

Reconnaissance d'objets et vision artificielle 2010

Motion and Human Actions II

Ivan Laptev

ivan.laptev@inria.fr INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548

Laboratoire d'Informatique, Ecole Normale Supérieure, Paris

Includes slides from: Mark Everingham, Josef Sivic, Andrew Zisserman

Poses and actions so far:

Motivation

Goal: Interpreting complex dynamic scenes

 \Rightarrow No global assumptions about the scene

No global assumptions \Rightarrow

Consider local spatio-temporal neighborhoods

hand waving

boxing

Actions == Space-time objects?

Local approach: Bag of Visual Words

Airplanes	
Motorbikes	
Faces	
Wild Cats	
Leaves	
People	
Bikes	

Space-time local features

Space-Time Interest Points: Detection

What neighborhoods to consider?

Distinctive neighborhoods	High image ⇒ variation in space and time	Look at the ⇒ distribution of the gradient
Definitions:		
$f \colon \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}$	Original image sequence	e
$g(x,y,t;\Sigma)$	Space-time Gaussian with cov	variance $\Sigma \in SPSD(3)$
$L_{\xi}(\cdot; \Sigma) = f(\cdot)$	$* g_{\xi}(\cdot; oldsymbol{\Sigma})$ Gaussian deriv	vative of f
$\nabla L = (L_x, L_y, L_t)$) T Space-time gradient	
$\mu(\cdot; \Sigma) = \nabla L(\cdot;$	$\Sigma)(\nabla L(\cdot; \Sigma))^T * g(\cdot;$	$s\Sigma) = \begin{pmatrix} \mu_{xx} & \mu_{xy} & \mu_{xt} \\ \mu_{xy} & \mu_{yy} & \mu_{yt} \end{pmatrix}$
	Second-moment matrix	× $\langle \mu_{xt} \ \mu_{yt} \ \mu_{tt}$,

Space-Time Interest Points: Detection

Properties of $\mu(\cdot; \Sigma)$

 $\mu(\cdot; \Sigma)$ defines second order approximation for the local distribution of ∇L within neighborhood Σ rank(μ) = 1 \Rightarrow 1D space-time variation of f e.g. moving bar rank(μ) = 2 \Rightarrow 2D space-time variation of f e.g. moving ball rank(μ) = 3 \Rightarrow 3D space-time variation of f e.g. jumping ball

Large eigenvalues of μ can be detected by the local maxima of H over (x,y,t):

$$H(p; \Sigma) = \det(\mu(p; \Sigma)) + k \operatorname{trace}^{3}(\mu(p; \Sigma))$$
$$= \lambda_{1}\lambda_{2}\lambda_{3} - k(\lambda_{1} + \lambda_{2} + \lambda_{3})^{3}$$

(similar to Harris operator [Harris and Stephens, 1988])

Space-Time interest points

Space-Time Interest Points: Examples

Motion event detection

Spatio-temporal scale

What if the spatial and/or temporal resolution changes?

$$\begin{array}{l} \text{point} \\ \text{transformation} \end{array} \quad p = S^{-1}p', \ S = \begin{pmatrix} s_{\sigma} & 0 \\ 0 & s_{\sigma} & 0 \\ 0 & 0 & s_{\tau} \end{pmatrix}, \ p = \begin{pmatrix} x \\ y \\ t \end{pmatrix}$$
$$\begin{array}{l} \text{covariance} \\ \text{transformation} \end{array} \quad \Sigma = pp^T = S^{-2}\Sigma' = \begin{pmatrix} \sigma^2 & 0 & 0 \\ 0 & \sigma^2 & 0 \\ 0 & 0 & \tau^2 \end{pmatrix}$$

$$\begin{array}{l} \text{point} \\ \text{transformation} \end{array} \quad p = S^{-1}p', \ S = \begin{pmatrix} s_{\sigma} & 0 \\ 0 & s_{\sigma} & 0 \\ 0 & 0 & s_{\tau} \end{pmatrix}, \ p = \begin{pmatrix} x \\ y \\ t \end{pmatrix}$$
$$\begin{array}{l} \text{covariance} \\ \text{transformation} \end{array} \quad \Sigma = pp^T = S^{-2}\Sigma' = \begin{pmatrix} \sigma^2 & 0 & 0 \\ 0 & \sigma^2 & 0 \\ 0 & 0 & \tau^2 \end{pmatrix}$$

To be invariant to scale transformations we need to change filter covariance:

$$L_{\xi}(\cdot; \Sigma) = f(\cdot) * g_{\xi}(\cdot; \Sigma)$$

= $f'(\cdot) * g_{\xi}(\cdot; \Sigma')$

Q: how to estimate the right filer size Σ ?

