}^{2} G(\sigma_{I}) \otimes \begin{bmatrix} L_{x}^{2}(\mathbf{x}, \sigma_{D}) & L_{x}L_{y}(\mathbf{x}, \sigma_{D}) \\ L_{x}L_{y}(\mathbf{x}, \sigma_{D}) & L_{y}^{2}(\mathbf{x}, \sigma_{D}) \end{bmatrix}$$

Normalization with eigenvalues/eigenvectors



Affine invariant regions



Isotropic neighborhoods related by image rotation

• Iterative estimation – initial points

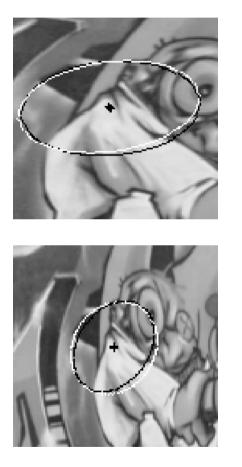
• Iterative estimation – iteration #1



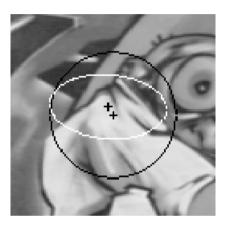
• Iterative estimation – iteration #2

• Iterative estimation – iteration #3, #4

Harris-Affine versus Harris-Laplace



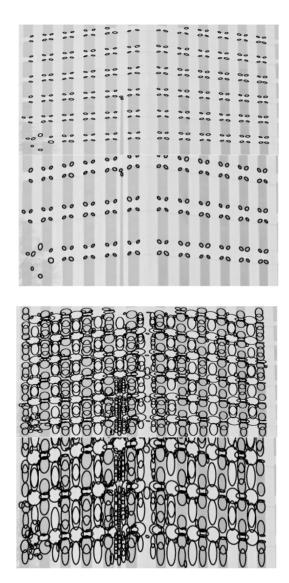
Harris-Affine

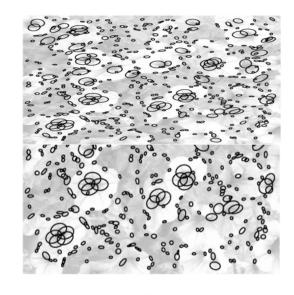




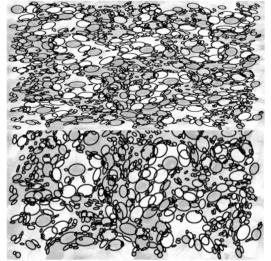
Harris-Laplace

Harris/Hessian-Affine





Harris-Affine



Hessian-Affine

Harris-Affine

Hessian-Affine

Matches

22 correct matches

Matches

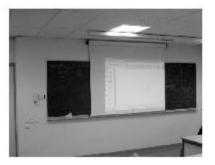
33 correct matches

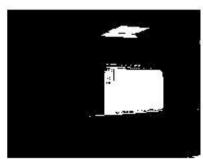
Maximally stable extremal regions (MSER) [Matas'02]

- Extremal regions: connected components in a thresholded image (all pixels above/below a threshold)
- Maximally stable: minimal change of the component (area) for a change of the threshold, i.e. region remains stable for a change of threshold
- Excellent results in a recent comparison

Maximally stable extremal regions (MSER)

