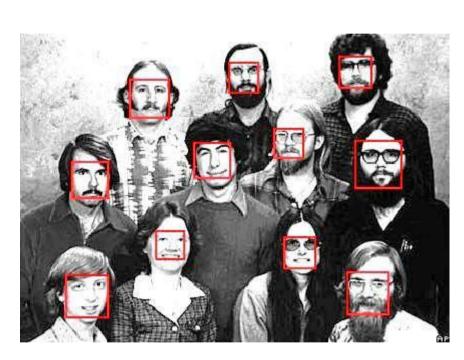
Face detection and recognition

Face detection & recognition

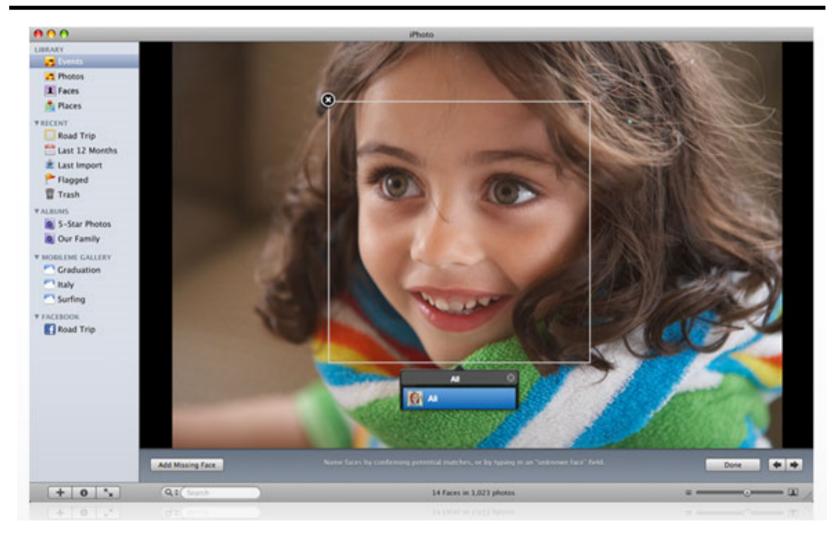
- Viola & Jones detector
 - Available in open CV
- Face recognition
 - Eigenfaces for face recognition
 - Metric learning identification

Face detection



Many slides adapted from P. Viola

Consumer application: iPhoto 2009



http://www.apple.com/ilife/iphoto/

Challenges of face detection

- Sliding window detector must evaluate tens of thousands of location/scale combinations
- Faces are rare: 0–10 per image
 - For computational efficiency, we should try to spend as little time as possible on the non-face windows
 - A megapixel image has ~10⁶ pixels and a comparable number of candidate face locations
 - To avoid having a false positive in every image image, our false positive rate has to be less than 10⁻⁶

The Viola/Jones Face Detector

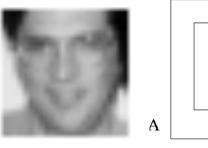
- A seminal approach to real-time object detection
- Training is slow, but detection is very fast
- Key ideas
 - Integral images for fast feature evaluation
 - *Boosting* for feature selection
 - Attentional cascade for fast rejection of non-face windows

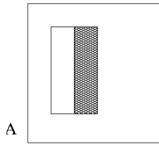
P. Viola and M. Jones.

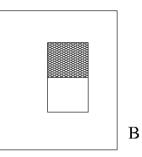
<u>Rapid object detection using a boosted cascade of simple features.</u> CVPR 2001.

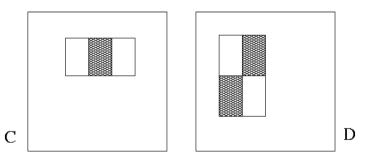
P. Viola and M. Jones. *Robust real-time face detection.* IJCV 57(2), 2004.

