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Outline

* What computer vision is about
* What this class is about
* A brief history of visual recognition

* A brief recap on geometry
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I'mages are brightness/color patterns drawn in a plane.
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Pinhole camera: trade-off between

sharpness and light transmission
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B. Large Aperture without Lens --> Fuzzy Image

Camera Obscura in

Edinburgh



Distant object
focused on retina

Close object focused
behind retina

A.NORMAL VISION: THIN LENS

Distant object focused
in front of retina

Close object focused
on retina

B. NORMAL VISION: THICK LENS

Advantages of lens systems

» Can focus
sharply on close
and distanced
objects

 Transmits more
light than a
pinhole camera

E=(I1/4) [ (d/z’)? cos*a ] L




Fundamental problem I:

30uyorlekis of fsReHSR 2D images
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Image Lense
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B. Necker Cube




Question : how do we see "in 3D" ?
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(First-order) answer: with our two eyes.




Epipolar Geometry

left epipolar line
/

epipolar plane

baseline




Simulated 3D perception




But there are other cues..
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Shape from texture
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Depth from haze

: 4 \’
Input haze image Reconstructed images Recovered depth map

[K. HE, J. Sun and X. Tang, CVPR 2009]




Source: J. Koenderink







What is happening with the shadows?
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Image source: F. Durand




Challenges or opportunities?

Image source: J. Koenderink

* Images are confusing, but they also reveal the
structure of the world through numerous cues.
* Our job is to interpret the cues!




The goal of computer vision

"

To perceive the "world behind the picture”, e.q.,
* as a metric measurement device
* as a device for measuring "semantic” information




The goal of computer vision
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To perceive the "world behind the picture”, e.q.,
* as a metric measurement device
* as a device for "measuring” semantic information




Vision as metric measurement device: Furukawa & Ponce (CVPR'07)
(cf also Keriven's class "Vision et reconstruction 3D)

=

Full (312) SparseRing (15)

0.49mm (5th) 0.63mm (3rd)
99.6% (4th) 99.6% ( 99.3% (1)

(excluding our previous results)




But we want much more than 3D:
ex: Visual scene analysis




How to make sense of “pixel-chaos"?

Object class recognition
_ |
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1 ‘ 3D Scene reconstruction
Face recognition Action recognition
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Fundamental problem IT:
I'mages do not measure the meaning

=» We need lots of prior
knowledge to make

E , meaningful
interpretations of an
| ﬁ 2 image |

A. Vase/Faces

S
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C. Duck/Rabbit
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* A brief history of visual recognition

* A brief recap on geometry




Specific object detection

(Lowe, 2004)




Image classification
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Caltech 101 : http://www.vision.caltech.edu/Image_Datasets/Caltech101/




Object category detection

/)




Model = locally rigid assembly of parts
Part = | rigid assembly of features

S TV
e - P T [11E
ZET g — S L e
. - o - T
- . . 1] WMo I H 7 !
-1 an s = :‘:—?ﬂ . e LT pel
¥ 2x 9% - | b X S e
- - - ~ S i . , B < 3
- N | | | <7 e .
¥ » . - » » S > B
; L - ' 4
| & | ! "N + - P -
,‘
5

.
e
SULES

e e N T
T LR - LT L"’""‘
e e —.
R 4 g

¥
2 - . w -
4 -
LS % 3 \

|

Qualitative experiments on Pascal VOC'07 (Kushal, Schmid, Ponce, 2008)
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Local ambiguity and global scene interpretation
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slide credit: Fei-Fei, Fergus & Torralba




This class

1. Introduction plus recap on geometry (J. Ponce)

2. Instance-level recognition I. - Local invariant features (C. Schmid)

3. Instance-level recognition II. - Correspondence, efficient visual search (J. Sivic)
4. Very large scale image indexing. Bag-of-feature models for category-level
recognition (C. Schmid)

5. Sparse coding and dictionary learning for image analysis (J. Ponce)

6. Part-based models and pictorial structures for object recognition (J. Sivic)

7. Motion and human actions I. (I. Laptev)
8. Motion and human actions II. (I. Laptev)
9. Neural networks; Optimization methods (J. Ponce)

10. Category level localization; Face detection and recognition (C. Schmid)

11. Multiple object categories; Context; Recognizing large number of object classes;
Segmentation (I. Laptev, J. Sivic)

12. Final project presentations (J. Sivic, I. Laptev)




Computer vision books

* D.A. Forsyth and J. Ponce, "Computer Vision:

A Modern Approach, Prentice-Hall, 2003.

