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Motivation I: Artistic RepresentationMotivation I: Artistic Representationpp
Early studies were motivated by human representations in Arts 

Da Vinci: “it is indispensable for a painter to become totally familiar with theDa Vinci: it is indispensable for a painter, to become totally familiar with the 
anatomy of nerves, bones, muscles, and sinews, such that he understands 
for their various motions and stresses, which sinews or which muscle 
causes a particular motion”

“I ask for the weight [pressure] of this man for every segment of motion 
when climbing those stairs, and for the weight he places on b and on c. 
Note the vertical line below the center of mass of this man.”

Leonardo da Vinci (1452–1519): A man going upstairs, or up a ladder.
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Motivation II: BiomechanicsMotivation II: Biomechanics

The emergence of biomechanics• The emergence of biomechanics

Borelli applied to biology the 
analytical and geometrical methods, 
d l d b G lil G lil i

•
•

developed by Galileo Galilei

He was the first to understand that 
bones serve as levers and muscles

•
bones serve as levers and muscles 
function according to mathematical 
principles

Hi h i l i l t di i l d dHis physiological studies included 
muscle analysis and a mathematical 
discussion of movements, such as 
running or jumping

•

Giovanni Alfonso Borelli (1608–1679)

running or jumping
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Motivation III: Motion perceptionMotivation III: Motion perceptionp pp p
Etienne-Jules Marey: 
(1830–1904) made 
Ch h hiChronophotographic 
experiments influential 
for the emerging field of 
cinematography

Eadweard Muybridge 
(1830–1904) invented a 
machine for displaying 
the recorded series of 
images. He pioneered 
motion pictures and 
applied his technique to 
movement studies
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Motivation III: Motion perceptionMotivation III: Motion perception
Gunnar Johansson [1973] pioneered studies on the use of image 
sequences for a programmed human motion analysis•

p pp p

“Moving Light Displays” (LED) enable identification of familiar people 
and the gender and inspired many works in computer vision.•

Gunnar Johansson, Perception and Psychophysics, 1973 
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Human actions: Historic overviewHuman actions: Historic overview

•15th century

• 17th century
emergence of

studies of 
anatomy

19th

emergence of
biomechanics

•

•

19th century
emergence of

cinematography
19731973 
studies of human 
motion perception

Modern computer vision 



8

Modern applications: Motion captureModern applications: Motion capture
and animationand animation

Avatar (2009)
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Modern applications: Motion captureModern applications: Motion capture
and animationand animation

Avatar (2009)Leonardo da Vinci (1452–1519)
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Modern applications: Video editingModern applications: Video editingpp gpp g

Space-Time Video Completion
Y. Wexler, E. Shechtman and M. Irani, CVPR 2004 
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Modern applications: Video editingModern applications: Video editingpp gpp g

Space-Time Video Completion
Y. Wexler, E. Shechtman and M. Irani, CVPR 2004 
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Modern applications: Video editingModern applications: Video editingpp gpp g

Recognizing Action at a Distance
Alexei A. Efros, Alexander C. Berg, Greg Mori, Jitendra Malik, ICCV 2003 
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Modern applications: Video editingModern applications: Video editingpp gpp g

Recognizing Action at a Distance
Alexei A. Efros, Alexander C. Berg, Greg Mori, Jitendra Malik, ICCV 2003 
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Applications: Unusual Activity DetectionApplications: Unusual Activity Detection
e.g. for surveillancee.g. for surveillance

Detecting Irregularities inDetecting Irregularities in 
Images and in Video

Boiman & Irani, ICCV 2005 
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Why automatic video understanding?Why automatic video understanding?
Huge amount of video is available and growing•

TV channels recordedTV-channels recorded 
since 60’s

>34K hours of video 
upload every day

~30M surveillance cameras in US 
=> ~700K video hours/day 700K video hours/day
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Why automatic video understanding?Why automatic video understanding?
Video indexing and search is useful in TV production, entertainment, 
education, social studies, security,…

•

Home 
videos: e.g.
“My TV & Web: 
daughter 
climbing”

e.g. 
“Fight in a 
parlament”

Surveillance: 
e.g.
“Woman throws 

Sociology research:

Manually 
analyzed smoking cat into wheelie 

bin”
260K views in 7 
days

analyzed smoking 
actions in 
900 movies

… how much is it about people?•
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How many personHow many person--pixels are there?pixels are there?y py p pp