"Rectangle filters"







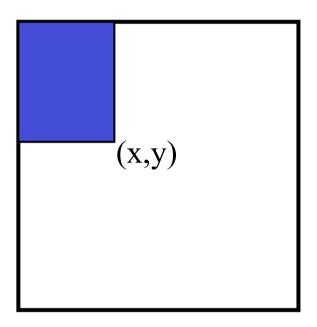


Value =

 \sum (pixels in white area) – \sum (pixels in black area)

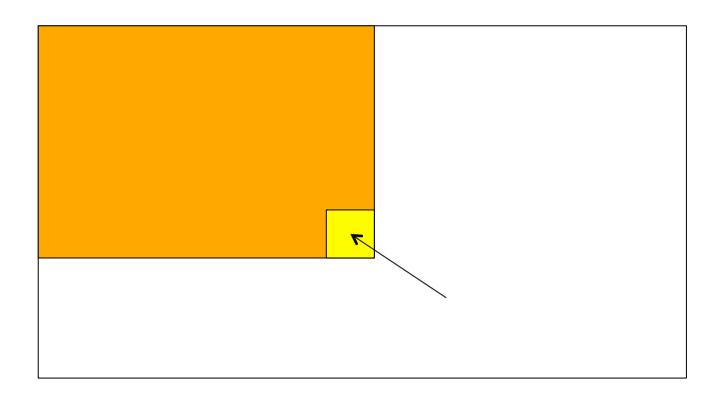
Fast computation with integral images

 The *integral image* computes a value at each pixel (*x*,*y*) that is the sum of the pixel values above and to the left of (*x*,*y*), inclusive

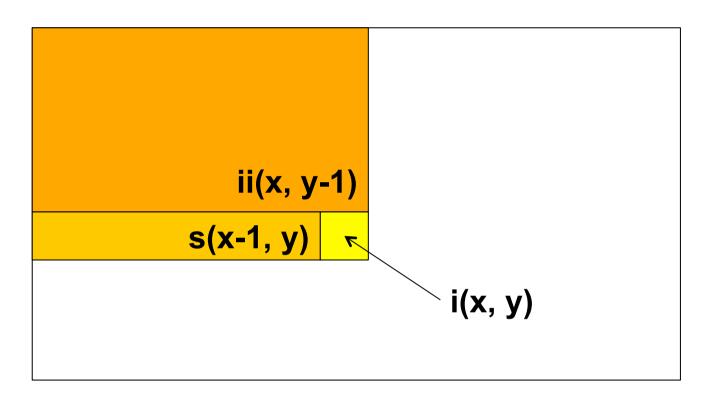


 This can quickly be computed in one pass through the image

Computing the integral image



Computing the integral image

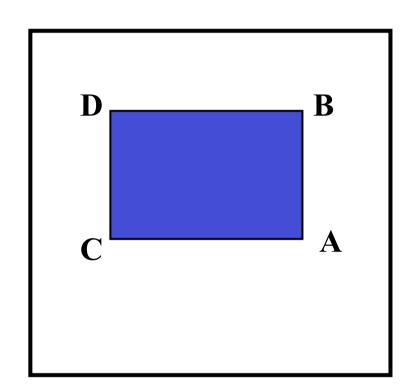


Cumulative row sum: s(x, y) = s(x-1, y) + i(x, y)Integral image: ii(x, y) = ii(x, y-1) + s(x, y) Computing sum within a rectangle

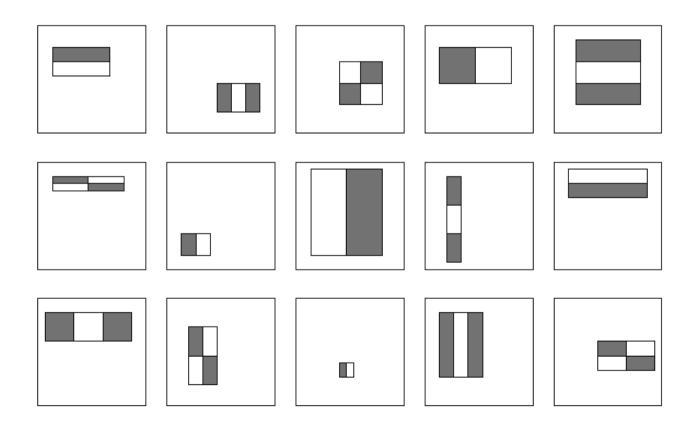
- Let A,B,C,D be the values of the integral image at the corners of a rectangle
- Then the sum of original image values within the rectangle can be computed as:

sum = A - B - C + D

 Only 3 additions are required for any size of rectangle!



