Cordelia Schmid

- Localization up to a bounding box
 - Sliding window approach, previous course: Felzenszwalb 2010
 - Today: shape-based descriptor + sliding window

Localization of object outlines

Localizing the objects with the learnt models

- Localization of object pixels
 - Pixel-level classification, segmentation

Overview

- Localization with shape-based descriptors
- Learning deformable shape models
- Segmentation, pixel-level classification

Shape-based features for localization

- Classes with characteristic shape
 - appearance, local patches are not adapted
 - shape-based descriptors are necessary

[Ferrari, Fevrier, Jurie & Schmid, PAMI'08]

Pairs of adjacent segments (PAS)

Contour segment network [Ferrari et al. ECCV'06]

- 1. Edgels extracted with Berkeley boundary detector
- 2. Edgel-chains partitioned into straight contour segments
- Segments connected at edgel-chains' endpoints and junctions

Pairs of adjacent segments (PAS)

Contour segment network

PAS = groups of two connected segments

PAS descriptor:

$$\left(\frac{r_x}{\left\|\vec{r}\right\|}, \frac{r_y}{\left\|\vec{r}\right\|}, \theta_1, \theta_2, \frac{l_1}{\left\|\vec{r}\right\|}, \frac{l_2}{\left\|\vec{r}\right\|}\right)$$

encodes geometric properties of the PAS scale and translation invariant compact, 5D

Features: pairs of adjacent segments (PAS)

Example PAS

Why PAS?

+ can cover pure portions of the object boundary

+ intermediate complexity: good repeatabilityinformativeness trade-off

+ scale-translation invariant

+ connected: natural grouping criterion (need not choose a grouping neighborhood or scale) PAS descriptors are clustered into a vocabulary

- Frequently occurring PAS have intuitive, natural shapes
- As we add images, number of PAS types converges to just ~100
- Very similar codebooks come out, regardless of source images
- \rightarrow general, simple features

Window descriptor

- 1. Subdivide window into tiles
- 2. Compute a separate bag of PAS per tile
- 3. Concatenate these semi-local bags
- + distinctive:

records *which* PAS appear *where* weight PAS by average edge strength

+ flexible:

soft-assign PAS to types, coarse tiling

+ fast:

computation with Integral Histograms

Training

- 1. Learn mean positive window dimensions $M_{_{W}} \times M_{_{h}}$
- 2. Determine number of tiles T
- 3. Collect positive example descriptors

4. Collect negative example descriptors: slide $M_{w} \times M_{h}$ window over negative training images

Training

5. Train a linear SVM from positive and negative window descriptors

A few of the highest weighed descriptor vector dimensions (= 'PAS + tile')

+ lie on object boundary (= local shape structures common to many training exemplars)

Testing

1. Slide window of aspect ratio $M_{_W}/M_{_h}$ at multiple scales

- 2. SVM classify each window + non-maxima suppression
- → detections

Experimental results – INRIA horses

Dataset: 170 positive + 170 negative images (training = 50 pos + 50 neg) wide range of scales; clutter

(missed and FP)

+ tiling brings a substantial improvement

optimum at T=30 \rightarrow used for all other experiments

+ works well: 86% det-rate at 0.3 FPPI (50 pos + 50 neg training images)

Experimental results – INRIA horses

Dataset: 170 positive + 170 negative images (training = 50 pos + 50 neg) wide range of scales; clutter

+ PAS better than any interest point detector

- all interest point (IP) comparisons with T=10, and 120 feature types (= optimum over INRIA horses, and ETHZ Shape Classes)

- IP codebooks are class-specific

Results – ETH shape classes

Dataset: 255 images, 5 classes; large scale changes, clutter training = half of positive images for a class + same number from the other classes (1/4 from each) testing = **all** other images

Results – ETH shape classes

Dataset: 255 images, 5 classes; large scale changes, clutter training = half of positive images for a class + same number from the other classes (1/4 from each) testing = **all** other images