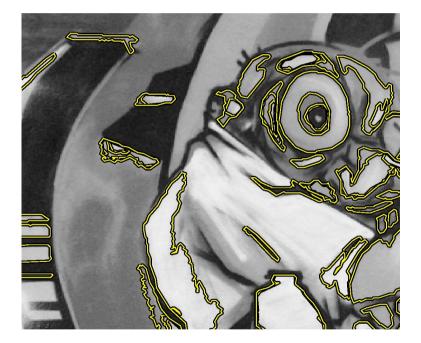
Examples of thresholded images

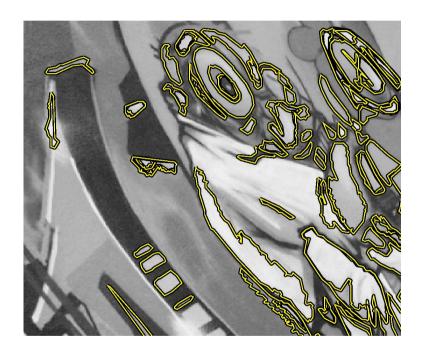




high threshold

MSER





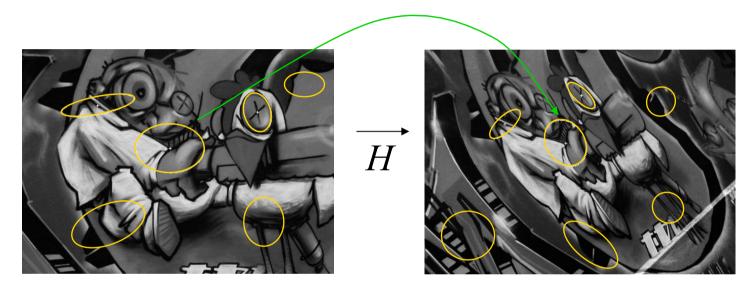
Overview

- Introduction to local features
- Harris interest points + SSD, ZNCC, SIFT
- Scale & affine invariant interest point detectors
- Evaluation and comparison of different detectors
- Region descriptors and their performance

Evaluation of interest points

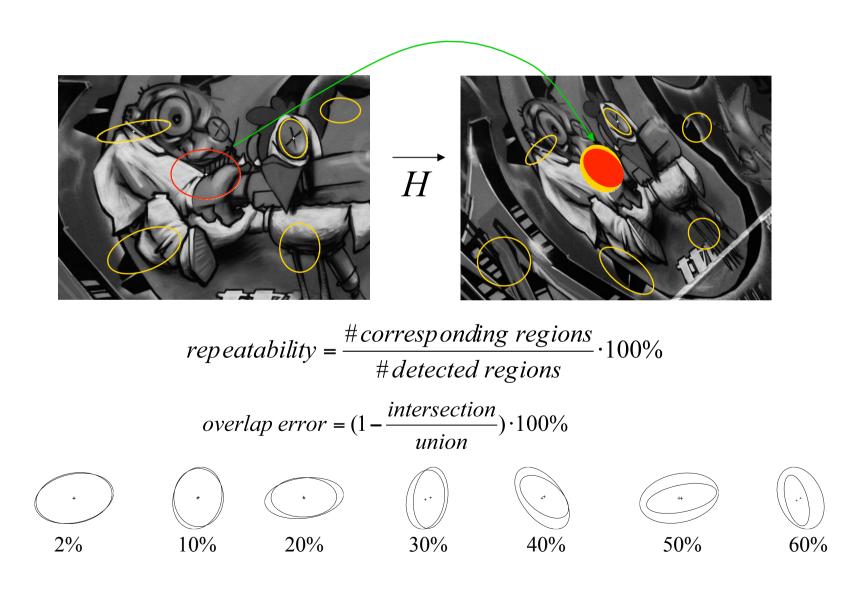
- Quantitative evaluation of interest point/region detectors
 points / regions at the same relative location and area
- Repeatability rate : percentage of corresponding points
- Two points/regions are corresponding if
 - location error small
 - area intersection large
- [K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas,
 F. Schaffalitzky, T. Kadir & L. Van Gool '05]

Evaluation criterion



 $repeatability = \frac{\# corresponding \ regions}{\# detected \ regions} \cdot 100\%$

Evaluation criterion



Dataset

- Different types of transformation
 - Viewpoint change
 - Scale change
 - Image blur
 - JPEG compression
 - Light change
- Two scene types
 - Structured
 - Textured
- Transformations within the sequence (homographies)
 - Independent estimation

Viewpoint change (0-60 degrees)

structured scene

textured scene

Zoom + rotation (zoom of 1-4)

