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Outline 

•  What computer vision is about 

•  What this class is about 

•  A brief history of visual recognition 

•  A brief recap on geometry 



Images are brightness/color patterns drawn in a plane. 

They are formed by the projection of 
three-dimensional objects. 





   Camera Obscura in 
Edinburgh  

Pinhole camera: trade-off between 
sharpness and light transmission 



Advantages of lens systems 

E=(Π/4) [ (d/z’)2 cos4α ] L 

•  Can focus 
sharply on close 
and distanced 
objects 

•  Transmits more 
light than a 
pinhole camera 



Fundamental problem I: 

3D world is “flattened” to 2D images Loss of information 

3D scene 

Lense Image 



Question : how do we see “in 3D” ? 

(First-order) answer: with our two eyes. 



Epipolar Geometry 



Simulated 3D perception 

Disparity 



Depth cues: Linear perspective 

But there are other cues.. 



Shape from texture 



Depth cues: Aerial perspective 



[K. HE, J. Sun and X. Tang, CVPR 2009] 

Depth from haze 

Input haze image Reconstructed images Recovered depth map 



Shape and lighting cues: Shading 

Source: J. Koenderink 



Source: J. Koenderink 



What is happening with the shadows? 



Image source: F. Durand 



Challenges or opportunities? 

•  Images are confusing, but they also reveal the 
 structure of the world through numerous cues. 

•  Our job is to interpret the cues! 

Image source: J. Koenderink 



The goal of computer vision 

To perceive the “world behind the picture”, e.g., 
•  as a metric measurement device 
•  as a device for measuring “semantic” information 



The goal of computer vision 

To perceive the “world behind the picture”, e.g., 
•  as a metric measurement device 
•  as a device for “measuring” semantic information 



Vision as metric measurement device: Furukawa & Ponce (CVPR’07) 
(cf also Keriven’s class “Vision et reconstruction 3D) 
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But we want much more than 3D: 
ex: Visual scene analysis 



How to make sense of “pixel-chaos”? 

3D Scene reconstruction 

Object class recognition 

Face recognition Action recognition 

Drinking 



Fundamental problem II: 
Images do not measure the meaning 

•  We need lots of prior 
knowledge to make 
meaningful 
interpretations of an 
image 
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Specific object detection 

(Lowe, 2004) 



Image classification 

Caltech 101 : http://www.vision.caltech.edu/Image_Datasets/Caltech101/ 
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Within-class variation 

Light variation 
Partial visibility 

Object category detection 



Model ≡ locally rigid assembly of parts 
Part ≡ locally rigid assembly of features 

Qualitative experiments on Pascal VOC’07 (Kushal, Schmid, Ponce, 2008) 



Scene understanding 

Photo courtesy A. Efros. 



Local ambiguity and global scene interpretation 

slide credit: Fei-Fei, Fergus & Torralba  



1. Introduction plus recap on geometry (J. Ponce) 
2. Instance-level recognition I. - Local invariant features (C. Schmid) 

3. Instance-level recognition II. - Correspondence, efficient visual search (J. Sivic) 

4. Very large scale image indexing. Bag-of-feature models for category-level 
recognition (C. Schmid) 
5. Sparse coding and dictionary learning for image analysis (J. Ponce)  
6. Part-based models and pictorial structures for object recognition (J. Sivic)  
7. Motion and human actions I. (I. Laptev)   
8. Motion and human actions II. (I. Laptev)  
9. Neural networks; Optimization methods (J. Ponce)  
10. Category level localization; Face detection and recognition (C. Schmid)  
11. Multiple object categories; Context; Recognizing large number of object classes; 
Segmentation (I. Laptev, J. Sivic)  
12. Final project presentations (J. Sivic, I. Laptev)  

This class 



Computer vision books 
•  D.A. Forsyth and J. Ponce, “Computer Vision: 
A Modern Approach, Prentice-Hall, 2003. 
•  J. Ponce, M. Hebert, C. Schmid, and A. Zisserman, 
“Toward category-level object recognition”,  
Springer LNCS, 2007. 
•  R. Szeliski, “Computer Vision: Algorithms and  
Applications”, Springer, 2010. 
O. Faugeras, Q.T. Luong, and T. Papadopoulo, 
“Geometry of Multiple Images,” MIT Press, 2001. 
•  R. Hartley and A. Zisserman, “Multiple View  
Geometry in Computer Vision”, Cambridge  
University Press, 2004. 
•  J. Koenderink, “Solid Shape”, MIT Press, 1990. 



