
Category-level localization

Cordelia Schmid

Category-level localization

•  Localization up to a bounding box
–  Sliding window approach, previous course: Felzenszwalb 2010
–  Today: shape-based descriptor + sliding window

Category-level localization

•  Localization of object outlines

 Learning shape-based models

 Localizing the objects with the learnt models

Category-level localization

•  Localization of object pixels
–  Pixel-level classification, segmentation

Overview

•  Localization with shape-based descriptors

•  Learning deformable shape models

•  Segmentation, pixel-level classification

Shape-based features for localization

•  Classes with characteristic shape
–  appearance, local patches are not adapted
–  shape-based descriptors are necessary

  [Ferrari, Fevrier, Jurie & Schmid, PAMI’08]

Pairs of adjacent segments (PAS)

Contour segment network
[Ferrari et al. ECCV’06]

1.  Edgels extracted with
Berkeley boundary detector

2.  Edgel-chains partitioned into
straight contour segments

3.  Segments connected at
edgel-chains’ endpoints and
junctions

Pairs of adjacent segments (PAS)

Contour segment network  PAS = groups of two connected segments 

PAS descriptor:  

•  encodes geometric properties of the PAS
•  scale and translation invariant

•  compact, 5D

Features: pairs of adjacent segments (PAS)

Example PAS
Why PAS ?

+ intermediate complexity:
good repeatability-
informativeness trade-off

+ scale-translation invariant

+ connected: natural grouping
criterion (need not choose a
grouping neighborhood or scale)

+ can cover pure portions
of the object boundary

PAS codebook

a few types from 15
indoor images

•  Frequently occurring PAS have intuitive, natural shapes 
•  As we add images, number of PAS types converges to just ~100 
•  Very similar codebooks come out, regardless of source images 

 general, simple features 

PAS descriptors are clustered into a vocabulary

Window descriptor

1. Subdivide window into tiles 

2. Compute a separate bag of PAS per tile 

3. Concatenate these semi-local bags 

+ distinctive: 
       records which PAS appear where  
       weight PAS by average edge strength 

+ flexible: 
       soft-assign PAS to types, coarse tiling 

+ fast: 
 computation with Integral Histograms 

Training
1. Learn mean positive window dimensions 
2. Determine number of tiles T 
3. Collect positive example descriptors 

4. Collect negative example descriptors: 
    slide                   window over negative training images 

Training

5. Train a linear SVM from positive and negative window descriptors

A few of the highest weighed descriptor vector dimensions (= 'PAS + tile')

+  lie on object boundary (= local shape structures common to many training exemplars) 

Testing

1. Slide window of aspect ratio                   at multiple scales  

2. SVM classify each window + non-maxima suppression 
 detections 

Experimental results – INRIA horses

+ tiling brings a substantial improvement
 optimum at T=30  used for all other experiments

(missed and FP) 

Dataset: 170 positive + 170 negative images (training =  50 pos + 50 neg) 
               wide range of scales; clutter 

+ works well: 86% det-rate at 0.3 FPPI (50 pos + 50 neg training images) 

Experimental results – INRIA horses
Dataset: 170 positive + 170 negative images (training =  50 pos + 50 neg) 
               wide range of scales; clutter 

- all interest point (IP) comparisons with T=10, and 120 feature types (= optimum over 
INRIA horses, and ETHZ Shape Classes) 
- IP codebooks are class-specific 

+ PAS better than any 
interest point detector 

Results – ETH shape classes
Dataset: 255 images, 5 classes; large scale changes, clutter 
              training = half of positive images for a class 
                              + same number from the other classes (1/4 from each) 
              testing = all other images 

Results – ETH shape classes

Missed 

Dataset: 255 images, 5 classes; large scale changes, clutter 
              training = half of positive images for a class 
                              + same number from the other classes (1/4 from each) 
              testing = all other images 

Results – ETHZ Shape Classes

Giraffes Mugs Swans

Apple logos Bottles
+ mean det-rate at 0.4 FPPI = 79%

+ PAS >> I.P for
 apple logos, bottles, mugs
 PAS ~= IP for
 giraffes (texture!)
 PAS < IP for
 swan