Results – ETHZ Shape Classes

Generalizing PAS to kAS

*k*AS: any path of length *k* through the contour segment network

scale+translation invariant descriptor with dimensionality 4*k*-2

k = feature complexity; higher *k* more informative, but less repeatable

overall mean det-rates (%)

	1AS	PAS	3AS	4AS	DAS do boot
0.3 FPPI	69	77	64	57	FAS UD DESI
0.4 FPPI	76	82	70	64	

Overview

- Localization with shape-based descriptors
- Learning deformable shape models
- Segmentation, pixel-level classification

Learning deformable shape models from images

Training data

Goal: localize boundaries of class instances

Test image

Training: *bounding-boxes*

Testing: *object boundaries*

[Ferrari, Jurie, Schmid, IJCV10]

Learn a shape model from training images

Training data

Match it to the test image

Challenges for learning

Main issue

which edgels belong to the class boundaries ?

Complications

- intra-class variability
- missing edgels
- produce point correspondences (learn deformations)

Challenges for detection

- scale changes
- intra-class variability
- clutter
- fragmented and incomplete contours

Local contour features

PAS Pair of Adjacent Segments

+ *robust* connect also across gaps

+ *clean* descriptor encodes the two segments *only*

+ *invariant* to translation and scale

+ intermediate complexity good compromise between
 repeatability and informativity

Local contour features

PAS Pair of Adjacent Segments

two PAS in correspondence
→ translation+scale transform
→ use in Hough-like schemes

Clustering descriptors → codebook of *PAS types* (here from mug bounding boxes)

Learning: overview

find models parts

assemble an initial shape

refine the shape

8

Intuition

PAS on class boundaries reoccur at similar locations/scales/shapes

Background and details specific to individual examples don't

Algorithm

- 1. align bounding-boxes up to translation/scale/aspect-ratio
- 2. create a separate voting space per PAS type
- 3. soft-assign PAS to types
- 4. PAS cast 'existence' votes in corresponding spaces

Algorithm

- 1. align bounding-boxes up to translation/scale/aspect-ratio
- 2. create a separate voting space per PAS type
- 3. soft-assign PAS to types
- 4. PAS cast 'existence' votes in corresponding spaces
- 5. local maxima \rightarrow model parts

Model parts

- location + size (wrt canonical BB)
- shape (PAS type)
- strength (value of local maximum)

Why does it work?

Unlikely unrelated PAS have similar location *and* size *and* shape

 \rightarrow form no peaks !

Important properties

+ see all training data at once

 \rightarrow robust

+ linear complexity

 \rightarrow efficient large-scale learning

Learning: assembling an initial shape

best occurrence for each part

Not a shape yet

- multiple strokes
- adjacent parts don't fit together

Why?

- parts are learnt independently

Let's try to assemble parts into a proper whole

We want single-stroked, long continuous lines !

Learning: assembling an initial shape

all occurrences in a few training images

Observation

each part has several occurrences

Idea

select occurrences so as to form larger connected aggregates
Learning: assembling an initial shape

Hey, this starts to look like a mug !
+ segments fit well within a block
+ most redundant strokes are gone

Can we do better ?

- discontinuities between blocks ?
- generic-looking ?

Learning: shape refinement

Idea

treat shape as deformable point setand *match it back* onto training images

How?

- robust non-rigid point matcher: TPS-RPM (thin plat spline robust point matching)
- strong initialization:
 <u>align model shape BB</u> over training BB
 - \rightarrow likely to succeed

Chui and Rangarajan, A new point matching algorithm for non-rigid registration, CVIU 2003

Learning: shape refinement

Shape refinement algorithm

1. Match current model shape back to every training image

backmatched shapes are in full point-to-point correspondence !

- 2. set model to mean shape
- 3. remove redundant points
- 4. if changed \rightarrow iterate to 1

Learning: shape refinement

Final model shape

- + clean (almost only class boundaries)
- + smooth, connected lines
- + generic-looking
- + fine-scale structures recovered (handle arcs)
- + accurate point correspondences spanning training images

Learning: shape deformations

From backmatching intra-class variation examples, in complete correspondence

• = mean shape

Apply Cootes 'technique 1. shapes = vectors in 2p-D space 2. apply PCA

Deformation model. top n eigenvectors covering 95% of variance. associated eigenvalues λ_i (act as bounds)

 \rightarrow valid region of shape space

Tim Cootes, An introduction to Active Shape Models, 2000

Learning completed !

