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Announcements

* Final project presentations next week!
http://www.di.ens.fr/willow/teaching/recvis10/final project/

— Send us the project title and names of people in the group asap!
— Schedule of the presentations will be emailed this week.

* Final project report deadline extended to January 5.

* If you have any suggestions or comments on the course,
please fill-in the feed-back form.



How to give a talk

http://www.cs.berkeley.edu/~messer/Bad talk.html

http://www-psych.stanford.edu/~lera/talk.html




First, some bad news

The more you work on a talk, the better it
gets: if you work on it for 3 hours, the talk
you give will be better than if you had only
worked on it for 2 hours. If you work on it
for 5 hours, it will be better still. 7 hours,
better yet...



All talks are important

There are no unimportant talks.
There are no big or small audiences.

Prepare each talk with the same enthusiasm.



How to give a talk

Delivering:

Look at the audience! Try not to talk to your laptop or
to the screen. Instead, look at the other humans in
the room.

You have to believe in what you present, be confident...
even if it only lasts for the time of your presentation.

Do not be afraid to acknowledge limitations of
whatever you are presenting. Limitations are good.
They leave job for the people to come. Trying to hide
the problems in your work will make the preparation

of the talk a lot harder and your self confidence will
be hurt.




The different kinds of talks you’ll have to give as
a researcher

e 2-5 minute talks
e 20 -30 minute conference presentations
e 30-60 minute colloquia



Sources on writing technical papers

How to Get Your SIGGRAPH Paper Rejected, Jim Kajiya, SIGGRAPH

1993 Papers Chair, http://www.siggraph.org/publications/instructions/
rejected.html

Ted Adelson's Informal guidelines for writing a paper, 1991. http://
www.ai.mit.edu/courses/6.899/papers/ted.htm

Notes on technical writing, Don Knuth, 1989.

http://www.ai.mit.edu/courses/6.899/papers/knuthAll.pdf

What's wrong with these equations, David Mermin, Physics Today,
Oct., 1989. http://www.ai.mit.edu/courses/6.899/papers/mermin.pdf

Ten Simple Rules for Mathematical Writing, Dimitri P. Bertsekas
http://www.mit.edu:8001/people/dimitrib/Ten_Rules.html




Today: Scenes and objects

Scenes as textures (without modeling objects and their
relations)

Detecting single objects in context; geometric context.

Recognizing multiple objects in an image.

Recognizing unseen objects.



What is a scene?

The texture

The object he Scene













A VIEW OF A PARK ON A NICE SPRING DAY
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“By scene we mean a place in which a human can act within, or a place to which a human
being could navigate. Scenes are a lot more than just a combination of objects (just as
objects are more than the combinations of their parts). Like objects, scenes are associated
with specific functions and behaviors, such as eating in a restaurant, drinking in a pub,
reading in a library, and sleeping in a bedroom.” — A. Torralba



Scene views vs. objects
tgra of a firehydrant A photograph of a street
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Part |: Scenes as textures

(No explicit modeling of objects and their
relations)



Global and local representations

car

- sidewalk

building

= Urban street scene




Global and local representations

building

= Urban street scene

sidewalk
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Image index: Summary statistics,
configuration of textures
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Global scene representations

Bag of words

Sivic et. al., ICCV 2005
Fei-Fei and Perona, CVPR 2005

Non localized textons
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Walker, Malik. Vision Research 2004

universal textons

Spatially organized textures
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M. Gorkani, R. Picard, ICPR 1994
A. Oliva, A. Torralba, 1JCV 2001
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Spatial structure is important in order to provide context for object localization



Bag of words for scenes

_Bag of words model
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Scene categorization

Can we use this representation to categorize
scenes?



The 15-scenes benchmark

Oliva & Torralba, 2001
Fei Fei & Perona, 2005
Lazebnik, et al 2006

Street

Industrial



SVM (review)

A Support Vector Machine (SVM) learns a classifier with the form:

M

H (l) — Z A Ym k ( €I, T m)

m=1

Where {x., y,}, form=1...M, are the training data with x_, being

the input feature vector and y , = +1,-1 the class label.

k(x, x.,) is the kernel and it can be any symmetric function satisfying the Mercer
Theorem.

The classification is obtained by thresholding the value of H(x).

