

Reconnaissance d'objets et vision artificielle

Jean Ponce (ponce@di.ens.fr) http://www.di.ens.fr/~ponce

Equipe-projet WILLOW
ENS/INRIA/CNRS UMR 8548
Laboratoire d'Informatique Ecole Normale Supérieure, Paris

Jean Ponce

http://www.di.ens.fr/~ponce/ Josef Sivic

Cordelia Schmid

http://lear.inrialpes.fr/~schmid/
Ivan Laptev

Outline

- What computer vision is about
- What this class is about
- A brief history of visual recognition
- A brief recap on geometry

Images are brightness/color patterns drawn in a plane.

Pinhole camera: trade-off between sharpness and light transmission

A. Pinhole Aperture without Lens --> Sharp Image

B. Large Aperture without Lens --> Fuzzy Image

Camera Obscura in Edinburgh

Advantages of lens systems

Distant object focused
in front of retina

Close object focused
on retina
B. NORMAL VISION: THICK LENS

- Can focus sharply on close and distanced objects
- Transmits more light than a pinhole camera

$$
\mathrm{E}=(\Pi / 4)\left[\left(\mathrm{d} / \mathrm{z}^{3}\right)^{2} \cos ^{4} \alpha\right] \mathrm{L}
$$

Fundamental problem I:

3D worlossis" of inttornad"tidR 2D images

1

2
B. Necker Cube

Question : how do we see "in 3D"?

(First-order) answer: with our two eyes.

Epipolar Geometry

Simulated 3D perception

But there are other cues..

Shape from texture

Depth from haze

Input haze image

Reconstructed images

[K. HE, J. Sun and X. Tang, CVPR 2009]

Source: J. Koenderink

What is happening with the shadows?

Challenges or opportunities?

- Images are confusing, but they also reveal the structure of the world through numerous cues.
- Our job is to interpret the cues!

The goal of computer vision

To perceive the "world behind the picture", e.g.,

- as a metric measurement device
- as a device for measuring "semantic" information

The goal of computer vision

Abstract

To perceive the "world behind the picture", e.g.,

- as a metric measurement device
- as a device for "measuring" semantic information

Vision as metric measurement device: Furukawa \& Ponce (CVPR'07) (cf also Keriven's class "Vision et reconstruction 3D)

Full (312)
Ring (47)

0.47 mm (1st)
99.6\% (1st)

SparseRing (15)

$$
\begin{aligned}
& 0.63 \mathrm{~mm}(3 \mathrm{rd}) \\
& 99.3 \%(1 \mathrm{st})
\end{aligned}
$$

But we want much more than 3D: ex: Visual scene analysis

How to make sense of "pixel-chaos"?

Object class recognition

3D Scene reconstruction

Face recognition

Action recognition

Fundamental problem II:
 Images do not measure the meaning

\Rightarrow We need lots of prior knowledge to make meaningful interpretations of an image

Outline

- What computer vision is about
- What this class is about
- A brief history of visual recognition
- A brief recap on geometry

Specific object detection

(Lowe, 2004)

Image classification

Caltech 101 : http://www.vision.caltech.edu/Image_Datasets/Caltech101/

Object category detection

Model 三 locally rigid assembly of parts Part \equiv locally rigid assembly of features

Qualitative experiments on Pascal VOC'07 (Kushal, Schmid, Ponce, 2008)

Local ambiguity and global scene interpretation

This class

1. Introduction plus recap on geometry (J. Ponce)
2. Instance-level recognition I. - Local invariant features (C. Schmid)
3. Instance-level recognition II. - Correspondence, efficient visual search (J. Sivic)
4. Very large scale image indexing. Bag-of-feature models for category-level recognition (C. Schmid)
5. Sparse coding and dictionary learning for image analysis (J. Ponce)
6. Part-based models and pictorial structures for object recognition (J. Sivic)
7. Motion and human actions I. (I. Laptev)
8. Motion and human actions II. (I. Laptev)
9. Neural networks; Optimization methods (J. Ponce)
10. Category level localization; Face detection and recognition (C. Schmid)
11. Multiple object categories; Context; Recognizing large number of object classes; Segmentation (I. Laptev, J. Sivic)
12. Final project presentations (J. Sivic, I. Laptev)

Computer vision books

- D.A. Forsyth and J. Ponce, "Computer Vision: A Modern Approach, Prentice-Hall, 2003.
- J. Ponce, M. Hebert, C. Schmid, and A. Zisserman,
"Toward category-level object recognition", Springer LNCS, 2007.
- R. Szeliski, "Computer Vision: Algorithms and Applications", Springer, 2010.
O. Faugeras, Q.T. Luong, and T. Papadopoulo, "Geometry of Multiple Images," MIT Press, 2001.
- R. Hartley and A. Zisserman, "Multiple View Geometry in Computer Vision", Cambridge University Press, 2004.
- J. Koenderink, "Solid Shape", MIT Press, 1990.