Automatic learning of shapes, correspondences, and deformations from unsegmented images

Object detection: overview

Goal

given a test image, localize class instances up to their boundaries

How?

1. Hough voting over PAS matches \rightarrow rough location+scale estimates

2. use to initialize TPS-RPM

combination enables true pointwise shape matching to cluttered images

- 3. constrain TPS-RPM with learnt deformation model
 - \rightarrow better accuracy

Object detection: Hough voting

Algorithm

- 1. soft-match model parts to test PAS
- 2. each match
 - \rightarrow translation + scale change
 - \rightarrow vote in accumulator space
- 3. local maxima
 → rough estimates of object candidates

Object detection: Hough voting

Algorithm

- 1. soft-match model parts to test PAS
- 2. each match
 - \rightarrow translation + scale change
 - \rightarrow vote in accumulator space
- 3. local maxima
 → rough estimates of object candidates

initializations for shape matching !

Object detection: Hough voting

Remember ... soft !

- vote 🔍 shape similarity
- vote cedge strength of test PAS
- vote 🔍 strength of model part
- spread vote to neighboring location and scale bins

Object detection: shape matching by TPS-RPM

Deterministic annealing: iterate with T decreasing → M less fuzzy (looks closer) → TPS more deformable *Initialize* get point sets V (model) and X (edge points)

Goal find correspondences M & non-rigid TPS mapping

M = (|X|+1)x(|V|+1) soft-assign matrix

- Algorithm
 1. Update M based on
 dist(TPS,X) + orient(TPS,X) + strength(X)
- 2. Update TPS:
 Y = MX
 fit regularized TPS
 - fit regularized TPS to $V \longrightarrow Y$

Chui and Rangarajan, A new point matching algorithm for non-rigid registration, CVIU 2003

TPS-RPM in action !

Output of TPS-RPM nice, but sometimes inaccurate or even not mug-like

Why ? generic TPS deformation model (prefers smoother transforms)

Constrained shape matching

constrain TPS-RPM by learnt *class-specific* deformation model

+ only shapes similar to class members

+ improve detection accuracy

General idea

constrain optimization to explore only region of shape space spanned by training examples

How to modify TPS-RPM?

1. Update M

2. Update TPS:

-Y = MX

- fit regularized TPS to $V \longrightarrow Y$

hard constraint, sometimes too restrictive

General idea

constrain optimization to explore only region of shape space spanned by training examples

Soft constraint variant

2. Update TPS:

Y is *attracted* by the valid region

Soft constrained TPS-RPM in action !

Transformed V + X

Transformed V + X

TPS Warping

Estimated Shape Y=MX

Soft constrained TPS-RPM

- + shapes fit data more accurately
- + shapes resemble class members
- + in spirit of deterministic annealing !
- + truly alters the search (not fix a posteriori)

Does it really make a difference ?

when it does, it's really noticeable (about 1 in 4 cases)

Datasets: ETHZ Shape Classes

• 255 images from Google-images, and Flickr

- uncontrolled conditions
- variety: indoor, outdoor, natural, man-made, ...
- wide range of scales (factor 4 for swans, factor 6 for apple-logos)
- all parameters are kept fixed for all experiments
- training images: 5x random half of positive; test images: *all* non-train

Datasets: INRIA Horses

- 170 horse images + 170 non-horse ones
 - clutter, scale changes, various poses
- all parameters are kept fixed for all experiments
- training images: 5x random 50; test images: all non-train images

Results: all learned models

Results: all learned models

Results: all learned models

Results: apple logos

Results: mugs

Results: giraffes

Results: bottles

Results: swans

Results: horses

Results: detection-rate vs false-positives per image

accuracy: 3.0

accuracy: 2.4

accuracy: 1.5

Results: Hand-drawings

Same protocol as Ferrari et al, ECCV 2006: match each hand-drawing to all 255 test images

