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Category-level localization 

•  Localization up to a bounding box 
–  Sliding window approach, previous course: Felzenszwalb 2010 
–  Today: shape-based descriptor + sliding window 



Category-level localization 

•  Localization of object outlines 

                        Learning shape-based models 

              Localizing the objects with the learnt models  



Category-level localization 

•  Localization of object pixels 
–  Pixel-level classification, segmentation 



Overview 

•  Localization with shape-based descriptors 

•  Learning deformable shape models  

•  Segmentation, pixel-level classification 



Shape-based features for localization 

•  Classes with characteristic shape 
–  appearance, local patches are not adapted 
–  shape-based descriptors are necessary  

  [Ferrari, Fevrier, Jurie & Schmid, PAMI’08]  



Pairs of adjacent segments (PAS) 

Contour segment network  
[Ferrari et al. ECCV’06] 

1.  Edgels extracted with 
Berkeley boundary detector 

2.  Edgel-chains partitioned into 
straight contour segments 

3.  Segments connected at 
edgel-chains’ endpoints and 
junctions 



Pairs of adjacent segments (PAS) 

Contour segment network  PAS = groups of two connected segments 

PAS descriptor:  

•  encodes geometric properties of the PAS 
•  scale and translation invariant 

•  compact, 5D 



Features: pairs of adjacent segments (PAS) 

Example PAS 
Why PAS ? 

+ intermediate complexity: 
good repeatability-
informativeness trade-off 

+ scale-translation invariant 

+ connected: natural grouping 
criterion (need not choose a 
grouping neighborhood or scale) 

+ can cover pure portions 
of the object boundary 



PAS codebook 

a few types from  15 
indoor images 

•  Frequently occurring PAS have intuitive, natural shapes 
•  As we add images, number of PAS types converges to just ~100 
•  Very similar codebooks come out, regardless of source images 

 general, simple features 

PAS descriptors are clustered into a vocabulary 



Window descriptor 

1. Subdivide window into tiles 

2. Compute a separate bag of PAS per tile 

3. Concatenate these semi-local bags 

+ distinctive: 
       records which PAS appear where  
       weight PAS by average edge strength 

+ flexible: 
       soft-assign PAS to types, coarse tiling 

+ fast: 
 computation with Integral Histograms 



Training 
1. Learn mean positive window dimensions 
2. Determine number of tiles T 
3. Collect positive example descriptors 

4. Collect negative example descriptors: 
    slide                   window over negative training images 



Training 

5. Train a linear SVM from positive and negative window descriptors  

A few of the highest weighed descriptor vector dimensions (= 'PAS + tile') 

+  lie on object boundary (= local shape structures common to many training exemplars) 



Testing 

1. Slide window of aspect ratio                   at multiple scales  

2. SVM classify each window + non-maxima suppression 
       detections 



Experimental results – INRIA horses 

+ tiling brings a substantial improvement        
   optimum at T=30  used for all other experiments 

(missed and FP) 

Dataset: 170 positive + 170 negative images (training =  50 pos + 50 neg) 
               wide range of scales; clutter 

+ works well: 86% det-rate at 0.3 FPPI (50 pos + 50 neg training images) 



Experimental results – INRIA horses 
Dataset: 170 positive + 170 negative images (training =  50 pos + 50 neg) 
               wide range of scales; clutter 

- all interest point (IP) comparisons with T=10, and 120 feature types (= optimum over 
INRIA horses, and ETHZ Shape Classes) 
- IP codebooks are class-specific 

+ PAS better than any 
interest point detector 



Results – ETH shape classes 
Dataset: 255 images, 5 classes; large scale changes, clutter 
              training = half of positive images for a class 
                              + same number from the other classes (1/4 from each) 
              testing = all other images 



Results – ETH shape classes 

Missed 

Dataset: 255 images, 5 classes; large scale changes, clutter 
              training = half of positive images for a class 
                              + same number from the other classes (1/4 from each) 
              testing = all other images 



Results – ETHZ Shape Classes 

Giraffes Mugs Swans 

Apple logos Bottles 
+ mean det-rate at 0.4 FPPI = 79% 

+ PAS >> I.P for 
      apple logos, bottles, mugs   
   PAS ~= IP for 
      giraffes  (texture!) 
   PAS < IP for 
      swan 

+ overall best IP: Harris-Laplace 

+ class specific IP codebooks 



Generalizing PAS to kAS 
kAS: any path of length k through the contour segment network 

segment network    3AS  4AS 

scale+translation invariant descriptor with dimensionality 4k-2 
k = feature complexity; higher k more informative, but less repeatable 

•  overall mean det-rates (%) 
                      1AS        PAS          3AS          4AS 
     0.3 FPPI      69           77             64              57 
     0.4 FPPI      76           82             70              64 

PAS do best ! 