Class web-page

http://www.di.ens.fr/willow/teaching/recvis10
Slides available after classes:
http://www.di.ens.fr/willow/teaching/recvis10/lecture1.pptx http://www.di.ens.fr/willow/teaching/recvis10/lecture1.pdf

Note: Much of the material used in this lecture is courtesy of Svetlana Lazebnik:, http://www.cs.unc.edu/~lazebnik/

Outline

- What computer vision is about
- What this class is about
- A brief history of visual recognition
- A brief recap on geometry

Variability: Camera position
Illumination
Internal parameters Within-class variations

Variability:

Camera position Illumination Internal parameters

Roberts (1963); Lowe (1987); Faugeras \& Hebert (1986); Grimson \& Lozano-Perez (1986); Huttenlocher \& Ullman (1987)

Origins of computer vision

(a) Original picture.

(c) Line drawing.

(b) Differentiated picture.

(d) Rotated view.

L. G. Roberts, Machine Perception of Three Dimensional Solids, Ph.D. thesis, MIT Department of Electrical Engineering, 1963.

Huttenlocher \& Ullman (1987)

Varicbility
Invariance to:
Camera position Illumination Internal parameters

Duda \& Hart (1972); Weiss (1987); Mundy et al. (1992-94); Rothwell et al. (1992); Burns et al. (1993)

Example: affine invariants of coplanar points

Projective invariants (Rothwell et al., 1992):

BUT: True 3D objects do not admit monocular viewpoint invariants (Burns et al., 1993) !!

Empirical models of image variability: Appearance-based techniques

Turk \& Pentland (1991): Murase \& Nayar (1995); etc.

Eigenfaces (Turk \& Pentland, 1991)

Experimental	Correct/Unknown Recognition Percentage		
Condition	Lighting	Orientation	Scale
Forced classification	$96 / 0$	$85 / 0$	$64 / 0$
Forced 100\% accuracy	$100 / 19$	$100 / 39$	$100 / 60$
Forced 20\% unknown rate	$100 / 20$	$94 / 20$	$74 / 20$

Appearance manifolds (Murase \& Nayar, 1995)

Correlation-based template matching (60s)

Ballard \& Brown (1980, Fig. 3.3). Courtesy Bob Fisher and Ballard \& Brown on-line.

- Automated target recognition
- Industrial inspection
- Optical character recognition
- Stereo matching
- Pattern recognition

In the lates 1990s, a new approach emerges:
Combining local appearance, spatial constraints, invariants, and classification techniques from machine learning.

Representing and recognizing objec \dagger categories is harder

ACRONYM (Brooks and Binford, 1981)
Binford (1971), Nevatia \& Binford (1972), Marr \& Nishihara (1978)

Parts and invariants

The Blum transform, 1967

Generalized cylinders (Binford, 1971)

Generalized cylinders

(Binford, 1971; Marr \& Nishihara, 1978)

(Nevatia \& Binford, 1972)

Parts and invariants II

Zhu and Yuille (1996)

Ioffe and Forsyth (2000)

In the early 2000's, a new approach?

Fergus, Perona \& Zisserman (2003)

The "templates and springs" model (Fischler \& Elschlager, 1973)

Ballard \& Brown (1980, Fig. 11.5). Courtesy Bob Fisher and Ballard \& Brown on-line.

Object \longrightarrow Bag of 'words'

Color histograms (S\&B'91) Local jets (Florack'93) Spin images (J\&H'99) Sift (Lowe'99)
Shape contexts (B\&M'95)

Texton histograms (L\&M'97) Gist (O\&T'05)
Spatial pyramids (LSP'06) Hog (D\&T'06)
Phog (B\&Z'07)
Convolutional nets (LC'90)

Locally orderless structure of images (K\&vD'99)

Felzwenszalb, McAllester, Ramanan (2007) [Wins on 6 of the Pascal'07 classes, see Chum \& Zisserman (2007) for the other big winner.]