Results: detection-rate vs false-positives per image

our approach

- Ferrari, ECCV06
- chamfer (with orientation planes)
- chamfer (no orientation planes)

Conclusions

- 1. learning shape models from images
 2. matching them to new cluttered images
- + detect object boundaries while needing only BBs for training
- + effective also with hand-drawings as models
- + deals with extensive clutter, shape variability, and large scale changes
- can't learn highly deformable classes (e.g. jellyfish)
- model quality drops with very high training clutter/fragmentation (giraffes)

Overview

- Localization with shape-based descriptors
- Learning deformable shape models
- Segmentation, pixel-level classification

Image segmentation

The goals of segmentation

- Separate image into coherent "objects"
 - "Bottom-up" or "top-down" process?
 - Supervised or unsupervised?

image

human segmentation

Berkeley segmentation database:

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Segmentation as clustering

· Cluster similar pixels (features) together

Source: K. Grauman
Segmentation as clustering

- K-means clustering based on intensity or color is essentially vector quantization of the image attributes
 - Clusters don't have to be spatially coherent

Segmentation as clustering

 Clustering based on (r,g,b,x,y) values enforces more spatial coherence

K-Means for segmentation

- Pros
 - Very simple method
 - Converges to a local minimum of the error function
- Cons
 - Memory-intensive
 - Need to pick K
 - Sensitive to initialization
 - Sensitive to outliers
 - Only finds "spherical" clusters

(A): Undesirable clusters

Mean shift clustering and segmentation

• An advanced and versatile technique for clustering-based segmentation

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

D. Comaniciu and P. Meer, <u>Mean Shift: A Robust Approach toward Feature Space Analysis</u>, PAMI 2002.

Mean shift algorithm

The mean shift algorithm seeks modes or local maxima of density in the feature space

image

Feature space

Mean shift clustering

- Cluster: all data points in the attraction basin
 of a mode
- Attraction basin: the region for which all trajectories lead to the same mode

Mean shift clustering/segmentation

- Find features (color, gradients, texture, etc)
- Initialize windows at individual feature points
- Perform mean shift for each window until convergence
- Merge windows that end up near the same "peak" or mode

Mean shift segmentation results

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

More results

More results

Mean shift pros and cons

- Pros
 - Does not assume spherical clusters
 - Just a single parameter (window size)
 - Finds variable number of modes
 - Robust to outliers
- Cons
 - Output depends on window size
 - Computationally expensive
 - Does not scale well with dimension of feature space

Images as graphs

- Node for every pixel
- Edge between every pair of pixels (or every pair of "sufficiently close" pixels)
- Each edge is weighted by the *affinity* or similarity of the two nodes

Source: S. Seitz

Segmentation by graph partitioning

- Break Graph into Segments
 - Delete links that cross between segments
 - Easiest to break links that have low affinity
 - similar pixels should be in the same segments
 - dissimilar pixels should be in different segments

Measuring affinity

- Suppose we represent each pixel by a feature vector x, and define a distance function appropriate for this feature representation
- Then we can convert the distance between two feature vectors into an affinity with the help of a generalized Gaussian kernel:

$$\exp\left(-\frac{1}{2\sigma^2}\operatorname{dist}(\mathbf{x}_i,\mathbf{x}_j)^2\right)$$

Graph cut

- Set of edges whose removal makes a graph disconnected
- Cost of a cut: sum of weights of cut edges
- A graph cut gives us a segmentation
 - What is a "good" graph cut and how do we find one?