Scale selection problem

The normalized spatio-temporal Laplacian operator

$$\nabla_{norm}^2 L = \sigma^2 \tau^{1/2} (L_{xx} + L_{yy}) + \sigma \tau^{3/2} L_{tt}$$

assumes scale-extrema values at the scale parameters of a spatio-temporal of a Gaussian blob

Space-Time interest points

H depends on μ and, hence, on Σ and scale transformation S

- \Rightarrow Adapt interest points by iteratively computing:
- Interest point detection $H(p; \Sigma) = det(\mu(p; \Sigma)) + ktrace^3(\mu(p; \Sigma))$ (*)
- Scale estimation $(\sigma_0, \tau_0) = \operatorname{argmax}_{\sigma, \tau} (\nabla_{norm}^2 L(p; \Sigma))^2$ (**)

1. Fix ∑

- 2. For each detected interest point p_i (*)
- 3. Estimate scale $S(\sigma, \tau)$ (**)
- 4. Update covariance $\Sigma' = S^2$
- 5. Re-detect p_i using \sum'
- 6. Iterate 3-6 until convergence of σ, τ and p_i

Stability to size changes, e.g. camera zoom

Selection of temporal scales captures the frequency of events

Relative camera motion

Space-time signal and its derivatives will change when if camera moves

Effect of camera motion

Galilean transformation

Estimation of G

Want to "undo" the effect of G

$$p = G^{-1}p' \\ \Sigma = G^{-1}\Sigma'G^{-T}$$

Consider local measurements:

Space-time
$$\nabla L = (L_x, L_y, L_t)^T$$

gradient $\nabla L = (L_x, L_y, L_t)^T$
 $g_{\xi}(\bar{x}; \Sigma) = \partial_{\xi} \left(\frac{e^{-\frac{1}{2}p^T \Sigma^{-1} p}}{2\pi \sqrt{\det \Sigma}} \right)$

Second-moment matrix

$$\mu(\cdot; \Sigma) = \nabla L(\cdot; \Sigma) (\nabla L(\cdot; \Sigma))^T * g(\cdot; s\Sigma)$$
$$= \begin{pmatrix} \mu_{xx} & \mu_{xy} & \mu_{xt} \\ \mu_{xy} & \mu_{yy} & \mu_{yt} \\ \mu_{xt} & \mu_{yt} & \mu_{tt} \end{pmatrix}$$

Estimation of G

Transformations of ∇L and μ

$$p = G^{-1}p' \Sigma = G^{-1}\Sigma'G^{-T}$$

$$\nabla L(p; \Sigma) = G^T \nabla L'(p'; \Sigma')$$
$$\mu(p; \Sigma) = G^T \mu'(p'; \Sigma')G$$

Idea: Fix the "normal" form of μ and estimate *G* by normalizing μ .

• Let
$$\mu = \begin{pmatrix} \mu_{xx} & \mu_{xy} & 0 \\ \mu_{xy} & \mu_{yy} & 0 \\ 0 & 0 & \mu_{tt} \end{pmatrix}$$
$$\begin{pmatrix} \mu'_{xt}(\cdot; \Sigma') \\ \mu'_{yt}(\cdot; \Sigma') \end{pmatrix} = \begin{pmatrix} \mu'_{xx}(\cdot; \Sigma') & \mu'_{xy}(\cdot; \Sigma') \\ \mu'_{xy}(\cdot; \Sigma') & \mu'_{yy}(\cdot; \Sigma') \end{pmatrix} \begin{pmatrix} v_x \\ v_y \end{pmatrix}$$

Estimation of G

- 1. Fix $\sum \text{let} \quad \Sigma' = \Sigma$
- 2. Estimate v_x, v_y ording to (*)
- 3. Update $\Sigma = G^{-1} \Sigma' G^{-T}$
- 4. Iterate 2-3-4 until convergence of v_x, v_y