• For a 24x24 detection region, the number of possible rectangle features is ~160,000!



- For a 24x24 detection region, the number of possible rectangle features is ~160,000!
- At test time, it is impractical to evaluate the entire feature set
- Can we create a good classifier using just a small subset of all possible features?
- How to select such a subset?

- Boosting is a classification scheme that works by combining *weak learners* into a more accurate ensemble classifier
- Training consists of multiple *boosting rounds*
 - During each boosting round, we select a weak learner that does well on examples that were hard for the previous weak learners
 - "Hardness" is captured by weights attached to training examples

Y. Freund and R. Schapire, <u>A short introduction to boosting</u>, *Journal of Japanese Society for Artificial Intelligence*, 14(5):771-780, September, 1999.

Training procedure

- Initially, weight each training example equally
- In each boosting round:
 - Find the weak learner that achieves the lowest *weighted* training error
 - Raise the weights of training examples misclassified by current weak learner
- Compute final classifier as linear combination of all weak learners (weight of each learner is directly proportional to its accuracy)
 - Exact formulas for re-weighting and combining weak learners depend on the particular boosting scheme (e.g., AdaBoost)

Boosting vs. SVM

- Advantages of boosting
 - Integrates classifier training with feature selection
 - Flexibility in the choice of weak learners, boosting scheme
 - Testing is very fast
- Disadvantages
 - Needs many training examples
 - Training is slow
 - Often doesn't work as well as SVM (especially for manyclass problems)

Boosting for face detection

Define weak learners based on rectangle features

Boosting for face detection

- Define weak learners based on rectangle features
- For each round of boosting:
 - Evaluate each rectangle filter on each example
 - Select best filter/threshold combination based on weighted training error
 - Reweight examples

Boosting for face detection

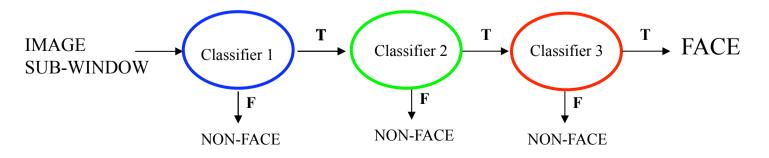
• First two features selected by boosting:



This feature combination can yield 100% detection rate and 50% false positive rate

Attentional cascade

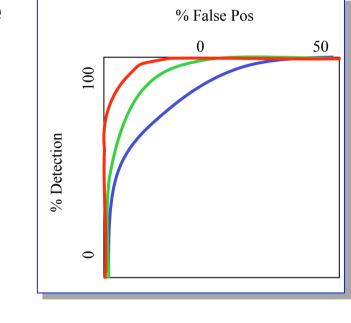
- We start with simple classifiers which reject many of the negative sub-windows while detecting almost all positive sub-windows
- Positive response from the first classifier triggers the evaluation of a second (more complex) classifier, and so on
- A negative outcome at any point leads to the immediate rejection of the sub-window

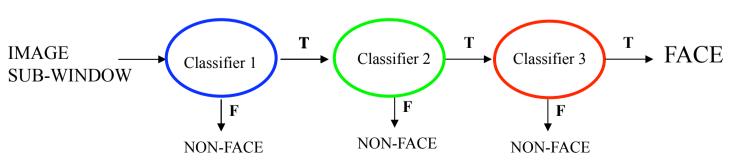


Attentional cascade

 Chain classifiers that are progressively more complex and have lower false positive rates:

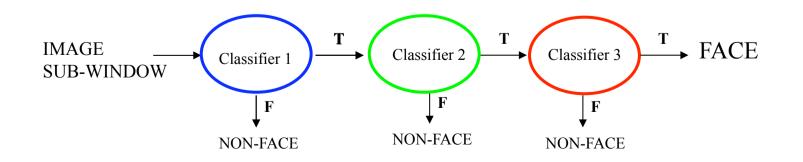
Receiver operating characteristic





Attentional cascade

- The detection rate and the false positive rate of the cascade are found by multiplying the respective rates of the individual stages
- A detection rate of 0.9 and a false positive rate on the order of 10⁻⁶ can be achieved by a 10-stage cascade if each stage has a detection rate of 0.99 (0.99¹⁰ ≈ 0.9) and a false positive rate of about 0.30 (0.3¹⁰ ≈ 6×10⁻⁶)