structured scene

textured scene

Blur, compression, illumination

blur - structured scene

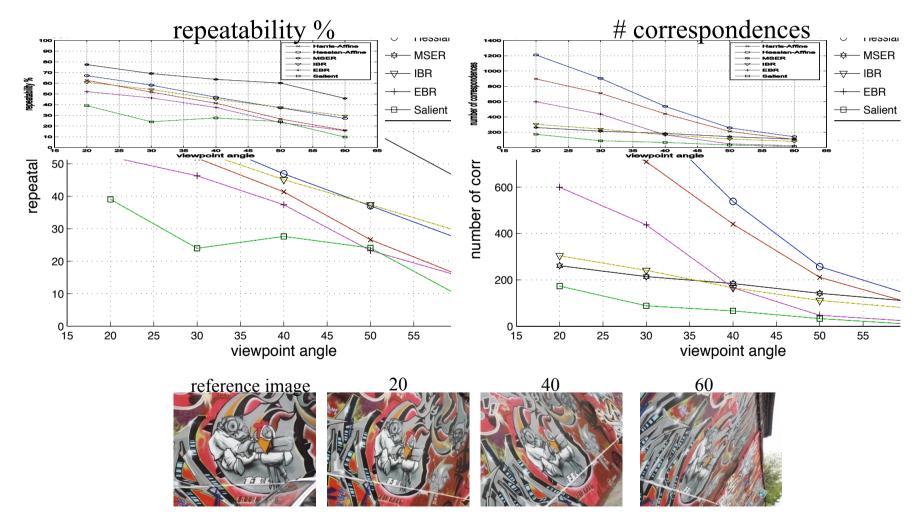
blur - textured scene

light change - structured scene

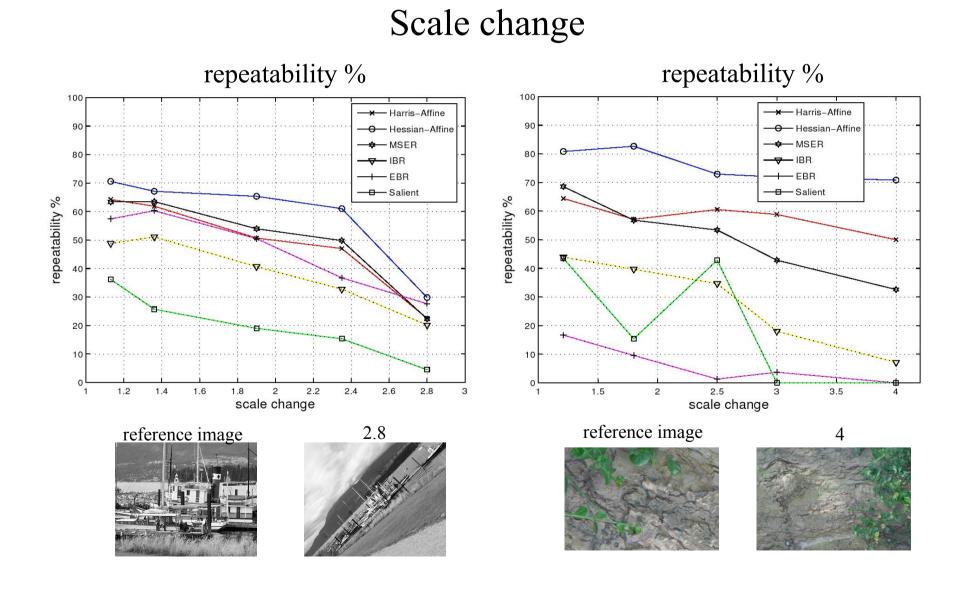
jpeg compression - structured scene

Comparison of affine invariant detectors

Viewpoint change - structured scene



Comparison of affine invariant detectors



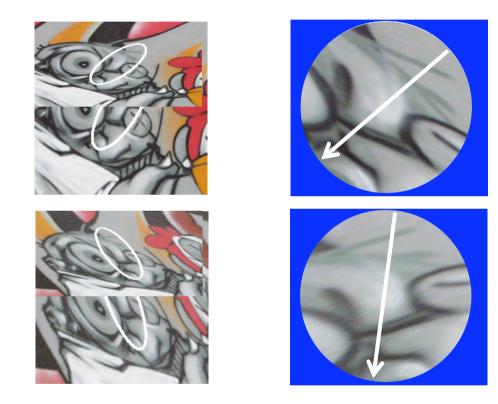
Conclusion - detectors

- Good performance for large viewpoint and scale changes
- Results depend on transformation and scene type, no one best detector
- Detectors are complementary
 - MSER adapted to structured scenes
 - Harris and Hessian adapted to textured scenes
- Performance of the different scale invariant detectors is very similar (Harris-Laplace, Hessian, LoG and DOG)
- Scale-invariant detector sufficient up to 40 degrees of viewpoint change

Overview

- Introduction to local features
- Harris interest points + SSD, ZNCC, SIFT
- Scale & affine invariant interest point detectors
- Evaluation and comparison of different detectors
- Region descriptors and their performance