Movies TV

YouTube
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How many personHow many person--pixels are there?pixels are there?y py p pp

35% 34%

Movies TV

40%
YouTube
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H t i ti ?H t i ti ?How to recognize actions?How to recognize actions?
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Action understanding: Key componentsAction understanding: Key componentsg y pg y p

Image measurements Prior knowledge

Foreground 
segmentation

Image 
gradients Association

Deformable contour 
models

2D/3D body models

Optical flow

Local space-
time featurestime features

AutomaticLearning

Motion priors
Background models

Action labels

• • •

Automatic 
inference

Learning 
associations from 

strong / weak 
supervision

Action labels
• • •
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Objective and motivation

Determine human body pose (layout)

Why? To recognize poses, gestures, actions
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Activities characterized by a pose
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Activities characterized by a pose
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Activities characterized by a pose
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Challenges: articulations and deformations
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Challenges: of (almost) unconstrained images

varying illumination and low contrast;  moving camera and background;
multiple people;  scale changes;  extensive clutter;  any clothing



29



30

Outline

Review of pictorial structures for articulated models

Inference given the model: Strong supervision, full 
generative model – “Gold-standard model”

Image parsing: learning the model for a specific image

Recent advances

Datasets and challenges
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Pictorial Structures

• Intuitive model of an object

• Model has two components

1. parts (2D image fragments)

2. structure (configuration of parts)

• Dates back to Fischler & Elschlager 1973
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From last lecture: objects

Mixture of deformable part-based models
• One component per “aspect” e.g. front/side view

Each component has global template + deformable partsEach component has global template + deformable parts
Discriminative training from bounding boxes alone
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Localize multi-part objects at arbitrary locations in an imagep j y g
• Generic object models such as person or car
• Allow for articulated objects

Si lt f d ti l i f ti• Simultaneous use of appearance and spatial information
• Provide efficient and practical algorithms

To fit model to image: minimize an energy (or cost) function that reflects both
• Appearance: how well each part matches at given locationAppearance: how well each part matches at given location
• Configuration: degree to which parts match 2D spatial layout
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Long tradition of using pictorial structures for humans

Finding People by SamplingFinding People by Sampling 
Ioffe & Forsyth, ICCV 1999

Pictorial Structure Models for Object Recognition
Felzenszwalb & Huttenlocher, 2000

Learning to Parse Pictures of People 
Ronfard Schmid & Triggs ECCV 2002Ronfard, Schmid & Triggs, ECCV 2002
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Felzenszwalb & Huttenlocher

NB: requires background subtraction 
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Variety of Poses
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Variety of Poses
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Objective: detect human and determine upper body pose (layout)

si f

a1

a2

1
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Pictorial structure model – CRF 

si f

a1

a2

1



40

Unary term: appearance feature I - colour

input image skin torso background

colour posteriors
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Unary term: appearance feature II - HOG

Histogram of oriented gradients (HOG)

Dalal & Triggs, CVPR 2005

HOG f l
HOG of image

HOG of lower
arm template

(learned)
L2 Distance
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Pairwise terms: kinematic layout

θab;ij = wabd(|i-j|)

dd

i ji - j i - j
Potts

i - j
Truncated Quadratic
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Pictorial structure model – CRF 

si f

a1

a2

1
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Complexity

si f

a1

a2

1
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Are trees the answer?

He T

l ft right
UAUA

LA

left

LA

right

LA

Ha Ha

LA

• With n parts and h possible discrete locations per part, O(hn)

• For a tree, using dynamic programming this reduces to O(nh2)

If d l i t d h t i d t th l it• If model is a tree and has certain edge costs, then complexity 
reduces to O(nh) using a distance transform  [Felzenszwalb & 
Huttenlocher, 2000, 2005]
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Problems with tree structured pictorial structures

• Layout model defines the foreground• Layout model defines the foreground,  
i.e. it chooses the pixels to “explain”

• ignores skin and strong edge 
in background

• “double counting”g

Generative model of foreground only
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Kinematic structure vs graphical (independence) structure

Graph G = (V,E)

He T

left right

He T

left right
UAUA

LA

left

LA

g
UAUA

LA

left

LALA

Ha Ha

LA

Ha Ha
Requires more 
connections than a tree
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And for the background problem

1. Add background model so that every pixel in region explained

2. f lays out parts in back-to-front depth order (painter’s algorithm)

C l i i l i l b lliColour is pixel-wise labelling
by parts (back-to-front)