Number of research papers with key-words "object recognition", source: Springer.com

Numbers of papers with key-words
"epipolar geometry" source:
Springer.com

Visual Geometry:
Problems: Camera calibration, 3D reconstruction,
Scale

Outline

- What computer vision is about
- What this class is about
- A brief history of visual recognition
- A brief recap on geometry

Feature-based alignment outline

Feature-based alignment outline

Extract features

Feature-based alignment outline

Extract features

Compute putative matches

Feature-based alignment outline

Extract features

Compute putative matches
Loop:

- Hypothesize transformation T (small group of putative matches that are related by T)

Feature-based alignment outline

Extract features

Compute putative matches
Loop:

- Hypothesize transformation T (small group of putative matches that are related by T)
- Verify transformation (search for other matches consistent with T)

Feature-based alignment outline

Extract features

Compute putative matches
Loop:

- Hypothesize transformation T (small group of putative matches that are related by T)
- Verify transformation (search for other matches consistent with T)

2D transformation models

Similarity
(translation, scale, rotation)

Affine

Projective (homography)

Why these transformations ???

Pinhole perspective equation

$$
\left\{\begin{array}{r}
x^{\prime}=f^{\prime \prime}-\frac{X}{Z} \\
y^{\prime}=f^{\prime} \underline{Z}
\end{array}\right.
$$

NOTE: z is always negative..

Affine models: Weak perspective projection

$$
\left\{\begin{array}{l}
x^{\prime}=-m x \\
y^{\prime}=-m y
\end{array} \text { where } \quad m=-\frac{f^{\prime}}{z_{0}}\right.
$$

is the magnification.

When the scene relief is small compared its distance from the Camera, m can be taken constant: weak perspective projection.

Affine models: Orthographic projection

$$
\left\{\begin{array}{l}
x^{\prime}=x \\
y^{\prime}=y
\end{array}\right.
$$

When the camera is at a (roughly constant) distance from the scene, take $m=1$.

Analytical camera geometry

Coordinate Changes: Pure Translations

$$
\overrightarrow{O_{B} P}={\overrightarrow{O_{B}} O_{A}}+\overrightarrow{O_{A} P}, \quad B P={ }^{A} P+B O_{A}
$$

Coordinate Changes: Pure Rotations

$$
{ }_{A}^{B} R=\left[\begin{array}{c|c|c}
\mathbf{i}_{A} \cdot \mathbf{i}_{B} & \mathbf{j}_{A} \cdot \mathbf{i}_{B} & \mathbf{k}_{A} \cdot \mathbf{i}_{B} \\
\hline \mathbf{i}_{A} \cdot \mathbf{j}_{B} & \mathbf{j}_{A} \cdot \mathbf{j}_{B} & \mathbf{k}_{A} \cdot \mathbf{j}_{B} \\
\hline \mathbf{i}_{A} \cdot \mathbf{k}_{B} & \mathbf{j}_{A} \cdot \mathbf{k}_{B} & \mathbf{k}_{A} \cdot \mathbf{k}_{B}
\end{array}\right]=\left[\begin{array}{r}
{ }^{A} \mathbf{i}_{B}^{T} \\
{ }^{B A} \mathbf{i}_{A B}^{T} \\
{ }^{A}{ }^{A} \mathbf{k}_{B}^{T}
\end{array}\right]{ }^{B} \mathbf{j}_{A} \quad{ }^{B} \mathbf{k}_{A-}
$$

Coordinate Changes: Rotations about

 the z Axis
${ }_{A}^{B} R=\left[\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$

A rotation matrix is characterized by the following properties:

- Its inverse is equal to its transpose, and
- its determinant is equal to 1.

Or equivalently:

- Its rows (or columns) form a right-handed orthonormal coordinate system.

Coordinate changes: pure rotations

$$
\overrightarrow{O P}=\left[\begin{array}{lll}
\mathbf{i}_{A} & \mathbf{j}_{A} & \mathbf{k}_{A}
\end{array}\right]\left[\begin{array}{c}
{ }^{A} x \\
{ }^{A} y \\
{ }^{A} z
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{i}_{B} & \mathbf{j}_{B} & \mathbf{k}_{B}
\end{array}\right]\left[\begin{array}{c}
{ }^{B} x \\
{ }^{B} y \\
{ }^{B} z
\end{array}\right]
$$

$$
\Rightarrow \quad{ }^{B} P={ }_{A}^{B} R^{A} P
$$

Coordinate Changes: Rigid Transformations

Pinhole perspective equation

$$
\left\{\begin{array}{r}
x^{\prime}=f^{\prime \prime}-\frac{X}{Z} \\
y^{\prime}=f^{\prime} \underline{Z}
\end{array}\right.
$$

NOTE: z is always negative..