There is a large number of possible kernels, each yielding a different
family of decision boundaries:

* Linear kernel: k(x, x,,) = x" x,
* Radial basis function: k(x, x.,,) = exp(=|x = x.,|%/0?).
* Histogram intersection: k(x,x.,) = sum.(min(x(i), x,(i)))



Scene recognition

100 training samples per class

SVM classifier in all cases

Pixels: Gaussian kernel
Gist: Gaussian kernel
Bag of words: Histogram intersection

Pyr: Pyramid matching kernel
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Large Scale Scene Recognition

> 400 categories

>140,000 images
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Xiao, Hays, Ehinger, Oliva, Torralba; CVPR 2010



Urban Nature
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geometry texton histograms [24.2]
phow [18.6]

hog2x2 [18.5]

texton histogram [17.9]

ssim [17.3]

gist [14.4]

sparse SIFT histograms [12.6]

geometry color histograms [9.9]

color histogram [9.1]
geometric classification map [6.7]

tiny images [6.5]
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Xiao, Hays, Ehinger, Oliva, Torralba; CVPR 2010



Training images

Airplane cabin

Airport terminal

Alley

Amphitheater

Xiao, Hays, Ehinger, Oliva, Torralba; CVPR 2010



Training images Correct classifications

Airplane cabin

Airport terminal

Alley

Amphitheater

Xiao, Hays, Ehinger, Oliva, Torralba; CVPR 2010



Airplane cabin

Airport terminal

Alley

Amphitheater

Training images Correct classifications Miss-classifications
Monastery  Cathedral Castle

Subway Stage  Restaurant

Harbor Coast

Xiao, Hays, Ehinger, Oliva, Torralba; CVPR 2010




Categories or a continuous space?

From the city to the mountains in 10 steps







Exploiting regularities in real-world
scenes



Scenes are unique




But not all scenes are so original




But not all scenes are so original




Find similar scenes by matching image
descriptors

-




Find similar scenes by matching image
descriptors

Query image GIST Top matches




Nearest neighbors classification

* Given a new test sample, assign the label of
the nearest neighbor

© Class 1

® Class 2 Test sample
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Voronoi partitioning of feature space



K-Nearest neighbors classification

Find the K closest points to the test sample
Use labels of the K neighbors to vote

X .
- Black = negative _
t Red = positive k = 5
va® e * . .. *° Ifquerylands here, the 5

+—2* “.+« = NN consist of 3 negatives
.. fex TS and 2 positives, so we
et Y ot . classify it as negative.




Im2gps

Instead of using objects labels, the web provides other kinds of metadata associate to large
collections of images

Figure 2. The distribution of photos in our database. Photo locations are cyan. Density is overlaid with the jet colormap (log scale).

20 million geotagged and geographic text-labeled images

Hays & Efros. CVPR 2008



Hays & Efros. CVPR 2008
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Feature Used to Estimate Geolocation
Figure 5. Geolocation performance across features. Percentage
of test cases geolocated to within 200km for each feature. We
compare geolocation by [-NN vs. largest mean-shift mode.




Image completion

Original Image Input Criminisi et al. MS Smart Erase

Instead, generate proposals using millions of images
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(gist+color matching) Hays, Efros, 2007



Scene matching with camera transformations

Query image GIST Best match Top matches

Camera rotation & GIST Best match after rotation
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Image representation

GIST
[Oliva and Torralba’01]

Original image

PR
B, .l _
[ TR

\ Color layout




Scene matching with camera view transformations:
Translation

Input image
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1. Move camera

4. Locally align images

2 View from the 5. Find a seam

virtual camera 6. Blend in the gradient domain




Scene matching with camera view transformations:
Camera rotation

Input image
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1. Rotate camera

Camera
| rotation

2. View from the
virtual camera

3. Find a match to fill-in
the missing pixels

5. Display on a cylinder



Scene matching with camera view transformations:
Forward motion

1. Move camera

2. View from the
virtual camera

Stitched zoom

3. Find a match to

e AnEIe R el replace pixels



Tour from a single image
fﬂ!

Navigate the virtual space using intuitive motion controls



Basic camera motions




Basic camera motions

Forwardimotion
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Basic camera motions




Exploring famous sites




If images are from the same place...

@ Print (Q Send @ Link to this page
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Google Street View PhotoToursim/PhotoSynth

(controlled image capture) [Snavely et al.,2006]
(register images based on
multi-view geometry)



Dense correspondence between
different scenes

Ce Liu, Jenny Yuen, A. Torralba, J. Sivic, B. Freeman




Matching frames / views

The two images are taken from the same scene
with different time and/or perspective




Matching scenes

Two images taken from the same scene
category, but different instances

e Contain different objects with different scales,
perspectives and spatial location




Image representation
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Matching dense SIFT descriptor

RGB images
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p .. position on the grid
s(p) ... SIFT descriptor at position p
w ... displacement vector with components w=(u,v).



p .. position on the grid
s(p) ... SIFT descriptor at position p
w ... displacement vector with components w=(u,v).