Region descriptors



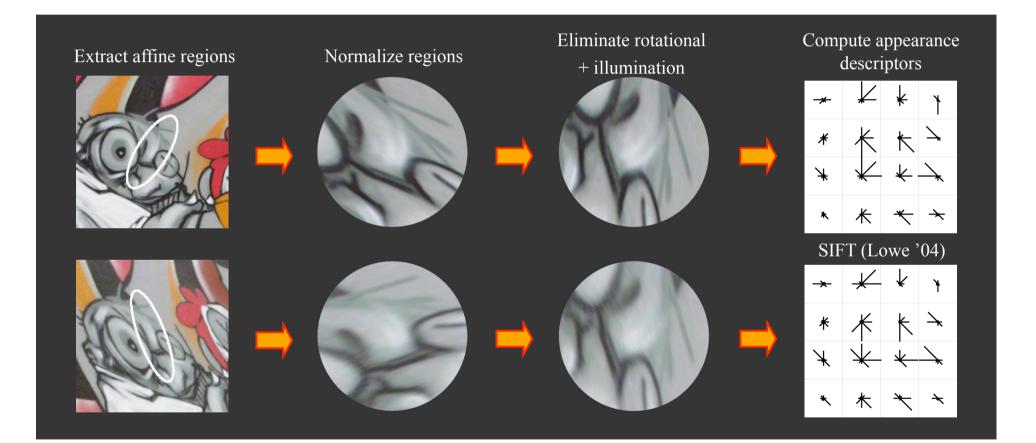
- Normalized regions are
 - invariant to geometric transformations except rotation
 - not invariant to photometric transformations

Descriptors

- Regions invariant to geometric transformations except rotation
 - rotation invariant descriptors
 - normalization with dominant gradient direction

- Regions not invariant to photometric transformations
 - invariance to affine photometric transformations
 - normalization with mean and standard deviation of the image patch

Descriptors



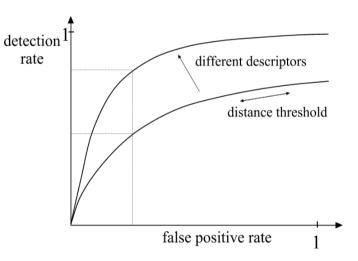
Descriptors

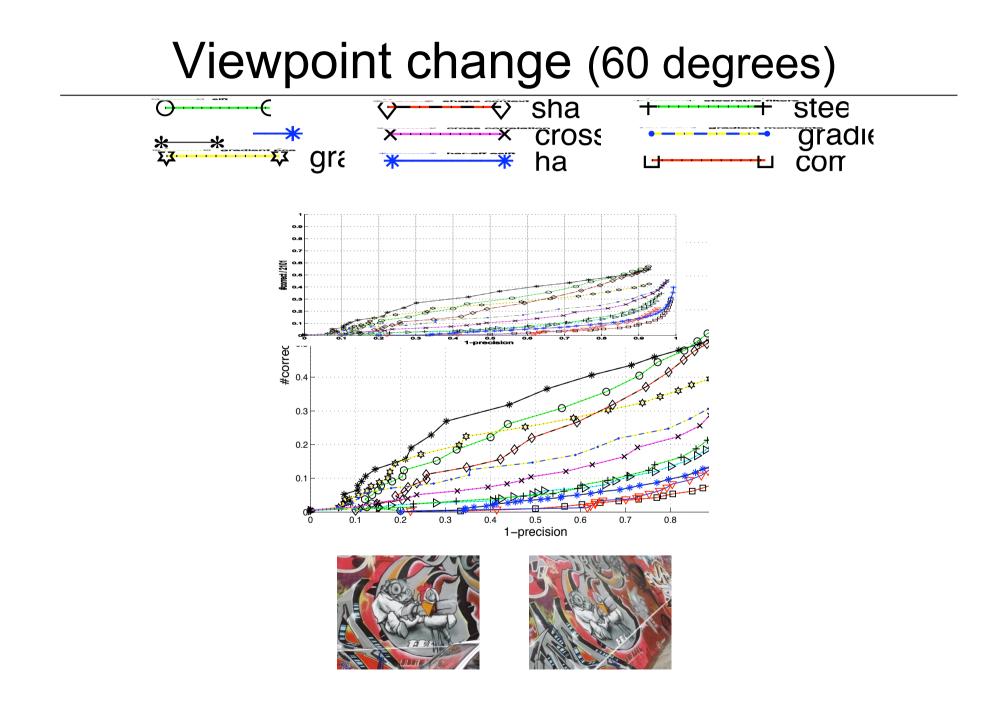
- Gaussian derivative-based descriptors
 - Differential invariants (Koenderink and van Doorn'87)
 - Steerable filters (*Freeman and Adelson'91*)
- SIFT (*Lowe'99*)
- Moment invariants [Van Gool et al.'96]
- Shape context [Belongie et al.'02]
- SIFT with PCA dimensionality reduction
- Gradient PCA [Ke and Sukthankar'04]
- SURF descriptor [Bay et al.'08]
- DAISY descriptor [Tola et al.'08, Windler et al'09]