The intrinsic parameters of a camera

```
Units:
k,l: pixel/m
f:m
\alpha,\beta: pixel
```


$$
\left\{\begin{array}{l}
\hat{u}=\frac{x}{z} \\
\hat{v}=\frac{y}{z}
\end{array} \Leftrightarrow \hat{\boldsymbol{p}}=\frac{1}{z}\left(\begin{array}{ll}
\operatorname{Id} & \mathbf{0}
\end{array}\right)\binom{\boldsymbol{P}}{1}\right.
$$

Normalized image coordinates

Physical image coordinates

$$
\left\{\begin{array}{l}
u=k f \frac{x}{z} \\
v=l f \frac{y}{z}
\end{array}\right.
$$

The intrinsic parameters of a camera

Calibration matrix
$\boldsymbol{p}=\mathcal{K} \hat{\boldsymbol{p}}, \quad$ where $\quad \boldsymbol{p}=\left(\begin{array}{l}u \\ v \\ 1\end{array}\right)$ and $\mathcal{K} \stackrel{\text { def }}{=}\left(\begin{array}{ccc}\alpha & -\alpha \cot \theta & u_{0} \\ 0 & \frac{\beta}{\sin \theta} & v_{0} \\ 0 & 0 & 1\end{array}\right)$
The perspective projection equation

$$
\boldsymbol{p}=\frac{1}{z} \mathcal{M} \boldsymbol{P}, \quad \text { where } \quad \mathcal{M} \stackrel{\text { def }}{=}\left(\begin{array}{ll}
\mathcal{K} & \mathbf{0}
\end{array}\right)
$$

The extrinsic parameters of a camera

- When the camera frame (C) is different from the world frame (W),

$$
\binom{{ }^{C} P}{1}=\left(\begin{array}{cc}
C \\
W & \mathcal{R} \\
{ }^{C} O_{W} \\
\mathbf{0}^{T} & 1
\end{array}\right)\binom{{ }^{W} P}{1}
$$

- Thus,

$$
\boldsymbol{p}=\frac{1}{z} \mathcal{M} \boldsymbol{P}, \quad \text { where }\left\{\begin{array}{l}
\mathcal{M}=\mathcal{K}(\mathcal{R} \quad \boldsymbol{t}) \\
\mathcal{R}={ }_{W}^{C} \mathcal{R} \\
\boldsymbol{t}={ }^{C} O_{W} \\
\boldsymbol{P}=\binom{W}{1}
\end{array}\right.
$$

- Note: z is not independent of \mathcal{M} and \boldsymbol{P} :

$$
\mathcal{M}=\left(\begin{array}{c}
\boldsymbol{m}_{1}^{T} \\
\boldsymbol{m}_{2}^{T} \\
\boldsymbol{m}_{3}^{T}
\end{array}\right) \Longrightarrow z=\boldsymbol{m}_{3} \cdot \boldsymbol{P}, \quad \text { or } \quad\left\{\begin{array}{l}
u=\frac{\boldsymbol{m}_{1} \cdot \boldsymbol{P}}{\boldsymbol{m}_{3} \cdot \boldsymbol{P}} \\
v=\frac{\boldsymbol{m}_{2} \cdot \boldsymbol{P}}{\boldsymbol{m}_{3} \cdot \boldsymbol{P}}
\end{array}\right.
$$

Perspective projections induce projective

 transformations between planes

Affine cameras

Weak-perspective projection

Paraperspective projection

More affine cameras

Orthographic projection

Parallel projection

Weak-perspective projection model

$\boldsymbol{p}=\frac{1}{z_{\mathrm{r}}} \mathcal{M} \boldsymbol{P}$

(p and P are in homogeneous coordinates)
$p=M P$
(P is in homogeneous coordinates)
$p=A P+b$
(neither p nor P is in hom. coordinates)

Affine projections induce affine transformations from planes onto their images.

Affine transformations

An affine transformation maps a parallelogram onto another parallelogram

$$
\left[\begin{array}{c}
u^{\prime} \\
v^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} & a_{12} & b_{1} \\
a_{21} & a_{22} & b_{2} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]
$$

Fitting an affine transformation

Assume we know the correspondences, how do we get the transformation?

