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Foreword

= I'm here for you, | already know that stuff
= |t's better to look silly than to stay so
= Ask questions if you don't understand!



Linear classifiers

Find linear function (hyperplane) to separate
positive and negative examples

@
° X, positive: X, [w+bH=0
® o X, negative: X, w+bH<0
@
@
® o o o
° @
@
@
° @

Which hyperplane
O is best?



Support vector machines

Find hyperplane that maximizes the margin
between the positive and negative

examples
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Support vectors

O

“ Margin

X, positive (y;, =1): X, lw+bH=1
x, negative(y, =—1): x,lw+b<-1

For support, vectors, X, w+b==1]

Distance between point | X, v +b|
and hyperplane: Inal

Therefore, the marginis 2/ ||w||


http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Linear classifiers

® The perceptron
o ® (Rosenblatt'57)
o
® - What the perceptron can
° o . learn, it will learn using a
® simple weight update
® o o ° rule.
glx)
o
O

bias unit

input units



What does w look like?

= Gabor filters

= Edge detectors ”
_ 10 LA [/ O [/ S/ O
= Various angles B

= Various frequencies iw W W W 4 4
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Some problems are not linear

= Can we learn them using a combination of
linear filters?

= "Features” are more and more complex!



Modeling non-linear functions

hidden j

input i

Slide by Duda, Hart, Stork



A multilayer neural network

» Linear classifier at the end!

= Unrestricted hidden layer

Input Hidden Layer Cutput
Layer Lawer




Link between NNs and SVMs

= A neural network is a linear classifier in a new
space.

= |t is a universal approximator.

= |[tis an SVM whose kernel can be (sometimes
badly) learnt!

= \Wait... Learnt?



Learning a neural network

= A neural network Is just a function (which one?)
= |f it has a gradient, we can do gradient descent.
= Does it?



Changing the activation

= A sigmoid is a smoothed version of the
threshold
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Any function can be learned by a 3-layer
network with enough hidden units



. Parametric prediction function: f (x, w) =Sy

*Learning: Minimize

E=>iL (yi f(xi,w))
- Recognition: y = f(x, w)

How can we minimize E? ..Gradient descent..



L] L] L]
galeni-pdased 18] 1ISed |jedrning

- Difference between stochastic and batch.



Backpropagation

= The gradient with respect to one layer depends
on the gradient with respect to the layer above.

= \WWe can "backpropagate” the gradient to the
layers below.



Derotated Correeted Histogrum Heceptive Fields
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Preprocessing Dietection Nerwork Architecmre

The vertical face-finding part of Rowley, Baluja and Kanade's system

Figure from "Rotation invariant neural-network based face detection,” H.A.
Rowley, S. Baluja and T. Kanade, Proc. Computer Vision and Pattern Recognition,
1998, copyright 1998, IEEE Slide by D.A. Forsyth
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Architecture of the complete system: they use another neural
net to estimate orientation of the face, then rectify it. They
search over scales to find bigger/smaller faces.

Figure from "Rotation invariant neural-network based face detection,” H.A. Rowley, S.
Baluja and T. Kanade, Proc. Computer Vision and Pattern Recognition, 1998, copyright
1998, IEEE



Figure from "Rotation
invariant neural-network
based face detection,” H.A.
Rowley, S. Baluja and T.
Kanade, Proc. Computer
Vision and Pattern
Recognition, 1998, copyright
1998, TEEE

Slide by D.A. Forsyth



Advantages of MLP

= Can learn anything

= Extremely fast at test time (computing the
answer for a new datapoint)

= Complete control over the power of the network
(by controlling the hidden layers sizes).



Problems with MLP

= Highly non-convex — many local minima

= Upper layers much harder to train than lower
layers

= Can learn anything — needs tons of examples
to be good (make some awesome Tennis
analogy here).



Take-home messages

= Neural networks can learn anything
= Butitis HARD!

= |f you wish to use them, be smart (or ask
someone who knows)!

= If you have a huge dataset, they CAN be
awesome!