Training the cascade

- Set target detection and false positive rates for each stage
- Keep adding features to the current stage until its target rates have been met
 - Need to lower AdaBoost threshold to maximize detection (as opposed to minimizing total classification error)
 - Test on a *validation set*
- If the overall false positive rate is not low enough, then add another stage
- Use false positives from current stage as the negative training examples for the next stage

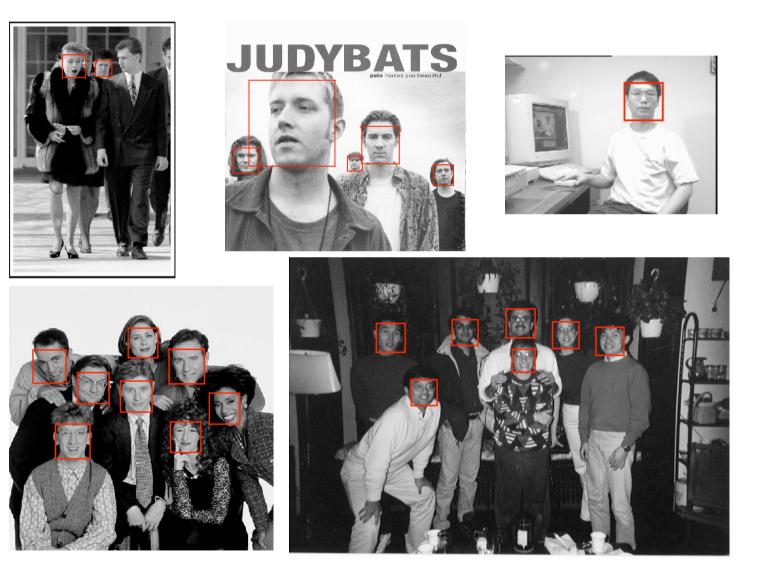
The implemented system

- Training Data
 - 5000 faces
 - All frontal, rescaled to 24x24 pixels
 - 300 million non-faces
 - 9500 non-face images
 - Faces are normalized
 Scale, translation
- Many variations
 - Across individuals
 - Illumination
 - Pose

System performance

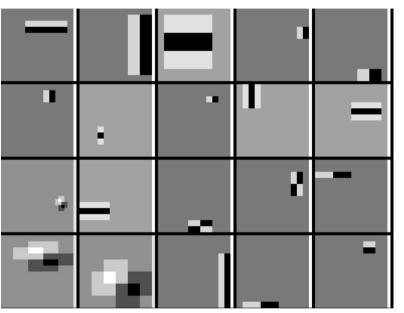
- Training time: "weeks" on 466 MHz Sun workstation
- 38 layers, total of 6061 features
- Average of 10 features evaluated per window on test set
- "On a 700 Mhz Pentium III processor, the face detector can process a 384 by 288 pixel image in about .067 seconds"
 - 15 Hz

Output of Face Detector on Test Images



Profile Detection

Profile Features



Summary: Viola/Jones detector

- Rectangle features
- Integral images for fast computation
- Boosting for feature selection
- Attentional cascade for fast rejection of negative windows

Face detection & recognition

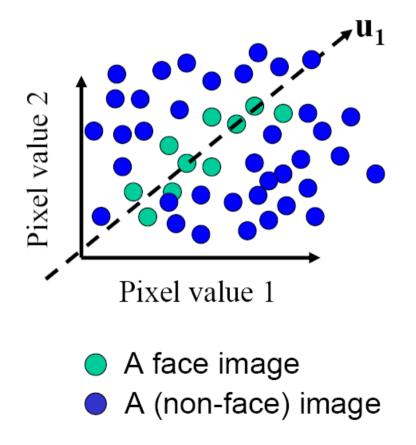
- Viola & Jones detector
 - Available in open CV
- Face recognition
 - Eigenfaces for face recognition
 - Metric learning identification