+ overall best IP: Harris-Laplace

+ class specific IP codebooks

Generalizing PAS to kAS
kAS: any path of length k through the contour segment network 

segment network   3AS  4AS 

scale+translation invariant descriptor with dimensionality 4k-2 
k = feature complexity; higher k more informative, but less repeatable 

•  overall mean det-rates (%) 
 1AS        PAS          3AS          4AS 
 0.3 FPPI      69           77             64              57 
     0.4 FPPI      76           82             70              64 

PAS do best ! 

Overview

•  Localization with shape-based descriptors

•  Learning deformable shape models

•  Segmentation, pixel-level classification

Training data

Training: bounding-boxes

Testing: object boundaries

Test image

[Ferrari, Jurie, Schmid, IJCV10]

Training data

prototype shape deformation model

+

Main issue
 which edgels belong
 to the class boundaries ?

Complications
 - intra-class variability

- missing edgels
-  produce point correspondences
 (learn deformations)

- clutter

- intra-class variability

- scale changes

-  fragmented and
 incomplete contours

PAS
Pair of Adjacent Segments

+ robust
 connect also across gaps
+ clean
 descriptor encodes the
 two segments only

+ invariant
 to translation and scale
+ intermediate complexity
 good compromise between
 repeatability and informativity

PAS
Pair of Adjacent Segments

 two PAS in correspondence
 translation+scale transform
 use in Hough-like schemes

Clustering descriptors
 codebook of PAS types
 (here from mug bounding boxes)

find models parts assemble an initial shape refine the shape

Intuition
PAS on class boundaries reoccur at
similar locations/scales/shapes

Background and details specific to
individual examples don’t

Algorithm
1. align bounding-boxes up to
 translation/scale/aspect-ratio

2. create a separate voting space
 per PAS type
3. soft-assign PAS to types

4. PAS cast ‘existence’ votes in
 corresponding spaces

Algorithm
1. align bounding-boxes up to
 translation/scale/aspect-ratio

2. create a separate voting space
 per PAS type
3. soft-assign PAS to types

4. PAS cast ‘existence’ votes in
 corresponding spaces

5. local maxima model parts

Model parts

- location + size (wrt canonical BB)
- shape (PAS type)
- strength (value of local maximum)

Why does it work ?

Unlikely unrelated PAS have similar
location and size and shape

Important properties
+ see all training data at once

form no peaks !

+ linear complexity

 robust

 efficient large-scale learning

Not a shape yet
- multiple strokes
- adjacent parts don’t fit together

Why ?
- parts are learnt independently

Let’s try to assemble parts
into a proper whole

We want single-stroked,
long continuous lines !

best occurrence for each part

Observation
each part has several occurrences

can assemble shape variations by selecting different occurrences

Idea
select occurrences so as to form larger connected aggregates

all occurrences in a few training images

Hey, this starts to look like a mug !

+ segments fit well within a block

+ most redundant strokes are gone

Can we do better ?

- discontinuities between blocks ?

- generic-looking ?

Idea
treat shape as deformable point set
and match it back onto training images

How ?
- robust non-rigid point matcher: TPS-RPM
 (thin plat spline – robust point matching)
- strong initialization:
 align model shape BB over training BB

likely to succeed

Chui and Rangarajan, A new point matching algorithm for non-rigid registration, CVIU 2003

Shape refinement algorithm

1. Match current model shape back
 to every training image

 backmatched shapes are in full
 point-to-point correspondence !

2. set model to mean shape

3. remove redundant points
4. if changed iterate to 1

Final model shape

+ clean (almost only class boundaries)

+ generic-looking

+ fine-scale structures recovered
 (handle arcs)

+ accurate point correspondences
 spanning training images

+ smooth, connected lines

From backmatching
intra-class variation examples,
in complete correspondence

Apply Cootes’ technique
1. shapes = vectors in 2p-D space
2. apply PCA

Deformation model
 . top n eigenvectors covering 95% of variance
 . associated eigenvalues (act as bounds)

 valid region of shape space

Tim Cootes, An introduction to Active Shape Models, 2000

= mean shape

Automatic learning of
shapes, correspondences, and deformations

from unsegmented images

Goal
 given a test image, localize class
 instances up to their boundaries

?