Generative model of entire region
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Outline

Review of pictorial structures for articulated models

Inference given the model: Strong supervision, full 
generative model – “Gold-standard model”

Image parsing: learning the model for a specific image

Recent advances

Datasets and challenges
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Long Term Arm and Hand Tracking for 
Continuous Sign Language TV Broadcasts

Patrick Buehler, Mark Everingham, 

Daniel Huttenlocher, Andrew Zisserman

British Machine Vision Conference 2008
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ObjectiveObjective

• Detect hands and arms of person signing British Sign Language• Detect hands and arms of person signing British Sign Language

• Hour long sequences

• Strong but minimal supervision
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Learning the model

Strong supervision: manual input

Learn colour
model

Learn HOG
templates

Provide head and 
body examples

5 f 40 f 15 f 15 f

40 t t d f id d f ti ti i 50 000 f

5 frames 40 frames 15 frames 15 frames

40 annotated frames per video, used for pose estimation in > 50,000 frames
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Inference (model fitting)
• Fit head and torso [Navaratnam et al. 2005]
• Then: arms and hands

Fi d /h d

Input Output

H d d t

Intermediate 
step

Find arm/hand pose 
with minimum cost

Head and torso 
fitting

Problem: Brute force search is still not feasible
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Model fitting by sampling
• Sample configurations from inexpensive model
• Evaluate configuration using full model

samples
Input

Output

p

best arm candidate

For sampling use tree structured pictorial Structures: 
• [Felzenszwalb & Huttenlocher 2000, 2005] 
• Complexity linear in the number of parts O(nh)Complexity linear in the number of parts  O(nh)
• Pr(f | data): Sample from max-marginal with heuristics 1000 times
• cf Felzenszwalb & Huttenlocher 2005 sampled from marginal
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Model fitting by samplingModel fitting by sampling

• Sample configurations from inexpensive tree structured model
• Evaluate configuration using full model
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Example resultsExample results
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Pose estimation results
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Applicationpp

Learning sign language by watching TVLearning sign language by watching TV 
(using weakly aligned subtitles)

Patrick Buehler 

M k E i hMark Everingham 

Andrew Zisserman

CVPR 2009
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Objective

Learn signs in British Sign Language (BSL) corresponding to text words:
• Training data from TV broadcasts with simultaneous signing 

S i i l l f b titl• Supervision solely from sub-titles

Input: video + subtitle

Output: automatically
learned signs (4x slow motion)

Office

Government

Use subtitles to find video sequences containing word. These are the positive
training sequences. Use other sequences as negative training sequences.
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Overview

Given an English word 
e g “tree” what is thee.g. tree  what is the 
corresponding British 
Sign Language sign?Sign Language sign?

positive
sequencesq

negative
set



61

Use sliding window to choose sub-
sequence of poses in one positive 
sequence and determine if

1st sliding window
sequence and determine if
same sub-sequence of poses 
occurs in other positive sequences 
somewhere butsomewhere, but 
does not occur in the negative set

positive
sequencesq

negative
set
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Use sliding window to choose sub-
sequence of poses in one positive 
sequence and determine if

5th sliding window
sequence and determine if
same sub-sequence of poses 
occurs in other positive sequences 
somewhere butsomewhere, but 
does not occur in the negative set

positive
sequencesq

negative
set
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Multiple instance learning

Positive
bags

Negative
bag

sign of
interest
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Example

Learn signs in British Sign Language (BSL) corresponding to 
text words.
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Evaluation

Good results for a variety of signs:

Signs where 
hand movement 

is important

Signs where 
hand shape 
is important

Signs where 
both hands
are together

Signs which
are finger--

spelled

Signs which
are perfomed in 
front of the face

Navy Lung Fungi Kew Whale

Prince Garden Golf Bob Rose
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Summary 

Given a good appearance model and proper account of g pp p p
foreground and background, then problems such as occlusion 
and ordering can be resolved. The cost of inference still 
remains though.g

Next:

How to obtain models automatically in videos and images
If the appearance features are discriminative, how far can one go with 
foreground only pictorial structures and tree based inference?foreground only pictorial structures and tree based inference?
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Outline

Review of pictorial structures for articulated models

Inference given the model: Strong supervision, full 
generative model – “Gold-standard model”