Iterative method for estimating v_x, v_y and \sum' \uparrow Can solve for v_x, v_y from $\mu'!$ (similar to Lucas&Kanade OF) $\uparrow \qquad \dots \text{ however} \qquad (v_x, v_y)^T = \mathcal{F}_1(\Sigma') = \mathcal{F}_2(G)$ (*) $\begin{pmatrix} \mu'_{xt}(\cdot; \Sigma') \\ \mu'_{yt}(\cdot; \Sigma') \end{pmatrix} = - \begin{pmatrix} \mu'_{xx}(\cdot; \Sigma') & \mu'_{xy}(\cdot; \Sigma') \\ \mu'_{xy}(\cdot; \Sigma') & \mu'_{yy}(\cdot; \Sigma') \end{pmatrix} \begin{pmatrix} v_x \\ v_y \end{pmatrix}$

Estimation of G: experiments

Adapted interest points

Local features for human actions

Local features for human actions

Local space-time descriptor: Jet

Local jet descriptor [Koenderink and van Doorn, 1987]: spatio-temporal Gaussian derivatives at interest points p:

Local space-time descriptor: HOG/HOF

Multi-scale space-time patches

Visual Vocabulary: K-means clustering

- Group similar points in the space of image descriptors using K-means clustering
- Select significant clusters

Visual Vocabulary: K-means clustering

- Group similar points in the space of image descriptors using K-means clustering
- Select significant clusters

Local Space-time features: Matching

Find similar events in pairs of video sequences

Action Classification: Overview

Bag of space-time features + multi-channel SVM [Laptev'03, Schuldt'04, Niebles'06, Zhang'07]

Collection of space-time patches

Action recognition in KTH dataset

Sample frames from the KTH actions sequences, all six classes (columns) and scenarios (rows) are presented

Classification results on KTH dataset

Confusion matrix for KTH actions
What about 3D?

Local motion and appearance features are not invariant to view changes

Multi-view action recognition

Difficult to apply standard multi-view methods:

 Do not want to search for multiview point correspondence ----Non-rigid motion, clothing changes, ... --> It's Hard!

- Do not want to identify body parts. Current methods are not reliable enough.
- Yet, want to learn actions from one view and recognize actions in very different views

Temporal self-similarities

Idea:

- Cross-view matching is hard but cross-time matching (tracking) is relatively easy.
- Measure self-(dis)similarities across time: $\mathcal{D}(t_1, t_2), t_1, t_2 \in (1, ..., T)$

Example: $\mathcal{D}(t_1, t_2) = ||P_1 - P_2||_2$

Distance matrix / self-similarity matrix (SSM):

Temporal self-similarities: Multi-views

Intuition: 1. Distance between similar poses is low in any view

2. Distance among different poses is likely to be large in most views

Temporal self-similarities: MoCap

Self-similarities can be measured from Motion Capture (MoCap) data

Temporal self-similarities: Video

Self-similarities can be measured directly from video: HOG or Optical Flow descriptors in image frames

Self-similarity descriptor

Goal:

define a quantitative measure to compare selfsimilarity matrices

- Define a local histogram descriptor h_i for each point *i* on the diagonal.
- Sequence alignment: Dynamic Programming for two sequences of descriptors {*h_i*}, {*h_j*}

- Action recognition:
 - Visual vocabulary for h
 - BoF representation of {*h_i*}
 - SVM

Multi-view alignment

Multi-view action recognition: Video

SSM-based recognition

Alternative view-dependent method (STIP)

What are Human Actions?

Actions in recent datasets:

Is it just about kinematics?

Should actions be defined by the *purpose*?

Kinematics + Objects

What are Human Actions?

Actions in recent datasets:

Is it just about kinematics?

Should actions be defined by the *purpose*?