Class web-page 

http://www.di.ens.fr/willow/teaching/recvis10 

Slides available after classes: 

http://www.di.ens.fr/willow/teaching/recvis10/lecture1.pptx 
http://www.di.ens.fr/willow/teaching/recvis10/lecture1.pdf 

Note: Much of the material used in this lecture  
is courtesy of Svetlana Lazebnik:, 
http://www.cs.unc.edu/~lazebnik/ 
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Variability: Camera position 
Illumination 
Internal parameters 
Within-class variations 



Variability: Camera position 
Illumination 
Internal parameters 

θ


Roberts (1963); Lowe (1987); Faugeras & Hebert (1986); Grimson &  
Lozano-Perez (1986); Huttenlocher & Ullman (1987) 



Origins of computer vision 

L. G. Roberts, Machine Perception 
of Three Dimensional Solids, 
Ph.D. thesis, MIT Department of 
Electrical Engineering, 1963.  



Huttenlocher & Ullman (1987) 



Variability      Invariance to: Camera position 
Illumination 
Internal parameters 

Duda & Hart ( 1972); Weiss (1987); Mundy et al. (1992-94); 
Rothwell et al. (1992); Burns et al. (1993) 



BUT: True 3D objects do not admit monocular  
viewpoint invariants (Burns et al., 1993) !! 

Projective invariants (Rothwell et al., 1992): 

Example: affine invariants of coplanar points 



Empirical models of image variability: 

Appearance-based techniques 

Turk & Pentland (1991); Murase & Nayar (1995); etc. 



Eigenfaces (Turk & Pentland, 1991) 



Appearance manifolds 
(Murase & Nayar, 1995) 



Correlation-based template matching (60s) 

Ballard & Brown (1980, Fig. 3.3). Courtesy Bob Fisher 
and Ballard & Brown on-line. 

• Automated target recognition 
• Industrial inspection 
• Optical character recognition 
• Stereo matching 
• Pattern recognition 



Lowe’02 

Mahamud & Hebert’03 

In the lates 1990s, a new approach emerges:  
Combining local appearance, spatial constraints, invariants,  
and classification techniques from machine learning. 

Query 

Retrieved (10o off) 

Schmid & Mohr’97 



ACRONYM (Brooks and Binford, 1981) 

Representing and recognizing object  
categories is harder 

Binford (1971), Nevatia & Binford (1972), Marr & Nishihara (1978) 



The Blum transform, 1967 

Generalized cylinders 
(Binford, 1971) 

Parts and invariants 



Generalized cylinders 
(Binford, 1971; Marr & Nishihara, 1978) 

(Nevatia & Binford, 1972) 



Zhu and Yuille (1996) 

Ponce et al. (1989) 

Ioffe and Forsyth (2000) 

Parts and invariants II 



Fergus, Perona & Zisserman (2003) 

In the early 2000’s, a new approach ?  



Ballard & Brown (1980, Fig. 11.5). Courtesy 
Bob Fisher and Ballard & Brown on-line. 

The “templates and springs” model 
(Fischler & Elschlager, 1973) 



slide credit: Fei-Fei, Fergus & Torralba  



Color histograms (S&B’91) 
Local jets (Florack’93) 
Spin images (J&H’99) 
Sift (Lowe’99) 
Shape contexts (B&M’95) 

Texton histograms (L&M’97) 
Gist (O&T’05) 
Spatial pyramids (LSP’06) 
Hog (D&T’06) 
Phog (B&Z’07) 
Convolutional nets (LC’90) 



Locally orderless structure of images (K&vD’99) 



Felzwenszalb, McAllester, Ramanan (2007) 
 [Wins on 6 of the Pascal’07 classes, see Chum 
 & Zisserman (2007) for the other big winner.] 