* J. Ponce, M. Hebert, C. Schmid, and A. Zisserman,
“Toward category-level object recognition”,
Springer LNCS, 2007.

* R. Szeliski, "Computer Vision: Algorithms and
Applications”, Springer, 2010.

O. Faugeras, Q.T. Luong, and T. Papadopoulo,
"Geometry of Multiple Images,” MIT Press, 2001.
* R. Hartley and A. Zisserman, "Multiple View
Geometry in Computer Vision", Cambridge
University Press, 2004.

« J. Koenderink, "Solid Shape”, MIT Press, 1990.




Class web-page

http://www.di.ens.fr/willow/teaching/recvis10

Slides available after classes:

http://www.di.ens.fr/willow/teaching/recvis10/lecturel.pptx
http://www.di.ens.fr/willow/teaching/recvis10/lecturel.pdf

Note: Much of the material used in this lecture
is courtesy of Svetlana Lazebnik:,
http://www.cs.unc.edu/~lazebnik/
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Variability:  Camera position
Illumination
Internal parameters
mmm)  Within-class variations




Variability: | Camera position
Illumination
Internal parameters

Roberts (1963); Lowe (1987); Faugeras & Hebert (1986). Grimson &
Lozano-Perez (1986); Huttenlocher & Ullman (1987)




Origins of computer vision

L. G. Roberts, Machine Perception
of Three Dimensional Solids,

Ph.D. thesis, MIT Department of
Electrical Engineering, 1963.




Huttenlocher & Ullman (1987)




Variztinty  Invariance to: |Camera position
Illumination
Internal parameters

Duda & Hart ( 1972); Weiss (1987); Mundy et al. (1992-94);
Rothwell et al. (1992); Burns et al. (1993)




Example: affine invariants of coplanar points
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BUT: True 3D objects do not admit monocular
viewpoint invariants (Burns et al., 1993) Il
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Eigenfaces (Turk & Pentland, 1991)

i=: E-Ru=3E=)
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Condition Lighting | Orientation
Forced classification 096 /C 85 /0 64/0

Forced 100% accuracy 100/19 100/39 100/60
Forced 20% unknown rate | 100/20 94/20




Appearance manifolds
(Murase & Nayar, 1995)




Correlation-based template matching (60s)

Template

Industrial Image

Ballard & Brown (1980, Fig. 3.3). Courtesy Bob Fisher
and Ballard & Brown on-line.

* Automated target recognition

* Industrial inspection

» Optical character recognition

» Stereo matching

» Pattern recognition




In the lates 1990s, a new approach emerges:
Combining /local appearance, spatial constraints, invariants,
and classification techniques from machine learning.

27

«
Schmid & Mohr’97




Representing and recognizing object
categories is harder

€rJ

ACRONYM (Brooks and Binford, 1981)
Binford (1971), Nevatia & Binford (1972), Marr & Nishihara (1978)




Parts and invariants

The Blum transform, 1967 B

Generalized cylinders
(Binford, 1971)




Generalized cylinders
(Binford, 1971; Marr & Nishihara, 1978)

(Nevatia & Binford, 1972)




Parts and invariants IT

Toffe and Forsyth (2000)

Zhu and Yuille (1996)



In the early 2000's, a hew approach ?
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Fergus, Perona & Zisserman (2003)




The "templates and springs” model
(Fischler & Elschlager, 1973)

Ballard & Brown (1980, Fig. 11.5). Courtesy
Bob Fisher and Ballard & Brown on-line.




Object * Bag of 'words'

slide credit: Fei-Fei, Fergus & Torralba




Color histograms (S&B'91)
Local jets (Florack93)
Spin images (J&H'99)
Sift (Lowe'99)

Shape contexts (B&M'95)

Texton histograms (L&M'97)
Gist (O&T0H)

Spatial pyramids (LSP'06)
Hog (D&T06)

Phog (B&Z'07)

Convolutional nets (LC'90)
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Felzwenszalb, McAllester, Ramanan (2007)

[Wins on 6 of the Pascal'O7 classes, see Chum
& Zisserman (2007) for the other big winner.]




Number of research papers with
key-words “object recognition”,
source: Springer.com

1
1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006




Numbers of papers
with key-words
“epipolar geometry’
source:
Springer.com
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Visual
Geometry

Object
Recognition

1992

1994

1996

1998

2000

2002 2004

1986

1988 1990 1992

1994 1996 1998 2000

2002

2004

2006

2006




Visual Geometry:

Problems: Camera calibration, 3D reconstruction,
< : L

Mching, ...