Image parsing: learning the model for a specific image

Recent advances

Datasets and challenges
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Learning appearance models in videos
Strike a Pose: Tracking People by Finding Stylized Poses
Deva Ramanan, David Forsyth and Andrew Zisserman, CVPR 2005
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edgesedges

walking
pose

pictorial
structurestructure

efficient
matchingg
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Build Model

find 
discriminative

learn
li b

small scale

torso
bg

discriminative 
features

limb
classifiers

(limb pixels alone
are poor model)

unusual pose

are poor model)

unusual pose
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Build Model & Detect

torso

armsmall scale

leglabel
i l

learn
limb

general
pose

h d

pixelslimb
classifiers

pose
pictorial
structure

head

unusual poseunusual pose
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Running Example
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How well do classifiers generalize?
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Image Parsing – Ramanan NIPS 06

Learn image and person specific unary termsLearn image and person specific unary terms
• initial iteration  edges
• following iterations  edges & colour

77
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(Almost) unconstrained images

Extremely difficult when knowing nothing about appearance/pose/location
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Failure of direct pose estimation

Ramanan NIPS 2006 unaided

Not powerful enough for a cluttered image where size is not given
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Progressive search space reductiong p
for human pose estimation

Vitto Ferrari, Manuel Marin-Jimenez, Andrew Zisserman

CVPR 2008/2009
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Restrict search space using detector

Find (x,y,s) coordinate frame for a person

detection window (upper-body, face etc.)

R
EC

TO
R

D
ET

E

Ferrari et al. 08, Andriluka et al. 09, Gammeter et al. 08 82
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Learn an image and person specific model

Supervision
• None

Weaker model
• Tree structured graphical model 
• Overlap not modelled
• Single scale parameter• Single scale parameter
• No background model

Inference
• Detect person – use upper body detector
• Use upper body region to restrict search
• Use colour segmentation to restrict search further
• Parsing pictorial structure by Ramanan NIPS 06
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Search space reduction by upper body human detection

(1) detect human; (2) reduce search from hn

Idea
get approximate location and scale with a
d i d

(1) detect human; (2) reduce search from hn

detector generic over pose and appearance

Building an upper-body detector
Train

- based on Dalal and Triggs CVPR 2005

- train = 96 frames X 12 perturbations

Test

Benefits for pose estimation

Test

+ fixes scale of body parts

+ sets bounds on x,y locations

+ detects also back views

- little info about pose (arms)
+ fast

detected enlarged

+ detects also back views
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Upper body detector – using HOGs

average training data
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Search space reduction by foreground highlighting

Idea
exploit knowledge about structure of 
search area to initialize Grabcut

Initialization
l f /b d l f i h- learn fg/bg models from regions where
person likely present/absent

- clamp central strip to fg

- don’t clamp bg (arms can be anywhere) 

Benefits for pose estimation
+ further reduce clutter

+ conservative (no loss 95.5% times)

+ needs no knowledge of background+ needs no knowledge of background

+ allows for moving background
initialization output
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Search space reduction by foreground highlighting

Idea
exploit knowledge about structure of 
search area to initialize Grabcut

Initialization
l f /b d l f i h- learn fg/bg models from regions where
person likely present/absent

- clamp central strip to fg

- don’t clamp bg (arms can be anywhere) 

Benefits for pose estimation
+ further reduce clutter

+ conservative (no loss 95.5% times)

+ needs no knowledge of background+ needs no knowledge of background

+ allows for moving background
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Pose estimation by image parsing - Ramanan NIPS 06

Goal
estimate posterior of part configuration

Algorithm
1. inference with edges unary 

2. learn appearance models of
body parts and background

edge edge + col

3. inference with edges + colour unary

Advantages of space reductionappearanceg
parse

g
parse + much more robust

+ much faster (10x-100x)

Advantages of space reductionappearance
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Failure of direct pose estimation
Ramanan NIPS 2006 unaided
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Results on Buffy frames
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Results on PASCAL flickr images
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What is missed?
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What is missed?

truncation is not modelled
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What is missed?

occlusion is not modelled
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Application: Pose Search

Given user-selected
query frame+person …

query

retrieve shots with persons… retrieve shots with persons
in the same pose from video database

video databaseCVPR 2009
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Pose Search
Pose descriptors

soft segmentations of body parts- soft-segmentations of body parts

- distributions over orient+location
for parts and pairs of parts 

Similarity measures
- dot-product (= soft intersection)

- Batthacharrya / Chi-square
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Processing