Minimum cut

- We can do segmentation by finding the *minimum cut* in a graph
 - Efficient algorithms exist for doing this

Minimum cut example

Minimum cut

- We can do segmentation by finding the *minimum cut* in a graph
 - Efficient algorithms exist for doing this

Minimum cut example

Drawback: minimum cut tends to cut off very small, isolated components

- Drawback: minimum cut tends to cut off very small, isolated components
- This can be fixed by normalizing the cut by the weight of all the edges incident to the segment
- The *normalized cut* cost is:

$$\frac{w(A,B)}{w(A,V)} + \frac{w(A,B)}{w(B,V)}$$

w(A, B) = sum of weights of all edges between A and B w(A, V) = sum of weights of all edges between A and all nodes

J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000

- Let *W* be the adjacency matrix of the graph
- Let *D* be the diagonal matrix with diagonal entries $D(i, i) = \sum_{j} W(i, j)$
- Then the normalized cut cost can be written as

$$\frac{y^T (D - W)y}{y^T D y}$$

where y is an indicator vector whose value should be 1 in the *i*th position if the *i*th feature point belongs to A and a negative constant otherwise

J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000

- Finding the exact minimum of the normalized cut cost is NP-complete, but if we *relax y* to take on real values, then we can minimize the relaxed cost by solving the *generalized eigenvalue problem* $(D - W)y = \lambda Dy$
- The solution y is given by the generalized eigenvector corresponding to the second smallest eigenvalue
- Intuitively, the *i*th entry of *y* can be viewed as a "soft" indication of the component membership of the *i*th feature
 - Can use 0 or median value of the entries as the splitting point (threshold), or find threshold that minimizes the Ncut cost

Normalized cut algorithm

- 1. Represent the image as a weighted graph G = (V,E), compute the weight of each edge, and summarize the information in *D* and *W*
- 2. Solve $(D W)y = \lambda Dy$ for the eigenvector with the second smallest eigenvalue
- 3. Use the entries of the eigenvector to bipartition the graph

To find more than two clusters:

- Recursively bipartition the graph
- Run k-means clustering on values of several eigenvectors

Experimental Results

http://www.cs.berkeley.edu/~fowlkes/BSE/

Normalized cuts: Pro and con

- Pros
 - Generic framework, can be used with many different features and affinity formulations
- Cons
 - High storage requirement and time complexity
 - Bias towards partitioning into equal segments

Segments as primitives for recognition

J. Tighe and S. Lazebnik, ECCV 2010

Top-down segmentation

E. Borenstein and S. Ullman, <u>"Class-specific, top-down segmentation,"</u> ECCV 2002
A. Levin and Y. Weiss, <u>"Learning to Combine Bottom-Up and Top-Down</u> Segmentation," ECCV 2006.

Top-down segmentation

E. Borenstein and S. Ullman, <u>"Class-specific, top-down segmentation,"</u> ECCV 2002

A. Levin and Y. Weiss,

<u>"Learning to Combine Bottom-Up and Top-Down</u> <u>Segmentation,"</u> ECCV 2006.

Markov random fields for pixel labeling

- Labeling each pixel with a category
- Markov random field takes into account spatial consistency

Original	aeroplane	face	car	bicycle	void 🛛
	building	grass	tree	cow	sky miller
		and the second second			
		No.			

Learning MRF models of image regions

• All pixels labeled in train images

- Model appearance of individual pixels for categories P(X|Y)
 - Features: Color, texture, relative position in image model
- Model distribution of region labels P(Y)
 - Spatially coherency: neighboring regions tend to have the same label
- Inference problem: Given image X, predict region labels Y
 - use the models p(Y) and p(X|Y) to define p(Y|X)
Modeling spatial coherency

Markov Random Fields for image region labeling

- Divide image in rectangular regions (~1000 per image)
- Each region variable y_i can take value 1, ..., C for categories

MRF defines probability distribution over region labels

- Variables independent of others given the neighboring variables
- 4 or 8 neighborhood system over regions

$$p(Y) = \frac{1}{Z} \exp(-E(Y)), \qquad E(Y) = \sum_{i} \sum_{j \in N(i)} E(y_i, y_j)$$

Potts model common choice for pair-wise interactions:

$$E(y_i, y_j) = \begin{cases} -\sigma & \text{if } y_i = y_j \\ 0 & \text{otherwise} \end{cases}$$

Example results

Middle row: pixel-wise labeling; bottom row: Pixels + MRF