Kinematics + Objects + Scenes

Action recognition in realistic settings

Actions "In the Wild":

Action Dataset and Annotation

Manual annotation of drinking actions in movies: "Coffee and Cigarettes"; "Sea of Love"

> "*Drinking*": 159 annotated samples "*Smoking*": 149 annotated samples

Temporal annotation

Spatial annotation

head rectangle

torso rectangle

"Drinking" action samples

training samples

test samples

Action representation

Action learning

Efficient discriminative classifier [Freund&Schapire'97]
Good performance for face detection [Viola&Jones'01]

AdaBoost:

Key-frame action classifier

[Laptev, Pérez 2007]

Keyframe priming

Action detection

Test set:

- 25min from "Coffee and Cigarettes" with GT 38 drinking actions
- No overlap with the training set in subjects or scenes

Detection:

• search over all space-time locations and spatio-temporal extents

Action Detection (ICCV 2007)

Test episodes from the movie "Coffee and cigarettes"

Video available at http://www.irisa.fr/vista/Equipe/People/Laptev/actiondetection.html

20 most confident detections

Learning Actions from Movies

- Realistic variation of human actions
- Many classes and many examples per class

Problems:

- Typically only a few class-samples per movie
- Manual annotation is very time consuming

Automatic video annotation with scripts

- Scripts available for >500 movies (no time synchronization) www.dailyscript.com, www.movie-page.com, www.weeklyscript.com ...
- Subtitles (with time info.) are available for the most of movies
- Can transfer time to scripts by text alignment

Script-based action annotation

– On the good side:

- Realistic variation of actions: subjects, views, etc...
- Many examples per class, many classes
- No extra overhead for new classes
- Actions, objects, scenes and their combinations
- Character names may be used to resolve "who is doing what?"

- Problems:

- No spatial localization
- Temporal localization may be poor
- Missing actions: e.g. scripts do not always follow the movie
- Annotation is incomplete, not suitable as ground truth for testing action detection
- Large within-class variability of action classes *in text*

Script alignment: Evaluation

- Annotate action samples *in text*
- Do automatic script-to-video alignment
- Check the correspondence of actions in scripts and movies

Example of a "visual false positive"

A black car pulls up, two army officers get out.

Text-based action retrieval

• Large variation of action expressions in text:

=> Supervised text classification approach

Automatically annotated action samples

[Laptev, Marszałek, Schmid, Rozenfeld 2008]

Hollywood-2 actions dataset

Actions			
	Training subset (clean)	Training subset (automatic)	Test subset (clean)
AnswerPhone	66	59	64
DriveCar	85	90	102
Eat	40	44	33
FightPerson	54	33	70
GetOutCar	51	40	57
HandShake	32	38	45
HugPerson	64	27	66
Kiss	114	125	103
Run	135	187	141
SitDown	104	87	108
SitUp	24	26	37
StandUp	132	133	146
All Samples	823	810	884

Training and test samples are obtained from 33 and 36 distinct movies respectively.

Hollywood-2 dataset is on-line: http://www.irisa.fr/vista /actions/hollywood2

[Laptev, Marszałek, Schmid, Rozenfeld 2008]

Action Classification: Overview

Bag of space-time features + multi-channel SVM [Laptev'03, Schuldt'04, Niebles'06, Zhang'07]

Collection of space-time patches

Action classification (CVPR08)

Test episodes from movies "The Graduate", "It's a Wonderful Life", "Indiana Jones and the Last Crusade"

Actions in Context (CVPR 2009)

• Human actions are frequently correlated with particular scene classes Reasons: *physical properties* and *particular purposes* of scenes

Eating -- kitchen

Eating -- cafe

Running -- road

Running -- street

Mining scene captions

Mining scene captions

INT. TRENDY RESTAURANT - NIGHT INT. MARSELLUS WALLACE'S DINING ROOM MORNING EXT. STREETS BY DORA'S HOUSE - DAY. INT. MELVIN'S APARTMENT, BATHROOM – NIGHT EXT. NEW YORK CITY STREET NEAR CAROL'S RESTAURANT – DAY INT. CRAIG AND LOTTE'S BATHROOM - DAY

- Maximize word frequency street, living room, bedroom, car
- Merge words with similar senses using WordNet:

```
taxi -> car, cafe -> restaurant
```

- · Measure correlation of words with actions (in scripts) and
- Re-sort words by the entropy $S = -k \sum P_i \ln P_i$ for P = p(action | word)