Overview 

•  Localization with shape-based descriptors 

•  Learning deformable shape models  

•  Segmentation, pixel-level classification 



Training data 

Training: bounding-boxes 

Testing: object boundaries 

Test image 

[Ferrari, Jurie, Schmid, IJCV10] 



Training data 

prototype shape deformation model 

+ 





Main issue 
  which edgels belong 
  to the class boundaries ? 

Complications 
   - intra-class variability 

- missing edgels 
-  produce point correspondences   
  (learn deformations) 



- clutter 

- intra-class variability 

- scale changes 

-  fragmented and  
  incomplete contours 



PAS 
Pair of Adjacent Segments 

+ robust 
   connect also across gaps 
+ clean 
   descriptor encodes the 
   two segments only 

+ invariant 
   to translation and scale 
+ intermediate complexity 
   good compromise between 
   repeatability and informativity 



PAS 
Pair of Adjacent Segments 

  two PAS in correspondence 
        translation+scale transform 
        use in Hough-like schemes 

Clustering descriptors 
       codebook of PAS types 
        (here from mug bounding boxes) 



find models parts assemble an initial shape refine the shape 



Intuition 
PAS on class boundaries reoccur at 
similar locations/scales/shapes 

Background and details specific to 
individual examples don’t 



Algorithm 
1. align bounding-boxes up to  
    translation/scale/aspect-ratio 

2. create a separate voting space 
    per PAS type 
3. soft-assign PAS to types  

4. PAS cast ‘existence’ votes in 
    corresponding spaces 



Algorithm 
1. align bounding-boxes up to  
    translation/scale/aspect-ratio 

2. create a separate voting space 
    per PAS type 
3. soft-assign PAS to types  

4. PAS cast ‘existence’ votes in 
    corresponding spaces 

5. local maxima      model parts 



Model parts 

- location + size (wrt canonical BB) 
- shape (PAS type) 
- strength (value of local maximum) 



Why does it work ? 

Unlikely unrelated PAS have similar  
location and size and shape 

Important properties 
+ see all training data at once 

form no peaks ! 

+ linear complexity 

    robust 

    efficient large-scale learning 



Not a shape yet 
- multiple strokes 
- adjacent parts don’t fit together 

Why ? 
- parts are learnt independently 

Let’s try to assemble parts 
into a proper whole 

We want single-stroked, 
long continuous lines ! 

best occurrence for each part 



Observation 
each part has several occurrences 

can assemble shape variations by selecting different occurrences 

Idea 
select occurrences so as to form larger connected aggregates 

all occurrences in a few training images 



Hey, this starts to look like a mug ! 

+ segments fit well within a block 

+ most redundant strokes are gone 

Can we do better ? 

- discontinuities between blocks ? 

- generic-looking ? 



Idea 
treat shape as deformable point set 
and match it back onto training images 

How ? 
- robust non-rigid point matcher: TPS-RPM 
  (thin plat spline – robust point matching) 
- strong initialization: 
   align model shape BB over training BB 

likely to succeed 

Chui and Rangarajan, A new point matching algorithm for non-rigid registration, CVIU 2003 



Shape refinement algorithm 

1. Match current model shape back 
    to every training image 

   backmatched shapes are in full 
   point-to-point correspondence ! 

2. set model to mean shape 

3. remove redundant points 
4. if changed          iterate to 1 



Final model shape 

+ clean (almost only class boundaries) 

+ generic-looking 

+ fine-scale structures recovered  
   (handle arcs) 

+ accurate point correspondences 
    spanning training images 

+ smooth, connected lines 



From backmatching 
intra-class variation examples, 
in complete correspondence 

Apply Cootes’ technique 
1. shapes = vectors in 2p-D space 
2. apply PCA 

Deformation model 
  . top n eigenvectors covering 95% of variance 
  . associated eigenvalues       (act as bounds) 

        valid region of shape space 

Tim Cootes, An introduction to Active Shape Models, 2000 

= mean shape 



Automatic learning of 
shapes, correspondences, and deformations 

from unsegmented images 



Goal 
  given a test image, localize class  
  instances up to their boundaries 

? 