How ?
 1. Hough voting over PAS matches
 rough location+scale estimates

 2. use to initialize TPS-RPM

combination enables true pointwise
shape matching to cluttered images

 3. constrain TPS-RPM with
 learnt deformation model

better accuracy

Algorithm

 1. soft-match model parts to test PAS

 2. each match
 translation + scale change
 vote in accumulator space

 3. local maxima
 rough estimates of object candidates

Leibe and Schiele, DAGM 2004; Shotton et al, ICCV 2005; Opelt et al. ECCV 2006

Algorithm

 1. soft-match model parts to test PAS

 2. each match
 translation + scale change
 vote in accumulator space

 3. local maxima
 rough estimates of object candidates

Leibe and Schiele, DAGM 2004; Shotton et al, ICCV 2005; Opelt et al. ECCV 2006

 initializations for shape matching !

Remember … soft !

- vote shape similarity
- vote edge strength of test PAS

- spread vote to neighboring
 location and scale bins

- vote strength of model part

Initialize
get point sets V (model) and X (edge points)

X
V

Chui and Rangarajan, A new point matching algorithm for non-rigid registration, CVIU 2003

Goal
find correspondences M &
non-rigid TPS mapping

M = (|X|+1)x(|V|+1) soft-assign matrix

dist(TPS,X) + orient(TPS,X) + strength(X)

Algorithm
1. Update M based on

2. Update TPS:
- Y = MX
- fit regularized TPS to V Y

Deterministic annealing:
iterate with T decreasing

M less fuzzy (looks closer)
TPS more deformable

Output of TPS-RPM
nice, but sometimes inaccurate
or even not mug-like

Why ?
generic TPS deformation model
(prefers smoother transforms)

Constrained shape matching
constrain TPS-RPM by learnt
class-specific deformation model

+ only shapes similar to class members

+ improve detection accuracy

General idea
constrain optimization to explore
only region of shape space spanned by
training examples

hard constraint,
sometimes too restrictive

How to modify TPS-RPM ?

1. Update M

2. Update TPS:
- Y = MX

- fit regularized TPS to V Y

-

General idea
constrain optimization to explore
only region of shape space spanned by
training examples

Soft constraint variant
1. Update M

2. Update TPS:
- Y = MX

- fit regularized TPS to V Y

-

soft constraint,
Y is attracted by the valid region

Soft constrained TPS-RPM

+ shapes fit data more accurately
+ shapes resemble class members

+ in spirit of deterministic annealing !

+ truly alters the search
 (not fix a posteriori)

Does it really make a difference ?
when it does, it’s really noticeable
(about 1 in 4 cases)

•  255 images from Google-images, and Flickr
- uncontrolled conditions
- variety: indoor, outdoor, natural, man-made, …
- wide range of scales (factor 4 for swans, factor 6 for apple-logos)

•  all parameters are kept fixed for all experiments
•  training images: 5x random half of positive; test images: all non-train

•  170 horse images + 170 non-horse ones
- clutter, scale changes, various poses

•  all parameters are kept fixed for all experiments
•  training images: 5x random 50; test images: all non-train images

full system (>20%
intersection)

full system
(PASCAL: >50%)

Hough alone
(PASCAL)

accuracy: 3.0 accuracy: 2.4 accuracy: 1.5

accuracy: 3.1 accuracy: 3.5 accuracy: 5.4

Same protocol as Ferrari et al, ECCV 2006:
match each hand-drawing to all 255 test images

Ferrari, ECCV06

chamfer
(with orientation planes)

chamfer
(no orientation planes)

our approach

1. learning shape models from images

2. matching them to new cluttered images

+ detect object boundaries while needing only BBs for training
+ effective also with hand-drawings as models

+ deals with extensive clutter, shape variability, and large scale changes

-  can’t learn highly deformable classes (e.g. jellyfish)

- model quality drops with very high training clutter/fragmentation (giraffes)

Overview

•  Localization with shape-based descriptors

•  Learning deformable shape models

•  Segmentation, pixel-level classification

Image segmentation

The goals of segmentation
•  Separate image into coherent “objects”

•  “Bottom-up” or “top-down” process?
•  Supervised or unsupervised?

Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation

Segmentation as clustering

Source: K. Grauman

Image
 Intensity-based clusters
 Color-based clusters

Segmentation as clustering
•  K-means clustering based on intensity or

color is essentially vector quantization of the
image attributes
•  Clusters don’t have to be spatially coherent

Segmentation as clustering
•  Clustering based on (r,g,b,x,y) values

enforces more spatial coherence

K-Means for segmentation
•  Pros

•  Very simple method
•  Converges to a local minimum of the error function

•  Cons
•  Memory-intensive
•  Need to pick K
•  Sensitive to initialization
•  Sensitive to outliers
•  Only finds “spherical”

clusters

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Mean shift clustering and segmentation
•  An advanced and versatile technique for

clustering-based segmentation

D. Comaniciu and P. Meer,
Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002.

•  The mean shift algorithm seeks modes or local
maxima of density in the feature space

Mean shift algorithm

image
Feature space

(L*u*v* color values)

Search
window

Center of
mass

Mean Shift
vector

Mean shift

Slide by Y. Ukrainitz & B. Sarel

Search
window

Center of
mass

Mean Shift
vector

Mean shift

Slide by Y. Ukrainitz & B. Sarel

Search
window

Center of
mass

Mean Shift
vector

Mean shift

Slide by Y. Ukrainitz & B. Sarel

Search
window

Center of
mass

Mean Shift
vector

Mean shift

Slide by Y. Ukrainitz & B. Sarel

Search
window

Center of
mass

Mean Shift
vector

Mean shift

Slide by Y. Ukrainitz & B. Sarel

Search
window

Center of
mass

Mean Shift
vector

Mean shift

Slide by Y. Ukrainitz & B. Sarel

Search
window

Center of
mass

Mean shift

Slide by Y. Ukrainitz & B. Sarel

•  Cluster: all data points in the attraction basin
of a mode

•  Attraction basin: the region for which all
trajectories lead to the same mode

Mean shift clustering

Slide by Y. Ukrainitz & B. Sarel

•  Find features (color, gradients, texture, etc)
•  Initialize windows at individual feature points
•  Perform mean shift for each window until convergence
•  Merge windows that end up near the same “peak” or mode

Mean shift clustering/segmentation

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Mean shift segmentation results

More results

More results

Mean shift pros and cons
•  Pros

•  Does not assume spherical clusters
•  Just a single parameter (window size)
•  Finds variable number of modes
•  Robust to outliers

•  Cons
•  Output depends on window size
•  Computationally expensive
•  Does not scale well with dimension of feature space

Images as graphs

•  Node for every pixel
•  Edge between every pair of pixels (or every pair

of “sufficiently close” pixels)
•  Each edge is weighted by the affinity or

similarity of the two nodes

wij
i

j

Source: S. Seitz

Segmentation by graph partitioning

•  Break Graph into Segments
•  Delete links that cross between segments
•  Easiest to break links that have low affinity

–  similar pixels should be in the same segments
–  dissimilar pixels should be in different segments

A B C

Source: S. Seitz

wij
i

j

Measuring affinity
•  Suppose we represent each pixel by a feature

vector x, and define a distance function
appropriate for this feature representation

•  Then we can convert the distance between
two feature vectors into an affinity with the
help of a generalized Gaussian kernel:

Graph cut

•  Set of edges whose removal makes a graph
disconnected

•  Cost of a cut: sum of weights of cut edges
•  A graph cut gives us a segmentation

•  What is a “good” graph cut and how do we find one?