The space of all face images

- When viewed as vectors of pixel values, face images are extremely high-dimensional
 - 100x100 image = 10,000 dimensions
- However, relatively few 10,000-dimensional vectors correspond to valid face images
- We want to effectively model the subspace of face images

The space of all face images

 We want to construct a low-dimensional linear subspace that best explains the variation in the set of face images



Principal Component Analysis

- Given: N data points $\mathbf{x}_1, \dots, \mathbf{x}_N$ in \mathbb{R}^d
- We want to find a new set of features that are linear combinations of original ones:

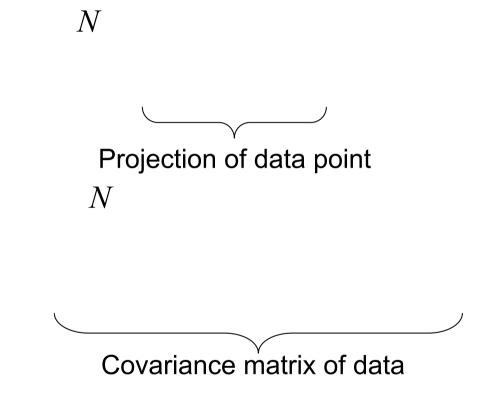
$$u(\mathbf{x}_i) = \mathbf{u}^T(\mathbf{x}_i - \boldsymbol{\mu})$$

(**µ**: mean of data points)

• What unit vector **u** in R^d captures the most variance of the data?

Principal Component Analysis

• Direction that maximizes the variance of the projected data:



The direction that maximizes the variance is the eigenvector associated with the largest eigenvalue of Σ

Principal component analysis

- The direction that captures the maximum covariance of the data is the eigenvector corresponding to the largest eigenvalue of the data covariance matrix
- Furthermore, the top *k* orthogonal directions that capture the most variance of the data are the *k* eigenvectors corresponding to the *k* largest eigenvalues

Eigenfaces: Key idea

- Assume that most face images lie on a low-dimensional subspace determined by the first k (k<d) directions of maximum variance
- Use PCA to determine the vectors or "eigenfaces" u₁,...u_k that span that subspace
- Represent all face images in the dataset as linear combinations of eigenfaces

Eigenfaces example

Training images **x**₁,...,**x**_N

10 m	e al	10 2	e il	156	6 21	10.9	153	159	10
9%	家	SC:	Se la	()	3	夏	ので	See.	1939
Ser.	00	35	20	19-0	25	N.	20	63	E.
Per l	(Me	130	120	120	15.0	13.0	1. C	Me -	120
100	63	23	6.9	E.	(1)	69	E	5	12
- The	の	- Call	10g	10 m	a. 1.	and the	100	10 mar	11-22 (J. 12)
の間	100	10 m	15.4	調	10 M	の間	の間	の間	63
() ()	(till)	0.0	1	100	0.0	30	(1-1) (1-1)	4.0	000
100	C.	CG -	63	(Ca	100	(ica	100	(ca	(C)
es.	600	63	60	63	3	69	63	6	(C)

Eigenfaces example

Mean: µ

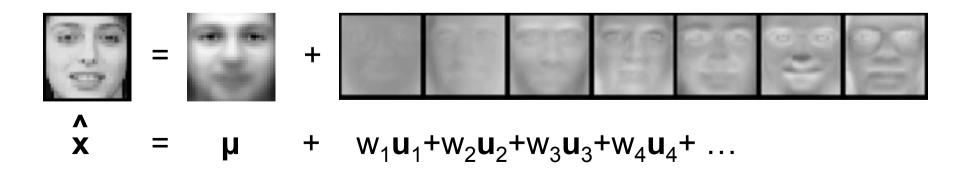
Top eigenvectors: $\mathbf{u}_1, \dots \mathbf{u}_k$

Eigenfaces example

• Face **x** in "face space" coordinates:

$$\mathbf{x} \to [\mathbf{u}_1^{\mathrm{T}}(\mathbf{x} - \mu), \dots, \mathbf{u}_k^{\mathrm{T}}(\mathbf{x} - \mu)]$$
$$= w_1, \dots, w_k$$