1
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Feature-based alignment ou




Feature-based alignment outline

Extract features




Feature-based alignment outline

e . v TS

Extract features
Compute putative matches




Feature-based alignment outline

Extract features
Compute putative matches
Loop:

« Hypothesize transformation T (small group of putative
matches that are related by T)




Feature-based alignment outline

N
g

% ~ &
i R S oSSl

Extract features
Compute putative matches
Loop:

« Hypothesize transformation T (small group of putative
matches that are related by T)

Verify transformation (search for other matches consistent
with T)




Feature-based alignment outline

Extract features
Compute putative matches
Loop:

« Hypothesize transformation T (small group of putative
matches that are related by T)

« Verify transformation (search for other matches consistent
with T)




2D transformation models

Similarity
(translation,
scale, rotation)

Affine

Projective
(homography)

Why these transformations ???




Pinhole perspective equation

NOTE: zis always negative..




Affine models: Weak perspective projection

where m = —L is the magnification.
Zy

When the scene relief is small compared its distance from the
Camera, m can be taken constant: weak perspective projection.




Affine models: Orthographic projection

When the camera is at a
(roughly constant) distance
from the scene, take m=1.




Analytical camera geometry




Coordinate Changes: Pure Translations

—>

O—g>D:OT>OA+OP,




Coordinate Changes: Pure Rotations




Coordinate Changes: Rotations about
the z Axis

cos@ sin@ 0]

—smnf cosf 0O
0 0 |




A rotation matrix is characterized by the following
properties:

» I'ts inverse is equal to its tfranspose, and

* its determinant is equal to 1.

Or equivalently:

* Its rows (or columns) form a right-handed
orthonormal coordinate system.




Coordinate changes:
pure rotations




Coordinate Changes: Rigid Transformations




Pinhole perspective equation

NOTE: zis always negative..




The intrinsic parameters of a camera

Units:

k. pixel/m —
f Tm ’ L e Pinhole
o, : pixel

/ — Normalized
n image plane

/\‘ Physical
= retina

Normalized image
coordinates




The intrinsic parameters of a camera

Pinhole

J\ Normalized

image plane

J Physical

retina

Calibration matrix

" (o —acotf wugp)
p=Kp, where p= (’UJ and K% |0 .'8 Vo
) sin ¢
\ 0 0 1)

The perspective
projection equation




The extrinsic parameters of a camera

e When the camera frame (C) is different from the world frame

()= (o M)
1) \Lof 1 1 /)

(W),

e Thus,




Perspective projections induce projective
transformations between planes

Scene phne

Image
plane




Affine cameras

Weak-perspective projection




More affine cameras

Orthographic projection




Weak-perspective projection model

(p and P are in homogeneous coordinates)

‘ p = M P (Pis in homogeneous coordinates)

\ P = AP+ b (neither p nor Pis in hom. coordinates)




Affine projections induce affine
transformations from planes
onto their images.

Projection
direction

Projection
direction




Affine transformations

An affine transformation maps a parallelogram onto
another parallelogram




Fitting an affine transformation

Assume we know the correspondences, how do we get
the transformation?




Fitting an affine transformation

Linear system with six unknowns

Each match gives us two linearly independent
equations: need at least three to solve for the
transformation parameters




Beyond affine transformations

What is the transformation between two views of a
planar surfa_ce?
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What is the transformation between images from two
cameras that share the same center?




Perspective projections induce projective
transformations between planes

Scene phne

Image
plane




Beyond affine transformations

Homography: plane projective transformation
(transformation taking a quad to another arbitrary
quad)




Fitting a homography

Recall: homogenenous coordinates

T

(z,y) = | vy
1

Converting to homogenenous Converting from homogenenous
image coordinates image coordinates




Fitting a homography
Recall: homogenenous coordinates

T X

(z,y) = {y Y } = (z/w, y/w)

1 w

Converting to homogenenous Converting from homogenenous
image coordinates image coordinates

Equation for homography:




Fitting a homography
Equation for homography:

-hll h12 h13 I
h21 h22 h23
_h31 hs, h33_ I

9 entries, 8 degrees of freedom
(scale is arbitrary)

3 equations, only 2 linearly
independent




Direct linear transform

H has 8 degrees of freedom (9 parameters, but scale is
arbitrary)

One match gives us two linearly independent equations

Four matches needed for a minimal solution (null space
of 8x9 matrix)

More than four: homogeneous least squares




Application: Panorama stitching

41%%;

Images courtesy of A. Zisserman.