Fitting an affine transformation

Linear system with six unknowns
Each match gives us two linearly independent equations: need at least three to solve for the transformation parameters

Beyond affine transformations

What is the transformation between two views of a planar surface?

What is the transformation between images from two cameras that share the same center?

Perspective projections induce projective

 transformations between planes

Beyond affine transformations

Homography: plane projective transformation (transformation taking a quad to another arbitrary quad)

Fitting a homography

Recall: homogenenous coordinates

$$
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right.
$$

Converting to homogenenous image coordinates
$\left[\begin{array}{c}x \\ y \\ w\end{array}\right] \Rightarrow(x / w, y / w)$

Converting from homogenenous image coordinates

Fitting a homography

Recall: homogenenous coordinates

$$
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Converting to homogenenous image coordinates
$\left[\begin{array}{c}x \\ y \\ w\end{array}\right] \Rightarrow(x / w, y / w)$

Converting from homogenenous image coordinates

Equation for homography:
$\lambda\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{lll}h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33}\end{array}\right]\left[\begin{array}{c}x \\ y \\ 1\end{array}\right]$

Fitting a homography

Equation for homography:

$\lambda\left[\begin{array}{c}x_{i}^{\prime} \\ y_{i}^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{lll}h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33}\end{array}\right]\left[\begin{array}{c}x_{i} \\ y_{i} \\ 1\end{array}\right]$

$$
\lambda \mathbf{x}_{i}^{\prime}=\mathbf{H} \mathbf{x}_{i}=\left[\begin{array}{l}
\mathbf{h}_{1}^{T} \\
\mathbf{h}_{2}^{T} \\
\mathbf{h}_{3}^{T}
\end{array}\right] \mathbf{x}_{i}
$$

9 entries, 8 degrees of freedom (scale is arbitrary)

$$
\mathbf{x}_{i}^{\prime} \times \mathbf{H} \mathbf{x}_{i}=0
$$

$$
\mathbf{x}_{i}^{\prime} \times \mathbf{H} \mathbf{x}_{i}=\left[\begin{array}{c}
y_{i}^{\prime} \mathbf{h}_{3}^{T} \mathbf{x}_{i}-\mathbf{h}_{2}^{T} \mathbf{x}_{i} \\
\mathbf{h}_{1}^{T} \mathbf{x}_{i}-x_{i}^{\prime} \mathbf{h}_{3}^{T} \mathbf{x}_{i} \\
x_{i}^{\prime} \mathbf{h}_{2}^{T} \mathbf{x}_{i}-y_{i}^{\prime} \mathbf{h}_{1}^{T} \mathbf{x}_{i}
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
0^{T} & -\mathbf{x}_{i}^{T} & y_{i}^{\prime} \mathbf{x}_{i}^{T} \\
\mathbf{x}_{i}^{T} & 0^{T} & -x_{i}^{\prime} \mathbf{x}_{i}^{T} \\
-y_{i}^{\prime} \mathbf{x}_{i}^{T} & x_{i}^{\prime} \mathbf{x}_{i}^{T} & 0^{T}
\end{array}\right]\left(\begin{array}{l}
\mathbf{h}_{1} \\
\mathbf{h}_{2} \\
\mathbf{h}_{3}
\end{array}\right)=0
$$

3 equations, only 2 linearly independent

Direct linear transform

$$
\left[\begin{array}{ccc}
0^{T} & \mathbf{x}_{1}^{T} & -y_{1}^{\prime} \mathbf{x}_{1}^{T} \\
\mathbf{x}_{1}^{T} & 0^{T} & -x_{1}^{\prime} \mathbf{x}_{1}^{T} \\
\cdots & \cdots & \cdots \\
0^{T} & \mathbf{x}_{n}^{T} & -y_{n}^{\prime} \mathbf{x}_{n}^{T} \\
\mathbf{x}_{n}^{T} & 0^{T} & -x_{n}^{\prime} \mathbf{x}_{n}^{T}
\end{array}\right]\left(\begin{array}{l}
\mathbf{h}_{1} \\
\mathbf{h}_{2} \\
\mathbf{h}_{3}
\end{array}\right)=0 \quad \mathbf{A} \mathbf{h}=0
$$

H has 8 degrees of freedom (9 parameters, but scale is arbitrary)
One match gives us two linearly independent equations Four matches needed for a minimal solution (null space of 8×9 matrix)
More than four: homogeneous least squares

Application: Panorama stitching

Images courtesy of A. Zisserman.