Convolutional NNets

= An image waSJusta iy i e o W
huge vector —

= Canwemakemore i w w W H 4 W
assumptions? T

* Filtersare mostly  §ee o0 o0 e, e, e,
LOCAL!




= Insted of computing features over the entire
image, compute it over small patches.

= Repeat for every patch.

= "Pool” features to get local invariance.



An Old Idea for Local Shift Invariance

& [Hubel & Wiesel 1962]:
» simple cells detect local features

» complex cells “pool” the outputs of simple cells within a retinotopic
neighborhood.

“Simple cells”
“‘Complex cells”

/

\ =

) pooling

subsampling

Retinotopic Feature Maps

Convolutions



CNN architecture

) , Layer 3 Layer 4 Ii%e@rf 1
: Layer 1 ayer 12@10x10 A
input 12@5x5
1@32x32 27 c@1hid e
Layer 6: 10
10
e,
2% 5x5 | 2%2 convolution
5Xx5 i pooling/ convolution pooling/
convoiution subsampling subsampling

Convolutional net for handwriting recognition (400,000 synapses)

Convolutional layers (simple cells): all units in a feature plane share the same weights
Pooling/subsampling layers (complex cells): for invariance to small distortions.
Supervised gradient-descent learning using back-propagation

The entire network is trained end-to-end. All the layers are trained simultaneously.
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Face detection - pose estimation
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Face detection




Applying a ConvNet on Sliding Windows is Very

J
iInput:120x120

i Traditional Detectors/Classifiers must be applied to every
location on a large input image, at multiple scales.

i Convolutional nets can replicated over large images very
cheaply.

i@ The network is applied to multiple scales spaced by 1.5.



li Computational cost for replicated convolutional net:
96x96 -> 4.6 million multiply-accumulate operations
120x120 -> 8.3 million multiply-accumulate operations
240x240 -> 47.5 million multiply-accumulate operations
480x480 -> 232 million multiply-accumulate operations
i Computational cost for a non-convolutional detector of the
same size, applied every 12 pixels:
96x96 -> 4.6 million multiply-accumulate operations
120x120 -> 42.0 million multiply-accumulate operations
240x240 -> 788.0 million multiply-accumulate operations
480x480 -> 5,083 million multiply-accumulate operations

<

“—— 96x96 window
\

— 12 pixel shift

\84x84 overlap



). - : -
with Invariance to Pose and lllumination

ﬂ 50 toys belonging to 5 categories: animal, human figure, airplane, truck, car

ﬂ For each instance:

ig 18 azimuths
li 0 to 350 degrees every
20 degrees
li 9 elevations
i 30 to 70 degrees from
horizontal every 5
degrees
6 illuminations
ig on/off combinations of 4
lights
ig 2 cameras (stereo)
': 7.5 cm apart
li 40 cm from the object

5 & 1 &
2
W N N w

v v 9 %

Training instances

10 instance per category: 5 instances used for training, 5 instances for testing
Raw dataset: 972 stereo pair of each object instance. 48,600 image pairs total.
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Test instances



Jdta Collection, sampie |

eneratio

Image capture setup

Objects are painted green so that:

- all features other than shape are removed

- objects can be segmented, transformed,
and composited onto various backgrounds

Original image Object mask

Shadow factor






Layer 3

24@18x18 Layer 6

Layer 4 Fully
24@6x6 Layer5 onnected

Stereo Layer 1
100 (500 weights)

input 8@92x9 Layer 2
2@96x96 2 8@23x23

/ /
4x4 6x6
convolution (96 kernels) convolution

(16 kernels) subsampling(2400 kernels)

The architecture alternates convolutional layers (feature detectors) and subsampling layers

(local feature pooling for invariance to small distortions).
The entire network is trained end-to-end (all the layers are trained simultaneously).
A gradient-based algorithm is used to minimize a supervised loss function.

3 90,857 free parameters, 3,901,162 connections.



onvolutions anc

“Simple cells”

Multiple
convolutio

ns
i Local features are extracted

everywhere. foom= 0.6, Thres=-1.0, f on , 05=40, nv

i@ averaging/subsampling layer
builds robustness to variations
in feature locations.

i Hubel/Wiesel'62, Fukushima'71,
LeCun'89, Riesenhuber &
Poggio'02, Uliman'02,....

