

Neural networks for vision

Nicolas Le Roux

nicolas.le.roux@gmail.com

Outline

 Linear classifiers
 Combining linear classifiers
 Learning a neural network
 Convolutional neural networks
 The power of sloppiness

Foreword

 I'm here for you, I already know that stuff
 It's better to look silly than to stay so
 Ask questions if you don't understand!

Linear classifiers

Find linear function (Find linear function (hyperplanehyperplane) to separate) to separate
positive and negative examplespositive and negative examples

0:negative

0:positive

<+⋅
≥+⋅
b

b

ii

ii

wxx

wxx

Which hyperplane
is best?

Support vector machines

• Find hyperplane that maximizes the margin
between the positive and negative
examples

1:1)(negative

1:1)(positive

−≤+⋅−=
≥+⋅=
by

by

iii

iii

wxx

wxx

MarginSupport vectors
C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and
Knowledge Discovery, 1998

Distance between point
and hyperplane: ||||

||

w

wx bi +⋅

For support, vectors, 1±=+⋅ bi wx

Therefore, the margin is 2 / ||w||

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Linear classifiers

The perceptron
(Rosenblatt’57)

What the perceptron can
learn, it will learn using a
simple weight update
rule.

What does w look like?

 Gabor filters
 Edge detectors
 Various angles
 Various frequencies

Some problems are not linear

 Can we learn them using a combination of
linear filters?

 ”Features” are more and more complex!

Slide by Duda, Hart, Stork

Modeling non-linear functions

A multilayer neural network

 Linear classifier at the end!
 Unrestricted hidden layer

Link between NNs and SVMs

 A neural network is a linear classifier in a new
space.

 It is a universal approximator.
 It is an SVM whose kernel can be (sometimes

badly) learnt!
 Wait... Learnt?

Learning a neural network

 A neural network is just a function (which one?)
 If it has a gradient, we can do gradient descent.
 Does it?

Changing the activation

 A sigmoid is a smoothed version of the
threshold

Slide by Duda, Hart, Stork

Any function can be learned by a 3-layer
network with enough hidden units

E = ∑i L (yi ,f (xi, w))

Gradient-based supervised learning

• Parametric prediction function: f (x, w) != y

• Learning: Minimize

• Recognition: y = f(x, w)

How can we minimize E? ..Gradient descent..

• Difference between stochastic and batch.

Gradient-based supervised learning II

Backpropagation

 The gradient with respect to one layer depends
on the gradient with respect to the layer above.

 We can ”backpropagate” the gradient to the
layers below.

The vertical face-finding part of Rowley, Baluja and Kanade’s system
Figure from “Rotation invariant neural-network based face detection,” H.A.
Rowley, S. Baluja and T. Kanade, Proc. Computer Vision and Pattern Recognition,
1998, copyright 1998, IEEE Slide by D.A. Forsyth

Architecture of the complete system: they use another neural
net to estimate orientation of the face, then rectify it. They
search over scales to find bigger/smaller faces.

Figure from “Rotation invariant neural-network based face detection,” H.A. Rowley, S.
Baluja and T. Kanade, Proc. Computer Vision and Pattern Recognition, 1998, copyright
1998, IEEE

Slide by D.A. Forsyth

Figure from “Rotation
invariant neural-network
based face detection,” H.A.
Rowley, S. Baluja and T.
Kanade, Proc. Computer
Vision and Pattern
Recognition, 1998, copyright
1998, IEEE

Slide by D.A. Forsyth

Advantages of MLP

 Can learn anything
 Extremely fast at test time (computing the

answer for a new datapoint)
 Complete control over the power of the network

(by controlling the hidden layers sizes).

Problems with MLP

 Highly non-convex → many local minima
 Upper layers much harder to train than lower

layers
 Can learn anything → needs tons of examples

to be good (make some awesome Tennis
analogy here).

Take-home messages

 Neural networks can learn anything
 But it is HARD!
 If you wish to use them, be smart (or ask

someone who knows)!
 If you have a huge dataset, they CAN be

awesome!

Convolutional NNets

 An image was just a
huge vector

 Can we make more
assumptions?

 Filters are mostly
LOCAL!

Basic idea

 Insted of computing features over the entire
image, compute it over small patches.

 Repeat for every patch.
 ”Pool” features to get local invariance.

An Old Idea for Local Shift Invariance

[Hubel & Wiesel 1962]:
simple cells detect local features
complex cells “pool” the outputs of simple cells within a retinotopic
neighborhood.

pooling
subsampling

“Simple cells”

“Complex cells”

Convolutions

Retinotopic Feature Maps

input
1@32x32

Layer 1
6@28x2
8

Layer 2
6@14x14

Layer 3
12@10x10 Layer 4

12@5x5

Layer 5
100@1x1

10

5x5
convolution

5x5
convolution

5x5
convolution2x2

pooling/
subsampling

2x2
pooling/
subsampling

Layer 6: 10

 Convolutional net for handwriting recognition (400,000 synapses)
 Convolutional layers (simple cells): all units in a feature plane share the same weights
 Pooling/subsampling layers (complex cells): for invariance to small distortions.
 Supervised gradient-descent learning using back-propagation
 The entire network is trained end-to-end. All the layers are trained simultaneously.

CNN architecture

Face detection - pose estimation

Face detection

Applying a ConvNet on Sliding Windows is Very Cheap!

96x96

input:120x120

output: 3x3

 Traditional Detectors/Classifiers must be applied to every
location on a large input image, at multiple scales.
 Convolutional nets can replicated over large images very
cheaply.
 The network is applied to multiple scales spaced by 1.5.