Co-occurrence of actions and scenes in scripts

Co-occurrence of actions and scenes in scripts

Co-occurrence of actions and scenes in scripts

Co-occurrence of actions and scenes in text vs. video

Automatic gathering of relevant scene classes and visual samples

	Auto-Train-Actions	Clean-Test-Actions	
AnswerPhone	59	64	
DriveCar	90	102	
Eat	44	33	EXT-house
FightPerson	33	70	EXT-road
GetOutCar	40	57	INT-bedroom
HandShake	38	45	INT-car
HugPerson	27	66	INT-hotel
Kiss	125	103	INT-kitchen
Run	187	141	INT-living-room
SitDown	87	108	INT-office
SitUp	26	37	INT-restaurant
StandUp	133	146	INT-shop
All Samples	810	884	All Samples

Source: 69 movies aligned with the scripts

Hollywood-2 dataset is on-line: http://www.irisa.fr/vista /actions/hollywood2

(a) Actions

(b) Scenes

Auto-Train-Scenes

Clean-Test-Scenes

Results: actions and scenes (separately)

EXT.House	0.503	0.363	0.491
EXT.Road	0.498	0.372	0.389
INT.Bedroom	0.445	0.362	0.462
INT.Car	0.444	0.759	0.773
INT.Hotel	0.141	0.220	0.250
INT.Kitchen	0.081	0.050	0.070
INT.LivingRoom	0.109	0.128	0.152
INT.Office	0.602	0.453	0.574
INT.Restaurant	0.112	0.103	0.108
INT.Shop	0.257	0.149	0.244
Scene average	0.319	0.296	0.351
Total average	0.259	0.310	0.339

			SIFT
		HoG	HoG
	SIFT	HoF	HoF
AnswerPhone	0.105	0.088	0.107
DriveCar	0.313	0.749	0.750
Eat	0.082	0.263	0.286
FightPerson	0.081	0.675	0.571
GetOutCar	0.191	0.090	0.116
HandShake	0.123	0.116	0.141
HugPerson	0.129	0.135	0.138
Kiss	0.348	0.496	0.556
Run	0.458	0.537	0.565
SitDown	0.161	0.316	0.278
SitUp	0.142	0.072	0.078
StandUp	0.262	0.350	0.325
Action average	0.200	0.324	0.326

Classification with the help of context

$$a'_i(\boldsymbol{x}) = a_i(\boldsymbol{x}) + \tau \sum_{j \in S} w_{ij} s_j(\boldsymbol{x})$$

- $a_i(x)$ Action classification score
- $s_j(\boldsymbol{x})$ Scene classification score
 - w_{ij} Weight, estimated from text: p(Scene|Action)
 - $a_i'(\boldsymbol{x})$ New action score

Results: actions and scenes (jointly)

Weakly-Supervised Temporal Action Annotation

• Answer questions: *WHAT actions and WHEN they happened*?

• Train visual action detectors and annotate actions with the minimal manual supervision

WHAT actions?

- Automatic discovery of action classes in text (movie scripts)
 - -- Text processing:

Part of Speech (POS) tagging; Named Entity Recognition (NER); WordNet pruning; Visual Noun filtering

-- Search action patterns

Person+Verb

3725 /PERSON .* is
2644 /PERSON .* looks
1300 /PERSON .* turns
916 /PERSON .* takes
840 /PERSON .* sits
829 /PERSON .* has
807 /PERSON .* walks
701 /PERSON .* stands
622 /PERSON .* goes
591 /PERSON .* starts
585 /PERSON .* does
569 /PERSON .* gets
552 /PERSON .* pulls
503 /PERSON .* comes
493 /PERSON .* sees
462 /PERSON .* are/VBP

Person+Verb+Prep.

989 /PERSON .* looks .* at 384 /PERSON .* is .* in 363 /PERSON .* looks .* up 234 /PERSON .* is .* on 215 /PERSON .* picks .* up 196 /PERSON .* is .* at 139 /PERSON .* sits .* in 138 /PERSON .* is .* with 134 /PERSON .* stares .* at 129 /PERSON .* is .* by 126 /PERSON .* looks .* down 124 /PERSON .* sits .* on 122 /PERSON .* is .* of 114 /PERSON .* gets .* up 109 /PERSON .* sits .* at 107 /PERSON .* sits .* down