“Complex
cells”

Averaging
subsampli
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animal

human
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truck

car



Normalized-Uniform Set: Error Rates

& Linear Classifier on raw stereo images: 30.2% error.

o K-Nearest-Neighbors on raw stereo images: 18.4%
error.

@ K-Nearest-Neighbors on PCA-95: 16.6% error.

& Pairwise SVM on 96x96 stereo images: 11.6% error

& Pairwise SVM on 95 Principal Components: 13.3%
error.

& Convolutional Net on 96x96 stereo images: 5.8%
error.

- et g e g7 oF X Q ar G
& 1 & 1% 8§ ¢ & B

Training instances Test instances



& Jittered-Cluttered Dataset:
i 291,600 stereo pairs for training, 58,320 for testing
i Obijects are jittered: position, scale, in-plane rotation, contrast, brightness,

backgrounds, distractor objects,...
i Input dimension: 98x98x2 (approx 18,000)



g

N

& 291,600 training samples, 58,320 test samples

& SVM with Gaussian kernel

& Convolutional Net with binocular input:

i@ Convolutional Net + SVM on top:

& Convolutional Net with monocular input:

& Smaller mono net (DEMO):

& Dataset available from http://www.cs.nyu.edu/~yann

43.3% error
7.8% error
5.9% error

20.8% error

26.0% error



ﬂ K-NN and SVM with Gaussian kernels are based on matching global templates

3 Both are “shallow” architectures
There is now way to learn invariant recognition tasks with such naive architectures
(unless we use an impractically large number of templates).

Output
ﬂ The number of necessary templates grows

exponentially with the number of
dimensions of variations.

i@ Global templates are in trouble when the
variations include: category, instance

shape, configuration (for articulated object), Feat i milariti
position, azimuth, elevation, scale,
illumination, texture, albedo, in-plane

rotation, background luminance,
background texture, background clutter, .....

Linear
Combinations

Global Template Matchers
(each training sample is a template
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xamples (Monocular Mode
| — _ _




vionocular vode

xamples




Zoom= 1.0, Threshold= -1.0, filter on




xamples (Monocular Mode

Foom= 1.0, Threshold= -1.2, filter on




xamples (Monocular iiode

Foom= 0.7, Threshold= -1.8, filter on
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Supervised Convolutional Nets: Pros and Cons

Convolutional nets can be trained to perform a wide variety of visual tasks.

» Global supervised gradient descent can produce parsimonious
architectures

o BUT: they require lots of labeled training samples
» 60,000 samples for handwriting
» 120,000 samples for face detection
» 25,000 to 350,000 for object recognition

i Since low-level features tend to be non task specific, we should be able to learn
them unsupervised.

& Hinton has shown that layer-by-layer unsupervised “pre-training” can be used
to initialize “deep” architectures

» [Hinton & Shalakhutdinov, Science 2006]

¥ Can we use this idea to reduce the number of necessary labeled examples.



Learning fast

= Common point of neural networks: need many
examples

= — we need to be able to use these examples
fast



Objectives and Essential Remarks

e Baseline large-scale learning algorithm
ﬁ Randomly discarding data is the simplest
way to handle large datasets.

— What are the statistical benefits of processing more data?
— What is the computational cost of processing more data?

e VWe need a theory that joins Statistics and Computation!

— 1967: Vapnik's theory does not discuss computation.

— 1981: Valiant's learnability excludes exponential time algorithms,
but (i) polynomial time can be too slow, (ii) few actual results.

— We propose a simple analysis of approximate optimization. . .



Learning Algorithms: Standard Framework

e Assumption: examples are drawn independently from an unknown
probability distribution P{x,y) that represents the rules of Nature.

e Expected Risk: E(f) = [{(f(x),y)dP(x,y).

e Empirical Risk: Ey(f) = %Zf(f(:cﬁ) Ui )

e We would like f* that minimizes E(f) among all functions.

e In general f* ¢ F.

e The best we can have is fr € F that minimizes E(f) inside F.
e But P(r,y) is unknown by definition.

e Instead we compute f, € F that minimizes Ey(f).
Vapnik-Chervonenkis theory tells us when this can work.