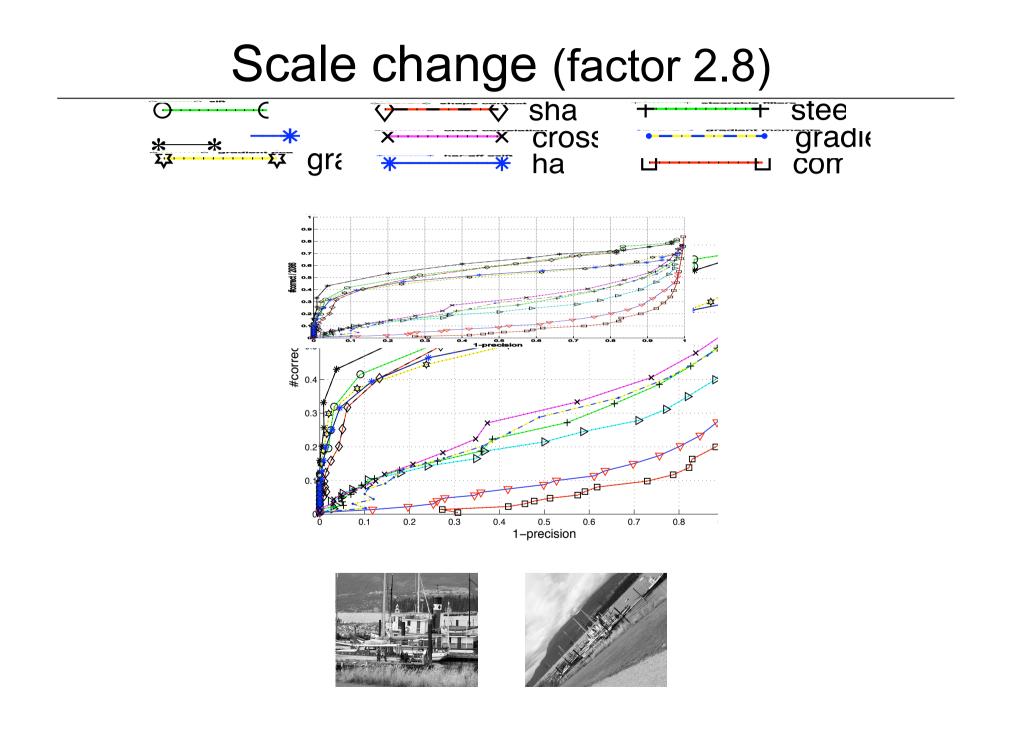
Comparison criterion

- Descriptors should be
 - Distinctive
 - Robust to changes on viewing conditions as well as to errors of the detector
- Detection rate (recall)
 - #correct matches / #correspondences
- False positive rate
 - #false matches / #all matches
- Variation of the distance threshold
 - distance (d1, d2) < threshold</p>

[K. Mikolajczyk & C. Schmid, PAMI'05]







Conclusion - descriptors

- SIFT based descriptors perform best
- Significant difference between SIFT and low dimension descriptors as well as cross-correlation
- Robust region descriptors better than point-wise descriptors
- Performance of the descriptor is relatively independent of the detector

Available on the internet

http://lear.inrialpes.fr/software

- Binaries for detectors and descriptors
 - Building blocks for recognition systems
- Carefully designed test setup
 - Dataset with transformations
 - Evaluation code in matlab
 - Benchmark for new detectors and descriptors