How ? 
 1. Hough voting over PAS matches 
           rough location+scale estimates 

 2. use to initialize TPS-RPM 

combination enables true pointwise 
shape matching to cluttered images 

 3. constrain TPS-RPM with 
     learnt deformation model 

better accuracy 



Algorithm 

 1. soft-match model parts to test PAS 

 2. each match 
           translation + scale change 
           vote in accumulator space 

 3. local maxima 
         rough estimates of object candidates 

Leibe and Schiele, DAGM 2004;    Shotton et al, ICCV 2005;    Opelt et al. ECCV 2006 



Algorithm 

 1. soft-match model parts to test PAS 

 2. each match 
           translation + scale change 
           vote in accumulator space 

 3. local maxima 
         rough estimates of object candidates 

Leibe and Schiele, DAGM 2004;    Shotton et al, ICCV 2005;    Opelt et al. ECCV 2006 

 initializations for shape matching ! 



Remember … soft ! 

- vote       shape similarity 
- vote       edge strength of test PAS 

- spread vote to neighboring 
   location and scale bins 

- vote       strength of model part 



Initialize 
get point sets V (model)  and X (edge points)  

X 
V 

Chui and Rangarajan, A new point matching algorithm for non-rigid registration, CVIU 2003 

Goal 
find correspondences M &  
non-rigid TPS mapping 

M = (|X|+1)x(|V|+1) soft-assign matrix 

dist(TPS,X) + orient(TPS,X) + strength(X) 

Algorithm 
1. Update M based on 

2. Update TPS: 
- Y = MX 
- fit regularized TPS to V     Y 

Deterministic annealing: 
iterate with T decreasing 

M less fuzzy (looks closer)  
TPS more deformable  





Output of TPS-RPM 
nice, but sometimes inaccurate 
or even not mug-like 

Why ? 
generic TPS deformation model 
(prefers smoother transforms) 

Constrained shape matching 
constrain TPS-RPM by learnt 
class-specific deformation model 

+ only shapes similar to class members 

+ improve detection accuracy 



General idea 
constrain optimization to explore 
only region of shape space spanned by 
training examples 

hard constraint, 
sometimes too restrictive 

How to modify TPS-RPM ? 

1. Update M 

2. Update TPS: 
- Y = MX 

- fit regularized TPS to V     Y 

- 



General idea 
constrain optimization to explore 
only region of shape space spanned by 
training examples 

Soft constraint variant 
1. Update M 

2. Update TPS: 
- Y = MX 

- fit regularized TPS to V     Y 

- 

soft constraint, 
Y is attracted by the valid region 





Soft constrained TPS-RPM 

+ shapes fit data more accurately 
+ shapes resemble class members 

+ in spirit of deterministic annealing ! 

+ truly alters the search 
   (not fix a posteriori) 

Does it really make a difference ? 
when it does, it’s really noticeable 
(about 1 in 4 cases) 



•  255 images from Google-images, and Flickr 
- uncontrolled conditions 
- variety: indoor, outdoor, natural, man-made, … 
- wide range of scales (factor 4 for swans, factor 6 for apple-logos ) 

•  all parameters are kept fixed for all experiments 
•  training images: 5x random half of positive; test images: all non-train 



•  170 horse images + 170 non-horse ones 
- clutter, scale changes, various poses 

•  all parameters are kept fixed for all experiments 
•  training images: 5x random 50; test images: all non-train images 





















full system (>20% 
intersection) 

full system 
(PASCAL:          >50%) 

Hough alone 
(PASCAL) 

accuracy: 3.0 accuracy: 2.4 accuracy: 1.5 

accuracy: 3.1 accuracy: 3.5 accuracy: 5.4 



Same protocol as Ferrari et al, ECCV 2006: 
match each hand-drawing to all 255 test images 