Learning with Approximate Optimization

Computing f,, = argmin E,,(f) is often costly.
feF

Since we already make lots of approximations,

why should we compute f,, exactly?

Let's assume our optimizer returns fﬂ_
such that E,(fn) < En(fn) + p.

For instance, one could stop an iterative
optimization algorithm long before its convergence.



Decomposition of the Error (i)

E(fn) — E(f*) = E(fr) — E(f") Approximation error
+ E(fn) — E(fr) Estimation error
+ E(fn) — E(fn) Optimization error
Problem:

Choose F, n, and p to make this as small as possible,

maximal number of examples n

subject to budget constraints { maximal computing time T



Decomposition of the

Error (ii)

Approximation error bound:
— decreases when F gets larger.

Estimation error bound:
— decreases when n gets larger.
— increases when F gets larger.

Optimization error bound:
— increases with p.

Computing time 7'
— decreases with p
— increases with n

— increases with F

(Approximation theory)

(Vapnik-Chervonenkis theory)

(Vapnik-Chervonenkis theory plus tricks)

(Algorithm dependent)



Small-scale vs. Large-scale Learning

We can give rigorous definitions.

e Definition 1:
We have a small-scale learning problem when the active
budget constraint is the number of examples n.

e Definition 2:
We have a large-scale learning problem when the active
budget constraint is the computing time 7T.



Small-scale Learning

The active budget constraint is the number of examples.

e [0 reduce the estimation error, take n as large as the budget allows.
e To reduce the optimization error to zero, take p= 0.

¢ WWe need to adjust the size of F.

Approximation error

Size of F

See Structural Risk Minimization (Vapnik 74) and later works.



Large-scale Learning

The active budget constraint is the computing time.

e More complicated tradeoffs.
The computing time depends on the three variables: F, n, and p.

e Example.
If we choose p small, we decrease the optimization error. But we
must also decrease F and/or n with adverse effects on the estimation
and approximation errors.

e [ he exact tradeoff depends on the optimization algorithm.

e \We can compare optimization algorithms rigorously.



Executive Summary

Good optimization algorithm (superlinear).
p decreases faster than exp(-T)

log (p)

Mediocre optimization algorithm (linear).

______ ;/ p decreases like exp(-T)
Best p

Extraordinary poor
optimization algorithm

/ P decreases like 1/T

= log(T)




Case Study

Simple parametric setup

— F is fixed.

— Functions fy(z) linearly parametrized by w & R,

Comparing four iterative optimization algorithms for E,(f]

1.
2. Second order gradient descent (Newton).
3.

4. Stochastic second order gradient descent.

Gradient descent.

Stochastic gradient descent.



Gradient Descent (GD)

Gradient J

Iterate
aEn (fw;)

dw

® Wiyl — W — T

Best speed achieved with fixed learning rate n = }E

(e.g., Dennis & Schnabel, 1983)

Cost per Iterations Time to reach Time to reach
iteration to reach p accuracy p E(fn) — E(fr) <c¢

GD  Ond)  O(xloed)  O(ndrlogi) O(£x 10021

— In the last column, n and p are chosen to reach ¢ as fast as possible.
— Solve for € to find the best error rate achievable in a given time.

— Remark: abuses of the O() notation



Second Order Gradient Descent (2GD)

Gradient J
Iterate

1 aEn (fw;)
adw

o wiypq — wy— H™

We assume H~!is known in advance.
Superlinear optimization speed (e.g., Dennis & Schnabel, 1983)

Cost per Iterations Time to reach Time to reach
iteration to reach p accuracy p E(fn) — E(fr) <=

2GD  O(d(d+n)) O(loglogd) O(d(d+n)loglog) (10 Lioglot)

— Optimization speed is much faster.
— Learning speed only saves the condition number k.



Stochastic Gradient Descent (SGD)

Iterate
e Draw random example (x¢, ys).