The objective function of SIFT flow

 The energy function is similar to that of optical flow

E H81 — 89 p + W Hl -+ Data term (reconstruction)

? Z (uQ(p) + UQ(p)) + Slow motion
>~ min(afu(p) - u(@)|, d)+min(afv(p) — v(q)l,d)

(p,a)€e

* p, q: grid coordinate, w: displacement vector, u, v: x- and y-
component, s,, s,: SIFT descriptor

* Decoupled smoothness; truncated L1 norm



Same scene instance matching




Matching different scenes
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Scene matching




Scene matching




Failures

* The nearest neighbors may not contain similar
scenes or object categories (SIFT flow tries to match
image structures anyway)




With good image correspondence and a lot of
data...

= Nearest neighbors
Input image i :

The space of world images =]

Hays, Efros, Siggraph 2006
Russell, Liu, Torralba, Fergus, Freeman. NIPS 2007



Predicting events

C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman, ECCV 2008



Predicting events

C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman, ECCV 2008



Query

C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman, ECCV 2008



Query Retrieved video

C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman, ECCV 2008



Query Retrieved video

Synthesized video
C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman, ECCV 2008



Motion synthesis results

Video of the

Still image best match

Motion synthesis results



Query Retrieved video

Synthesized video
C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman, ECCV 2008



Query

Synthesized video
C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman, ECCV 2008



Query Retrieved video

Synthesized video
C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman, ECCV 2008



Discussion

* Regularities in scene appearance can be used for a number of
applications (label transfer - recognition, scene completion, gps
location prediction, event prediction...)

* Performance depends on the quality of the matches, i.e. is the
particular scene represented in the database?

* Increase database size [Torralba, PAMI 2008].

* Combine multiple database images [Russell et al. 2009]

However, some “atypical” scenes might still not be represented well.






Today: Scenes and objects

Scenes as textures (without modeling objects and their
relations)

Detecting single objects in context; geometric context.

Recognizing multiple objects in an image.

Recognizing unseen objects.



Part Il: Scene as a context for single
object classes




Who needs context anyway?
We can recognize objects even out of context

Banksy




Why is context important?

 Changes the interpretation of an object (or its function)




o)

Look-Alikes by Joan Steiner

Even in high resolution, we can not shut down contextual processing and it is hard to
recognize the true identities of the elements that compose this scene.















The importance of context

* Cognitive psychology
— Palmer 1975
— Biederman 1981

* Computer vision
— Noton and Stark (1971)
— Hanson and Riseman (1978)
— Barrow & Tenenbaum (1978)
— Ohta, kanade, Skai (1978)
— Haralick (1983)
— Strat and Fischler (1991)
— Bobick and Pinhanez (1995)
— Campbell et al (1997)

Class Context elements Operator
SKY ALWAYS ABOVE-HORIZON
SKY SKY-IS-CLEAR A TIME-IS-DAY BRIGHT
SKY SKY-IS-CLEAR A TIME-IS-DAY UNTEXTURED
SKY SKY-IS-CLEAR A TIME-IS-DAY A RGB-IS-AVAILABLE | BLUE
SKY SKY-IS-OVERCAST A TIME-IS-DAY BRIGHT
SKY SKY-IS-OVERCAST A TIME-IS-DAY UNTEXTURED
SKY SKY-IS-OVERCAST A TIME-IS-DAY A WHITE
RGB-IS-AVAILABLE
SKY SPARSE-RANGE-IS-AVAILABLE SPARSE-RANGE-IS-UNDEFINED
SKY CAMERA-IS-HORIZONTAL NEAR-TOP
SKY CAMERA-IS-HORIZONTAL A ABOVE-SKYLINE
CLIQUE-CONTAINS(complete-sky)
SKY CLIQUE-CONTAINS(sky) SIMILAR-INTENSITY
SKY CLIQUE-CONTAINS(sky) SIMILAR-TEXTURE
SKY RGB-IS-AVAILABLE A CLIQUE-CONTAINS(sky) SIMILAR-COLOR
GROUND CAMERA-IS-HORIZONTAL HORIZONTALLY-STRIATED
GROUND CAMERA-IS-HORIZONTAL NEAR-BOTTOM
GROUND SPARSE-RANGE-IS-AVAILABLE SPARSE-RANGES-FORM-HORIZONT/
GROUND DENSE-RANGE-IS-AVAILABLE DENSE-RANGES-FORM-HORIZONTA
GROUND CAMERA-IS-HORIZONTAL A BELOW-SKYLINE
CLIQUE—CONTAINS(compIete—ground)
GROUND CAMERA-IS-HORIZONTAL A BELOW-GEOMETRIC-HORIZON
CLIQUE-CONTAINS(geometric-horizon) A
- CLIQUE-CONTAINS(skyline)
GROUND TIME-IS-DAY DARK




What is the context for a single object
category?