A B

Source: S. Seitz

Minimum cut
•  We can do segmentation by finding the

minimum cut in a graph
•  Efficient algorithms exist for doing this

Minimum cut example

Minimum cut
•  We can do segmentation by finding the

minimum cut in a graph
•  Efficient algorithms exist for doing this

Minimum cut example

Normalized cut
•  Drawback: minimum cut tends to cut off very

small, isolated components

Ideal Cut

Cuts with
lesser weight
than the
ideal cut

* Slide from Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Normalized cut
•  Drawback: minimum cut tends to cut off very

small, isolated components
•  This can be fixed by normalizing the cut by

the weight of all the edges incident to the
segment

•  The normalized cut cost is:

w(A, B) = sum of weights of all edges between A and B
w(A,V) = sum of weights of all edges between A and all nodes

J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000

Normalized cut
•  Let W be the adjacency matrix of the graph
•  Let D be the diagonal matrix with diagonal

entries D(i, i) = Σj W(i, j)
•  Then the normalized cut cost can be written as

where y is an indicator vector whose value
should be 1 in the ith position if the ith feature
point belongs to A and a negative constant
otherwise

J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000

Normalized cut
•  Finding the exact minimum of the normalized cut

cost is NP-complete, but if we relax y to take on
real values, then we can minimize the relaxed
cost by solving the generalized eigenvalue
problem (D − W)y = λDy

•  The solution y is given by the generalized
eigenvector corresponding to the second smallest
eigenvalue

•  Intutitively, the ith entry of y can be viewed as a
“soft” indication of the component membership of
the ith feature
•  Can use 0 or median value of the entries as the splitting point

(threshold), or find threshold that minimizes the Ncut cost

Normalized cut algorithm
1.  Represent the image as a weighted graph

G = (V,E), compute the weight of each edge,
and summarize the information in D and W

2.  Solve (D − W)y = λDy for the eigenvector
with the second smallest eigenvalue

3.  Use the entries of the eigenvector to
bipartition the graph

To find more than two clusters:
•  Recursively bipartition the graph
•  Run k-means clustering on values of

 several eigenvectors

Experimental Results

http://www.cs.berkeley.edu/~fowlkes/BSE/

•  Pros
•  Generic framework, can be used with many different

features and affinity formulations

•  Cons
•  High storage requirement and time complexity
•  Bias towards partitioning into equal segments

Normalized cuts: Pro and con

Segments as primitives for recognition

J. Tighe and S. Lazebnik, ECCV 2010

Top-down segmentation

E. Borenstein and S. Ullman,
“Class-specific, top-down segmentation,” ECCV 2002

A. Levin and Y. Weiss,
“Learning to Combine Bottom-Up and Top-Down
Segmentation,” ECCV 2006.

Top-down segmentation

E. Borenstein and S. Ullman,
“Class-specific, top-down segmentation,” ECCV 2002

A. Levin and Y. Weiss,
“Learning to Combine Bottom-Up and Top-Down
Segmentation,” ECCV 2006.

Normalized
cuts

Top-down
segmentation

Markov random fields for pixel labeling

-  Labeling each pixel with a category
-  Markov random field takes into account

spatial consistency

Learning MRF models of image regions

•  All pixels labeled in train images

•  Model appearance of individual pixels for categories P(X|Y)
–  Features: Color, texture, relative position in image model

•  Model distribution of region labels P(Y)
–  Spatially coherency: neighboring regions tend to have the same label

•  Inference problem: Given image X, predict region labels Y
–  use the models p(Y) and p(X|Y) to define p(Y|X)

Modeling spatial coherency
Markov Random Fields for image region labeling

•  Divide image in rectangular regions (~1000 per image)
•  Each region variable yi can take value 1, …, C for categories

MRF defines probability distribution over region labels
•  Variables independent of others given the neighboring variables
•  4 or 8 neighborhood system over regions

Potts model common choice for pair-wise interactions:

Example results

Middle row: pixel-wise labeling; bottom row: Pixels + MRF