Ferrari, ECCV06 

chamfer  
(with orientation planes) 

chamfer  
(no orientation planes) 

our approach 



1. learning shape models from images 

2. matching them to new cluttered images 

+ detect object boundaries while needing only BBs for training 
+ effective also with hand-drawings as models 

+ deals with extensive clutter, shape variability, and large scale changes 

-  can’t learn highly deformable classes (e.g. jellyfish) 

- model quality drops with very high training clutter/fragmentation (giraffes) 



Overview 

•  Localization with shape-based descriptors 

•  Learning deformable shape models  

•  Segmentation, pixel-level classification 



Image  segmentation 



The goals of segmentation 
•  Separate image into coherent “objects” 

•  “Bottom-up” or “top-down” process? 
•  Supervised or unsupervised? 

Berkeley segmentation database: 
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/ 

image human segmentation 



Segmentation as clustering 

Source: K. Grauman 



Image Intensity-based clusters Color-based clusters

Segmentation as clustering 
•  K-means clustering based on intensity or 

color is essentially vector quantization of the 
image attributes 
•  Clusters don’t have to be spatially coherent 



Segmentation as clustering 
•  Clustering based on (r,g,b,x,y) values 

enforces more spatial coherence 



K-Means for segmentation 
•  Pros 

•  Very simple method 
•  Converges to a local minimum of the error function 

•  Cons 
•  Memory-intensive 
•  Need to pick K 
•  Sensitive to initialization 
•  Sensitive to outliers 
•  Only finds “spherical”  

clusters 



http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html 

Mean shift clustering and segmentation 
•  An advanced and versatile technique for 

clustering-based segmentation 

D. Comaniciu and P. Meer, 
Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002.  



•  The mean shift algorithm seeks modes or local 
maxima of density in the feature space 

Mean shift algorithm 

image 
Feature space  

(L*u*v* color values) 



Search 
window 

Center of 
mass 

Mean Shift 
vector 

Mean shift 

Slide by Y. Ukrainitz & B. Sarel 
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Mean shift 
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Mean shift 

Slide by Y. Ukrainitz & B. Sarel 
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Search 
window 

Center of 
mass 

Mean Shift 
vector 

Mean shift 

Slide by Y. Ukrainitz & B. Sarel 



Search 
window 

Center of 
mass 

Mean shift 

Slide by Y. Ukrainitz & B. Sarel 



•  Cluster: all data points in the attraction basin 
of a mode 

•  Attraction basin: the region for which all 
trajectories lead to the same mode 

Mean shift clustering 

Slide by Y. Ukrainitz & B. Sarel 



•  Find features (color, gradients, texture, etc) 
•  Initialize windows at individual feature points 
•  Perform mean shift for each window until convergence 
•  Merge windows that end up near the same “peak” or mode 

Mean shift clustering/segmentation 



http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html 

Mean shift segmentation results 



More results 



More results 



Mean shift pros and cons 
•  Pros 

•  Does not assume spherical clusters 
•  Just a single parameter (window size)  
•  Finds variable number of modes 
•  Robust to outliers 

•  Cons 
•  Output depends on window size 
•  Computationally expensive 
•  Does not scale well with dimension of feature space 



Images as graphs 

•  Node for every pixel 
•  Edge between every pair of pixels (or every pair 

of “sufficiently close” pixels) 
•  Each edge is weighted by the affinity or 

similarity of the two nodes 

wij 
i 

j 

Source: S. Seitz 



Segmentation by graph partitioning 

•  Break Graph into Segments 
•  Delete links that cross between segments 
•  Easiest to break links that have low affinity 

–  similar pixels should be in the same segments 
–  dissimilar pixels should be in different segments 

A B C 

Source: S. Seitz 

wij 
i 

j 



Measuring affinity 
•  Suppose we represent each pixel by a feature 

vector x, and define a distance function 
appropriate for this feature representation 

•  Then we can convert the distance between 
two feature vectors into an affinity with the 
help of a generalized Gaussian kernel: 



Graph cut 

•  Set of edges whose removal makes a graph 
disconnected 

•  Cost of a cut: sum of weights of cut edges 
•  A graph cut gives us a segmentation 

•  What is a “good” graph cut and how do we find one? 