The influence of an object extends
beyond its physical boundaries




Global and local representations

building

= Urban street scene

sidewalk
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configuration of textures
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An integrated model of Scenes, Objects,
and Parts

P(N_, | S = street)

01 5 TN
P(N_.. | S=park)

car

| Scene
gist
| features

o - = =
01 5 N




Context driven object detection

Scene

P(N_, | S = street)

0.
01 5 N Q
g

Scene
gist
features




An integrated model of Scenes, Objects,
and Parts

We train a multiview car detector.

p(d | F=1) =N(d | uy, 0y)
p(d | F=0) = N(d | ug, o)




An integrated model of Scenes, Objects,
and Parts

Scene

/ / @
Scene
gist

features
M=4

P(FS | x,d,g) a p(F | S)p(S | g) p(x | g) IIN(x; w,, 6,2) IIN(d;; ., 0,2 TIN(d;; wy,, 0,,2)
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c) integrated model output
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b) car detector output

a) input image




A car out of context ...




See also...

H. Harzallah, F. Jurie and C. Schmid,
Combining efficient object localization and image classification, ICCV 2009

Localization++ Classification-- Localization-- Classification++

V. Delaitre, I. Laptev and J. Sivic
Action recognition in still images... , BMVC 2010




We are wired for 3D




We can not shut down 3D perception
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Scenes rule over objects
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3D percept is driven by the scene, which imposes its ruling to the objects



3D from pixel values

D. Hoiem, A.A. Efros, and M. Hebert "Automatic Photo Pop-up”. SIGGRAPH 2005.

A. Saxena, M. Sun, A. Y. Ng. "Learning 3-D Scene Structure from a Single Still Image
In ICCV workshop on 3D Representation for Recognition (3dRR-07), 2007.




Confidences from Boosted Decision Trees

Ground Vertical Sky

Very High
Vanishing
Point?

P(label | good segment, data)

[Collins et al. 2002]



Surface Estimation

Support Vertical Sky

V-Left V-Center V-Right V-Porous V-Solid

Object
Surface?
[Hoiem, Efros, Hebert ICCV 2005]

Support?
Slide by Derek Hoiem




Object Support

Slide by Derek Hoiem



Image

3d Scene Context

Image
Eori%_on Plane Camera
osition ‘

Object Image
Height

Camera
Height

Object World
Height

Object World
Height

World

Hoiem, Efros, Hebert ICCV 2005



3D scene context

56

meters

20.3 0 20.3
meters

Hoiem, Efros, Hebert ICCV 2005



Object Size <> Camera Viewpoint

Input Image B Loose Viewpoint Estimate




Object Size <> Camera Viewpoint

Input Image B Loose Viewpoint Estimate




Object Size <> Camera Viewpoint

Object Position/Sizes Viewpoint




Object Size <> Camera Viewpoint

Object Position/Sizes Viewpoint




Object Size <> Camera Viewpoint

Object Position/Sizes Viewpoint




Object Size €< Camera Viewpoint

Object Position/Sizes Viewpoint




How surfaces and viewpoint help
detection

NI )
T

=
P(object)
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P(surfaces) - P(V|époint)
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P(object | viewpoint)




How surfaces and viewpoint help
detection
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Qualitative Results

Car: TP /FP Ped: TP/ FP

Initial: 2 TP /3 FP Final: 7TP / 4 FP

Slide by Derek Hoiem Local Detector from [Murphy-Torralba-Freeman 2003]



(a) (b) (c) (d)
Figure 6. Stages of the recognition system: (a) initial detections before and (b) after applying ground plane constraints, (¢) temporal
integration on reconstructed map, (d) estimated 3D car locations, rendered back into the original image.

N. Cornelis, B. Leibe, K. Cornelis, L. Van Gool. CVPR'06



Single view metrology
Criminisi, et al. 1999

plane vanishing line camera centre

dir.

®
\ ref.
image plane }(\I;%Iilrilsthing

N

reference plane

Need to recover:

" * Ground plane
T » Reference height
N * Horizon line

B * Where objects contact the
ground



Announcements

* Final project presentations next week!
http://www.di.ens.fr/willow/teaching/recvis10/final project/

— Send us the project title and names of people in the group asap!
— Schedule of the presentations will be emailed this week.

* Final project report deadline extended to January 5.

* If you have any suggestions or comments on the course,
please fill-in the feed-back form.