Person+Verb+Prep+Vis.Noun

41	/PERSON	.* sits .* in .* chair
37	/PERSON	.* sits .* at .* table
31	/PERSON	.* sits .* on .* bed
29	/PERSON	.* sits .* at .* desk
26	/PERSON	.* picks .* up .* phone
23	/PERSON	.* gets .* out .* car
23	/PERSON	.* looks .* out .* window
21	/PERSON	.* looks .* around .* room
18	/PERSON	.* is .* at .* desk
17	/PERSON	.* hangs .* up .* phone
17	/PERSON	.* is .* on .* phone
17	/PERSON	.* looks .* at .* watch
16	/PERSON	.* sits .* on .* couch
15	/PERSON	.* opens .* of .* door
15	/PERSON	.* walks .* into .* room
14	/PERSON	.* goes .* into .* room

WHEN: Video Data and Annotation

- Want to target realistic video data
- Want to avoid manual video annotation for training

Use movies + scripts for automatic annotation of training samples

Overview

Input:

- Action type, e.g. Person Opens Door
- Videos + aligned scripts

Automatic collection of training clips

- ... Jane jumps up and opens the door Carolyn opens the front door ...
- ... Jane opens her bedroom door ...

Output:

Slidingwindow-style temporal action localization

Training classifier

Clustering of positive segments

[Lihi Zelnik-Manor and Michal Irani CVPR 2001]

Spectral clustering

Complex data:

Standard clustering methods do not work on this data

Our view at the problem

Feature space

Video space

Negative samples!

Random video samples: lots of them, very low chance to be positives

Formulation [Xu et al. NIPS'04] [Bach & Harchaoui NIPS'07] discriminative cost Feature space $U(f, w, b) = C_{+} \sum_{i=1}^{M} \max\{0, 1 - w^{\top} \Phi(c_{i}[f_{i}]) - b\} + C_{+}$ Loss on positive samples $+C_{-}\sum_{i=1}^{n}\max\{0,1+w^{\top}\Phi(x_{i}^{-})+b\}+\|w\|^{2}$ Loss on negative samples $x_i^$ negative samples $c_i[f_i]$ parameterized positive samples c_i Optimization SVM solution for w, bCoordinate descent on f_i

Clustering results

Drinking actions in Coffee and Cigarettes

Detection results

Drinking actions in Coffee and Cigarettes

- Training Bag-of-Features classifier
- Temporal sliding window classification
- Non-maximum suppression

Detection results

Drinking actions in Coffee and Cigarettes

- Training Bag-of-Features classifier
- Temporal sliding window classification
- Non-maximum suppression

Detection results

"Sit Down" and "Open Door" actions in ~5 hours of movies

Automatic Annotation of Human Actions in Video

ICCV 2009 DEMO

O.Duchenne, I.Laptev, J.Sivic, F.Bach and J.Ponce

Temporal detection of actions OpenDoor and SitDown in episodes of The Graduate, The Crying Game, Living in Oblivion

Temporal detection of "Sit Down" and "Open Door" actions in movies: The Graduate, The Crying Game, Living in Oblivion

"Who are you?": Learning person specific classifiers from video

[Sivic, Everingham, Zisserman]

The objective

- Automatically annotate characters in video with their identity
- Recognize characters whenever they appear in the video

Visual search and automatic annotation of objects in video

[Sivic and Zisserman, ICCV'2003, CVPR'2004]

Visually defined search – on faces

Retrieve all shots in a video, e.g. a feature length film, containing a particular person

"Pretty Woman" [Marshall, 1990]

Applications:

- intelligent fast forward on characters
- pull out all videos of "x" from 1000s of digital camera mpegs

[Sivic, Everingham and Zisserman, CIVR'05]

Matching faces in video

"Pretty Woman" (Marshall, 1990)

Are these faces of the same person?

Uncontrolled viewing conditions Image variations due to:

• pose/scale

• lighting

- partial occlusion
- expression

Matching Faces

Are these images of the same person?

Can be difficult for individual examples ...

Matching Faces

Are these images of the same person?