A B 

Source: S. Seitz 



Minimum cut 
•  We can do segmentation by finding the 

minimum cut in a graph 
•  Efficient algorithms exist for doing this 

Minimum cut example 



Minimum cut 
•  We can do segmentation by finding the 

minimum cut in a graph 
•  Efficient algorithms exist for doing this 

Minimum cut example 



Normalized cut 
•  Drawback: minimum cut tends to cut off very 

small, isolated components 

Ideal Cut 

Cuts with  
lesser weight 
than the  
ideal cut 

* Slide from Khurram Hassan-Shafique CAP5415 Computer Vision 2003 



Normalized cut 
•  Drawback: minimum cut tends to cut off very 

small, isolated components 
•  This can be fixed by normalizing the cut by 

the weight of all the edges incident to the 
segment 

•  The normalized cut cost is: 

w(A, B) = sum of weights of all edges between A and B 
w(A,V)  = sum of weights of all edges between A and all nodes 

J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000 



Normalized cut 
•  Let W be the adjacency matrix of the graph 
•  Let D be the diagonal matrix with diagonal 

entries D(i, i) = Σj W(i, j)  
•  Then the normalized cut cost can be written as 

where y is an indicator vector whose value 
should be 1 in the ith position if the ith feature 
point belongs to A and a negative constant 
otherwise 

J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000 



Normalized cut 
•  Finding the exact minimum of the normalized cut 

cost is NP-complete, but if we relax y to take on 
real values, then we can minimize the relaxed 
cost by solving the generalized eigenvalue 
problem (D − W)y = λDy  

•  The solution y is given by the generalized 
eigenvector corresponding to the second smallest 
eigenvalue 

•  Intutitively, the ith entry of y can be viewed as a 
“soft” indication of the component membership of 
the ith feature 
•  Can use 0 or median value of the entries as the splitting point 

(threshold), or find threshold that minimizes the Ncut cost 



Normalized cut algorithm 
1.  Represent the image as a weighted graph  

G = (V,E), compute the weight of each edge, 
and summarize the information in D and W 

2.  Solve (D − W)y = λDy for the eigenvector 
with the second smallest eigenvalue 

3.  Use the entries of the eigenvector to 
bipartition the graph 

To find more than two clusters: 
•   Recursively bipartition the graph 
•   Run k-means clustering on values of  

    several eigenvectors 



Experimental Results 

http://www.cs.berkeley.edu/~fowlkes/BSE/ 



•  Pros 
•  Generic framework, can be used with many different 

features and affinity formulations 

•  Cons 
•  High storage requirement and time complexity 
•  Bias towards partitioning into equal segments 

Normalized cuts: Pro and con 



Segments as primitives for recognition 

J. Tighe and S. Lazebnik, ECCV 2010 



Top-down segmentation 

E. Borenstein and S. Ullman, 
“Class-specific, top-down segmentation,” ECCV 2002 

A. Levin and Y. Weiss, 
“Learning to Combine Bottom-Up and Top-Down 
Segmentation,” ECCV 2006. 



Top-down segmentation 

E. Borenstein and S. Ullman, 
“Class-specific, top-down segmentation,” ECCV 2002 

A. Levin and Y. Weiss, 
“Learning to Combine Bottom-Up and Top-Down 
Segmentation,” ECCV 2006. 

Normalized 
cuts 

Top-down 
segmentation 



Markov random fields for pixel labeling 

-  Labeling each pixel with a category 
-  Markov random field takes into account 

spatial consistency  



Learning MRF models of image regions 

•  All pixels labeled in train images 

•  Model appearance of individual pixels for categories P(X|Y) 
–   Features: Color, texture, relative position in image model  

•  Model distribution of region labels P(Y)  
–  Spatially coherency: neighboring regions tend to have the same label 

•  Inference problem: Given image X, predict region labels Y  
–  use the models p(Y) and p(X|Y) to define p(Y|X) 



Modeling spatial coherency 
Markov Random Fields for image region labeling 

•  Divide image in rectangular regions (~1000 per image) 
•  Each region variable yi can take value 1, …, C for categories 

MRF defines probability distribution over region labels 
•  Variables independent of others given the neighboring variables 
•  4 or 8 neighborhood system over regions 

Potts model common choice for pair-wise interactions: 



Example results  

Middle row: pixel-wise labeling; bottom row: Pixels + MRF  