Number of research papers with 
key-words “object recognition”, 
source: Springer.com 



Numbers of papers 
with key-words 
“epipolar geometry”  
source: 
Springer.com 

Visual 
Geometry 

Object 
Recognition 



Visual Geometry: 
Problems: Camera calibration, 3D reconstruction, 
Structure and motion estimation, … 
Tools: Bundle adjustment, Wide baseline matching, … 

Scale/affine – invariant regions: SIFT, Harris-Laplace, etc. 
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Feature-based alignment outline 



Feature-based alignment outline 

Extract features 



Feature-based alignment outline 

Extract features 
Compute putative matches 



Feature-based alignment outline 

Extract features 
Compute putative matches 
Loop: 

•  Hypothesize transformation T (small group of putative 
matches that are related by T) 



Feature-based alignment outline 

Extract features 
Compute putative matches 
Loop: 

•  Hypothesize transformation T (small group of putative 
matches that are related by T) 

•  Verify transformation (search for other matches consistent 
with T) 



Feature-based alignment outline 

Extract features 
Compute putative matches 
Loop: 

•  Hypothesize transformation T (small group of putative 
matches that are related by T) 

•  Verify transformation (search for other matches consistent 
with T) 



2D transformation models 

Similarity 
(translation,  
scale, rotation) 

Affine 

Projective 
(homography) 

Why these transformations ??? 



Pinhole perspective equation 

NOTE: z is always negative.. 



Affine models: Weak perspective projection 

is the magnification. 

When the scene relief is small compared its distance from the 
Camera, m can be taken constant: weak perspective projection. 



Affine models: Orthographic projection 

When the camera is at a 
(roughly constant) distance 
from the scene, take m=1. 



Analytical camera geometry 



Coordinate Changes: Pure Translations 

OBP = OBOA + OAP  ,  BP = AP + BOA 



Coordinate Changes: Pure Rotations 



Coordinate Changes: Rotations about  
the z Axis 



A rotation matrix is characterized by the following  
properties: 

•  Its inverse is equal to its transpose, and 

•  its determinant is equal to 1. 

Or equivalently: 

•  Its rows (or columns) form a right-handed 
orthonormal coordinate system. 



Coordinate changes:  
pure rotations 



Coordinate Changes: Rigid Transformations 



Pinhole perspective equation 

NOTE: z is always negative.. 



The intrinsic parameters of a camera 

Normalized image 
coordinates 

Physical image coordinates  

Units: 
k,l : pixel/m 
f  : m 
α,β 
: pixel




The intrinsic parameters of a camera 

Calibration matrix 

The perspective 
projection equation 



The extrinsic parameters of a camera 



Perspective projections induce projective  
transformations between planes 



Weak-perspective projection 

Paraperspective projection 

Affine cameras 



Orthographic projection 

Parallel projection 

More affine cameras 



Weak-perspective projection model 

r 

(p and P are in homogeneous coordinates) 

p = A P + b  (neither p nor P is in hom. coordinates) 

p = M P (P is in homogeneous coordinates) 



Affine projections induce affine  
transformations from planes  
onto their images. 



Affine transformations 
An affine transformation maps a parallelogram onto 
another parallelogram 



Fitting an affine transformation 
Assume we know the correspondences, how do we get 

the transformation? 



Fitting an affine transformation 

Linear system with six unknowns 
Each match gives us two linearly independent 

equations: need at least three to solve for the 
transformation parameters 



Beyond affine transformations 
What is the transformation between two views of a 

planar surface? 

What is the transformation between images from two 
cameras that share the same center? 



Perspective projections induce projective  
transformations between planes 



Beyond affine transformations 
Homography: plane projective transformation 

(transformation taking a quad to another arbitrary 
quad) 



Fitting a homography 
Recall: homogenenous coordinates 

Converting to homogenenous 
image coordinates 

Converting from homogenenous 
image coordinates 



Fitting a homography 
Recall: homogenenous coordinates 

Equation for homography: 

Converting to homogenenous 
image coordinates 

Converting from homogenenous 
image coordinates 



Fitting a homography 
Equation for homography: 

3 equations, only 2 linearly  
independent 

9 entries, 8 degrees of freedom 
(scale is arbitrary) 



Direct linear transform 

H has 8 degrees of freedom (9 parameters, but scale is 
arbitrary) 

One match gives us two linearly independent equations 
Four matches needed for a minimal solution (null space 

of 8x9 matrix) 
More than four: homogeneous least squares 



Application: Panorama stitching 

Images courtesy of A. Zisserman.  