1 O fuw,(Tt) Yt)
® Wiy — W — —

t duw

Total Gradient <J(x,y,w)>

Best decreasing gain schedule with n = 11—
111

(see Murata, 1998; Bottou & LeCun, 2004)

Cost per Iterations Time to reach Time to reach
iteration to reach p accuracy p E(fn) — E(fr) <ce

vk 1 duvk duvk
SGD  0(d) . +.-.:-(P) (’J( : ) O( v )

With 1 < k < k2

— Optimization speed is catastrophic.
— Learning speed does not depend on the statistical estimation rate «.
— Learning speed depends on condition number k but scales very well.



Second order Stochastic Descent (2SGD)

Iterate
e Draw random example (x4, yt).
. gF’artiaI Gradient J{x,y W)

]_ af aT . — A\
o Wil — Wt — — H—l {fwt( t) yt) < -::
L S LTE

Total Gradient =Jxy,wi=

&

. A
Replace scalar gain g by matrix ?H 1

Cost per Iterations Time to reach Time to reach
iteration to reach p accuracy p E(fn) — E(fr) <=

sao o) o) o(2)  of2)

— Each iteration is d times more expensive.
— The number of iterations is reduced by x* (or less.)
— Second order only changes the constant factors.



Benchmarking SGD in Simple Problems

e [ he theory suggests that SGD is very competitive.
— Many people associate SGD with trouble.

e SGD historically associated with back-propagation.

— Multilayer networks are very hard problems (nonlinear, nonconvex)
— What is difficult, SGD or MLP7?

1
a 3 e Try PLAIN SGD on simple learning problems.

e

d 3 — Support Vector Machines
— Conditional Random Fields

-

Download from http://leon.bottou.org/projects/sgd.
T hese simple programs are very short,

See also (Shalev-Schwartz et al., 2007; Vishwanathan et al., 2006)



Text Categorization with SVMs

o Dataset

— Reuters RCV1 document corpus.
— 781,265 training examples, 23,149 testing examples.
— 47,152 TF-IDF features.

e Task

— Recognizing documents of category CCAT.

L 1 A
— Minimize E‘”:HZ ( 5 2 4+ wz; + b, y; ) )
2

—Update w —w —  V(wg, v, ¢) = w — 1 (J\w.,_ dﬁ(w:ﬂf*‘b, yt))

ow

Same setup as (Shalev-Schwartz et al., 2007) but plain SGD.



Text Categorization with SVMs

e Results: Linear SVM
(y,y) =max{0,1 —yy} A =0.0001

Training Time Primal cost Test Error

SVMLight 23,642 secs 0.2275 6.02%
SVMPerf 66 secs 0.2278 6.03%
SGD 1.4 secs 0.2275 6.02%

e Results: Log-Loss Classifier
Uy,y) = log(l +exp(—yy)) A= 0.00001

Training Time Primal cost Test Error

LibLinear (¢ = 0.01) 30 secs 0.18907 5.68%
LibLinear (¢ =0.001) 44 secs 0.18890 5.70%
SGD 2.3 secs 0.18893 5.66%




SGD for Real Life Applications

1.1 discriminant cost

i A Check Reader
negtivelog-tkelihood 43/'0'\_” e Examples are pairs (image,amount).
| Farward | I Forward J
eorrect interpretation %gﬁ ' E‘:ﬁt Iir:llnfrﬁmr'éltg’lcrnns prﬂhlem Wlth Stang StI'LICtLIrE
o] [ e — Field segmentation
hwn,t,m;;ﬂsw* — Character segmentation
o S — Character recognition
ANSWEr Recognizer . . .
Seamertaion Graph  c@ng’ " — Syntactical interpretation.
]
- l s'"";'"":_w | e Define differentiable modules.
-] T
= . .
et e Pretrain modules with hand-labelled data.
Check Graph A e Define global cost function (e.g., CRF).
prevaweN g e Train with SGD for a few weeks.

Industrially deployed in 1996. Ran billions of checks over 10 years.
Credits: Bengio, Bottou, Burges, Haffner, LeCun, Nohl, Simard, et al.
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