But easier for sets of faces

The benefits of video

Automatically associate face examples

Obtaining sets of faces from video: Tracking by detection

Face detection - example

Operate at high precision (90%) point – few false positives

Need to associate detections with the same identity

Example – tracked regions

Tracking covariant regions – two stages Goal: develop very long and good quality tracks

• Stage I – match regions detected in neighbouring frames

Problems: e.g. missing detections

Stage II – repair tracks by region propagation

[Ferrari et al. 2004, Sivic et al. 2004]

Region tubes

Connecting face detections temporally

Goal: associate face detections of each character within a shot

Approach: Agglomeratively merge face detections based on connecting 'tubes'

Measure connectivity score of a pair of faces by number of tracks intersecting both detections

require a minimum number of region tubes to overlap face detections

Connecting face detections temporally

Goal: associate face detections of each character within a shot

Approach: Agglomeratively merge face detections based on connecting 'tubes'

Alternatives: Avidan CVPR 01, Williams et al ICCV 03

raw face detections

Face tracks

Tracking by recognition

Connected face tracks

Connecting face detections temporally

- + Does not require contiguous detections
- + Independent evidence no drift
- Tracking affine covariant regions is expensive

- Use "light-weight" KLT tracker (3fps)
- Fix occasional broken tracks later: tracking by recognition

Tracking faces in spatio-temporal video volume

Face representation and matching

Matching faces

Easier if faces aligned to remove pose variation

face detector

eyes/nose/mouth

Rectified face

Face normalization - example

• affine transform face using detected features

original detection

rectified

Facial feature localization using a pictorial structure model

- Stabilize representation by localizing features
 - Pose of face varies and face detector is noisy

- Extended "pictorial structure" model
 - Joint model of feature appearance and position

Facial feature localization using a pictorial structure model

- Stabilize representation by localizing features
 - Pose of face varies and face detector is noisy

 Matlab code available online: http://www.robots.ox.ac.uk/~vgg/research/nface/

Face representation – local descriptors: from sparse to dense

[Sivic, Everingham, Zisserman, 2005]

[Everingham, Sivic, Zisserman, 2006]

[Sivic, Everingham, Zisserman, 2009]

[Heisele et al., 2003]

Matching face sets

Matching face sets

min-min distance:
$$d(A, B) = \min_{\mathbf{a} \in A, \mathbf{b} \in B} d(\mathbf{a}, \mathbf{b})$$

A, B ... sets of face descriptors

Face retrieval – example

Query sequence

Retrieved sequences (shown by first detection)

Face retrieval in movies - demo

http://www.robots.ox.ac.uk/~vgg/research/fgoogle/

Training person specific classifiers: from retrieval to classification

Aims

 Automatically label appearances of characters with names

- Requires additional information
- No supervision from the user, use only readily-available annotation

Textual Annotation: Subtitles/Closed-captions

- DVD contains timed subtitles as bitmaps
 - Automatically convert to text using simple OCR

00:18:55,453 --> 00:18:56,086 Get out!

00:18:56,093 --> 00:19:00,044

- But, babe, this is where I belong.

- Out! I mean it.

00:19:00,133 --> 00:19:03,808 I've been doing a lot of reading, and I'm in control of my own power now,...

What is said, and when, but not who says it

Textual Annotation: Script

 Many fan websites publish transcripts

HARMONY

Get out.

SPIKE But, baby... This is where I belong.

HARMONY Out! I mean it. I've done a lot of reading, and, and I'm in control of my own power now.

What is said, and who says it, but not when

Subtitle/Script Alignment

- Alignment of <u>what</u> allows subtitles to be tagged with identity giving <u>who</u> and <u>when</u>
 - "Dynamic Time Warping" algorithm

Knowledge of speaker is a <u>weak</u> cue that the character is visible

Multiple characters

Speaker not detected

Speaker not visible

 Ambiguities will be resolved using vision-based speaker detection

Speaker Detection

- Measure the amount of motion of the mouth
 - Search across frames around detected mouth points

Resolved Ambiguity

When the speaker (if any) is identified, the ambiguity in the textual annotation is resolved

Exemplar Extraction

 Face tracks detected as speaking and with a single proposed name give exemplars

Buffy

Willow

Xander

2,300 faces

1,222 faces

425 faces

Annotation as classification

- Use extracted exemplars to train a classifier for each character (Nearest Neighbour or SVM)
- Need to deal with noise in the training data (~10% errors)
- Assign names to unlabelled faces by classification based on extracted exemplars

Example Results

No user involvement, just hit "go"...

[[]Everingham, Sivic, Zisserman, 2006]

Example Results

Examples of correct classification

Example Video

Conclusions – benefits of video

- Additional signal visual speaker detection
- Temporal association provide additional generalization
 - > Detect characters whenever they are visible in video.
 - > Match face tracks rather than individual faces
 - > Use video as a source of additional training data.