• Reconstruction:



Recognition with eigenfaces

Process labeled training images:

- Find mean μ and covariance matrix Σ
- Find k principal components (eigenvectors of Σ) u₁,...u_k
- Project each training image x_i onto subspace spanned by principal components:

 $(\mathbf{w}_{i1},\ldots,\mathbf{w}_{ik}) = (\mathbf{u}_1^{\mathsf{T}}(\mathbf{x}_i - \mathbf{\mu}), \ldots, \mathbf{u}_k^{\mathsf{T}}(\mathbf{x}_i - \mathbf{\mu}))$

Given novel image **x**:

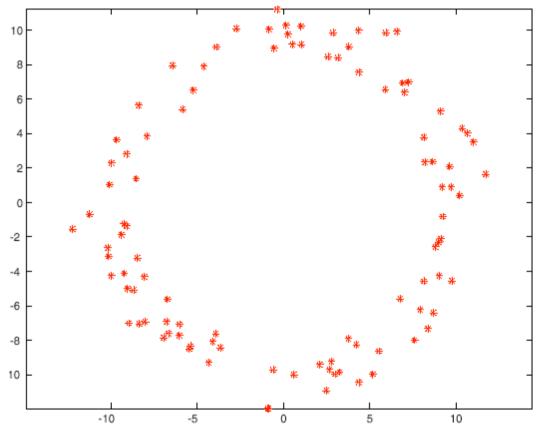
- Project onto subspace: $(w_1,...,w_k) = (\mathbf{u}_1^T(\mathbf{x} - \mathbf{\mu}), ..., \mathbf{u}_k^T(\mathbf{x} - \mathbf{\mu}))$
- Classify as closest training face in k-dimensional subspace

Limitations

Global appearance method: not robust to misalignment, background variation

Limitations

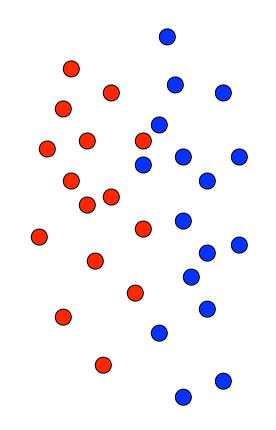
• PCA assumes that the data has a Gaussian distribution (mean μ , covariance matrix Σ)



The shape of this dataset is not well described by its principal components

Limitations

• The direction of maximum variance is not always good for classification



Face detection & recognition

- Viola & Jones detector
 - Available in open CV
- Face recognition
 - Eigenfaces for face recognition
 - Metric learning for face identification

Learning metrics for face identification

• Are these two faces of the same person?

- Challenges:
 - -pose, scale, lighting, ...
 - -expression, occlusion, hairstyle, ...
 - -generalization to people not seen during training

M. Guillaumin, J. Verbeek and C. Schmid. Metric learning for face identification. ICCV'09.

Metric Learning

- Most common form of learned metrics are Mahalanobis $d_M(x,y) = (x - y)^T M(x - y)$
 - M is a positive definite matrix
 - Generalization of Euclidean metric (setting M=I)

• Corresponds to Euclidean metric after linear transformation of the data

$$d_M(x,y) = (x - y)^T M(x - y) = (x - y)^T L^T L(x - y) = d_{L2}(Lx, Ly)$$

Logistic Discriminant Metric Learning

- Classify pairs of faces based on distance between descriptors $d_M(x,y) = (x - y)^T M(x - y)$
- Use sigmoid to map distance to class probability