Building a Detector/Recognizer:
Replicated Convolutional Nets

 Computational cost for replicated convolutional net:
96x96 -> 4.6 million multiply-accumulate operations
120x120 -> 8.3 million multiply-accumulate operations
240x240 -> 47.5 million multiply-accumulate operations
480x480 -> 232 million multiply-accumulate operations

 Computational cost for a non-convolutional detector of the
same size, applied every 12 pixels:

96x96 -> 4.6 million multiply-accumulate operations
120x120 -> 42.0 million multiply-accumulate operations
240x240 -> 788.0 million multiply-accumulate operations
480x480 -> 5,083 million multiply-accumulate operations

96x96 window

12 pixel shift

84x84 overlap

Generic Object Detection and Recognition
with Invariance to Pose and Illumination

 50 toys belonging to 5 categories: animal, human figure, airplane, truck, car
 10 instance per category: 5 instances used for training, 5 instances for testing
 Raw dataset: 972 stereo pair of each object instance. 48,600 image pairs total.

 For each instance:
18 azimuths

0 to 350 degrees every
20 degrees

9 elevations
30 to 70 degrees from
horizontal every 5
degrees

6 illuminations
on/off combinations of 4
lights
2 cameras (stereo)

7.5 cm apart
40 cm from the object

Training instances Test instances

Data Collection, Sample Generation

Image capture setup Objects are painted green so that:
- all features other than shape are removed
- objects can be segmented, transformed,
 and composited onto various backgrounds

Original image Object mask

Composite imageShadow factor

Textured and Cluttered Datasets

Convolutional Network

Stereo
input
2@96x96

Layer 1
8@92x9
2

Layer 2
8@23x23

Layer 3
24@18x18 Layer 4

24@6x6 Layer 5
100

5

5x5
convolution
(16 kernels)

6x6
convolution
(96 kernels)

6x6
convolution
(2400 kernels)

4x4
subsampling 3x3

subsampling

Layer 6
Fully
connected
(500 weights)

 90,857 free parameters, 3,901,162 connections.
The architecture alternates convolutional layers (feature detectors) and subsampling layers
(local feature pooling for invariance to small distortions).
 The entire network is trained end-to-end (all the layers are trained simultaneously).
 A gradient-based algorithm is used to minimize a supervised loss function.

Alternated Convolutions and Subsampling

 Local features are extracted
everywhere.
 averaging/subsampling layer
builds robustness to variations
in feature locations.
 Hubel/Wiesel'62, Fukushima'71,
LeCun'89, Riesenhuber &
Poggio'02, Ullman'02,....

Averaging
subsampli
ng

“Simple cells”
“Complex
cells”

Multiple
convolutio
ns

Normalized-Uniform Set: Error Rates

 Linear Classifier on raw stereo images: 30.2% error.
 K-Nearest-Neighbors on raw stereo images: 18.4%
error.
 K-Nearest-Neighbors on PCA-95: 16.6% error.
 Pairwise SVM on 96x96 stereo images: 11.6% error
 Pairwise SVM on 95 Principal Components: 13.3%
error.
 Convolutional Net on 96x96 stereo images: 5.8%
error.

Training instances Test instances

Jittered-Cluttered Dataset

 Jittered-Cluttered Dataset:
 291,600 stereo pairs for training, 58,320 for testing
 Objects are jittered: position, scale, in-plane rotation, contrast, brightness,
backgrounds, distractor objects,...
Input dimension: 98x98x2 (approx 18,000)

Experiment 2: Jittered-Cluttered Dataset

 291,600 training samples, 58,320 test samples
 SVM with Gaussian kernel 43.3% error
Convolutional Net with binocular input: 7.8% error
 Convolutional Net + SVM on top: 5.9% error
 Convolutional Net with monocular input: 20.8% error
 Smaller mono net (DEMO): 26.0% error
 Dataset available from http://www.cs.nyu.edu/~yann

What's wrong with K-NN and SVMs?

 K-NN and SVM with Gaussian kernels are based on matching global templates
 Both are “shallow” architectures
 There is now way to learn invariant recognition tasks with such naïve architectures
(unless we use an impractically large number of templates).

Linear
Combinations

Global Template Matchers
(each training sample is a template

Input

Features (similarities)

Output
The number of necessary templates grows
exponentially with the number of
dimensions of variations.
 Global templates are in trouble when the
variations include: category, instance
shape, configuration (for articulated object),
position, azimuth, elevation, scale,
illumination, texture, albedo, in-plane
rotation, background luminance,
background texture, background clutter,

Examples (Monocular Mode)

Examples (Monocular Mode)

Examples (Monocular Mode)

Examples (Monocular Mode)

Examples (Monocular Mode)

Examples (Monocular Mode)

Supervised Convolutional Nets: Pros and Cons

Convolutional nets can be trained to perform a wide variety of visual tasks.
Global supervised gradient descent can produce parsimonious
architectures

BUT: they require lots of labeled training samples
60,000 samples for handwriting
120,000 samples for face detection
25,000 to 350,000 for object recognition

Since low-level features tend to be non task specific, we should be able to learn
them unsupervised.

Hinton has shown that layer-by-layer unsupervised “pre-training” can be used
to initialize “deep” architectures
[Hinton & Shalakhutdinov, Science 2006]

Can we use this idea to reduce the number of necessary labeled examples.

Learning fast

 Common point of neural networks: need many
examples

 → we need to be able to use these examples
fast

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