$$p(y_{ij} = +1) = \sigma \left(b - d_M(x_i, x_j) \right)$$

$$\sigma(z) = \left(1 + \exp(-z) \right)^{-1}$$

$$0.8$$

$$0.8$$

$$0.6$$

$$0.4$$

$$0.2$$

$$0.2$$

$$0$$

$$0.2$$

$$0$$

$$0.2$$

$$0$$

$$0.3$$

$$0.4$$

$$0.2$$

$$0$$

$$0.4$$

$$0.2$$

$$0$$

$$0.5$$

$$10$$

$$15$$

d

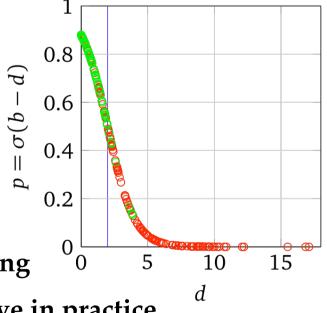
Logistic Discriminant Metric Learning

• Mahanalobis distance linear in elements of M

$$d_M(x,y) = (x - y)^T M(x - y)$$
$$= z^T M z = \sum_{i,j} z_i z_j M_{ij}$$
$$p(y_{ij} = +1) = \sigma \left(b - d_M(x_i, x_j) \right)$$

•Linear logistic discriminant model

- Distance is linear in elements of M
- •Learn maximum likelihood M and b



• Can use low-rank M =L^TL to avoid overfitting

•Loses convexity of cost function, effective in practice

Feature extraction process



Local description

• Detection of 9 facial features [Everingham et al. 2006]

- using both appearance and relative position
- using the constellation mode
- leads to some pose invariance
- Each facial features described using SIFT descriptors

Feature extraction process

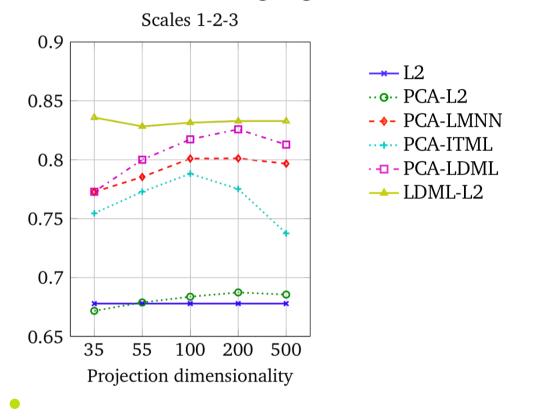
- Detection of 9 facial features
- Each facial features described using SIFT descriptors at 3 scales
- Concatenate 3x9 SIFTs into a vector of dimensionality 3456

Labelled Faces in the Wild data set

- Contains 12.233 faces of 5749 different people (1680 appear twice or more)
- Realistic intra-person variability
- Detections from Viola & Jones detector, false detections removed
- Pairs used in test are of people not in the training set

Experimental Results

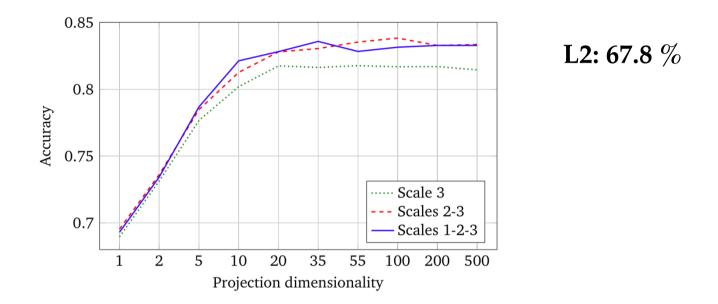
• Various metric learning algorithms on SIFT representation



- Significant increases in performance when learning the metric
- Low-rank metric needs less dimensions than PCA to learn good metric

Experimental Results

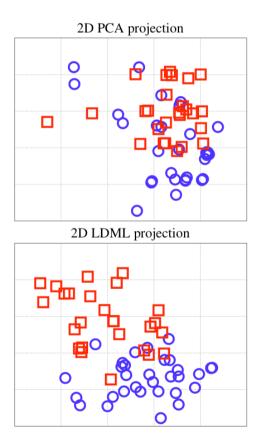
• Low-rank LDML metrics using various scales of SIFT descriptor



- Surprisingly good performance using very few dimensions
- 20 dimensional descriptor instead of 3456 dim. concatenated SIFT just from linear combinations of the SIFT histogram bins

Comparing projections of LDML and PCA

• Using PCA and LDML to find two dimensional projection of the faces of **Britney Spears** and **Jennifer Aniston**



A SU