Off-line:
D t t b di i f• Detect upper bodies in every frame 

• Link (track) upper body detections
• Estimate upper body pose for each frame of trackEstimate upper body pose for each frame of track
• Compute descriptor (vector) for each upper body pose

Run-time:
• Rank each track by its similarity to the query pose
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Pose Search 

QQ

“hips pose”
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Pose Search 

Q

“rest pose”
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Pose Search 

Q

“rest pose”
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Other poses – query interesting pose

Hollywood movies – Query on Gandhi, Search Hugh Grant opus

QQ
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Other poses – query interesting pose

Hollywood movies – Query on Gandhi, Search Hugh Grant opus

Q
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Outline

Review of pictorial structures for articulated models

Inference given the model: Strong supervision, full 
generative model – “Gold-standard model”

Image parsing: learning the model for a specific image

Recent advances

Datasets and challenges
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B tt d l f i t i lBetter appearance models for pictorial 
structures

Marcin Eichner, Vittorio Ferrari
BMVC 2009

111
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relative location (wrt detection window): 
bl h d• stable, e.g. head, torso

• unstable, e.g. upper/lower arms

112
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Appearance of different body parts is related 

short sleeves no sleeveslong sleeves

Use stable parts to improve the prediction of the unstable onesUse stable parts to improve the prediction of the unstable ones

113
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torso upper arms

LP encodes:

lower arms head

LP encodes:
• variability of poses
• detection window 

inaccuracy

learnt location priors (PASCAL & Buffy 3,4)

114
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input LP

estimate

coordinate 
frame

detection 
window

estimate 
initial AM

output
TMTM

Pictorial Structures 
inference compute unary term Φ:

115

apply appearance 
transfer

compute unary term Φ:
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H3D: Humans in 3D

Lubomir Bourdev & Jitendra MalikLubomir Bourdev & Jitendra Malik
ICCV 2009
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AP =0.394
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Further ideas:

Human Pose Estimation Using Consistent Max-Covering, Hao 
Jiang, ICCV 09

Max-margin hidden conditional random fields for human action 
recognition, Yang Wang and Greg Mori, CVPR 09g , g g g ,

Adaptive pose priors for pictorial structures, B. Sapp, C. Jordan, 
and B. Taskar, CVPR 10
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Outline

Review of pictorial structures for articulated models

Inference given the model: Strong supervision, full 
generative model – “Gold-standard model”

Image parsing: learning the model for a specific image

Recent advances

Datasets and challenges
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Datasets & Evaluation
Some efforts evaluating person image parsing

Oxford Buffy StickmenPASCAL VOC “Person Layout” y
276 frames x 6 = 1656 body parts (sticks)

PASCAL VOC Person Layout

Berkeley H3D
ETHZ Pascal stickmen set

549 images x6 = 3294 body parts (sticks)
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The PASCAL Visual Object Classes Challenge j g
2010 (VOC2010)

Mark Everingham, Luc Van Gool
Chris Williams John WinnChris Williams, John Winn

Andrew Zisserman
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Person Layout Taster
Given the bounding box of a person, predict the visibility 
and positions of head, hands and feet.

• About 600 training examples
B l i i d ( l i i h• But can also use any training data (not overlapping with 
test set)
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Human Action Classes Taster
Given the bounding box of a person, determine which, if any, of 9 
action classes apply

• choice of classes governed by availability from flickrg y y
• evaluation is by AP on each class
• 50-90 training images for each class 

ki

playing
reading

working on 
computer

phoning
playing 

instrument
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Nine Action Classes
Phoning Playing Instrument Reading Riding Bike Riding Horse

Running Taking Photo Using Computer Walking
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Dataset Statistics

Images collected from flickr using action queries
• Disjoint to main challenge dataset

T aining TestingTraining Testing

Images 454 454

Objects 608 613

 50-100 training objects per class50 100 training objects per class
 Only subset of people are annotated (bounding box + action)
 All people in dataset are labelled with exactly one action class

I f t ti ill t b t ll l i ( l t ?) In future actions will not be mutually exclusive (or complete?)
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Methods

Comp9 (Train on VOC data): 11 Methods, 8 Groups
• Image classification within bounding box• Image classification within bounding box

> SVM, bag of words/spatial pyramid
> Multiple features: SIFT, PHOG, color SIFT, etc.

• Context (image, bounding box, neighbouring region)
• Classification of multiple figure-ground segmentations

Combined image classification and part based detection• Combined image classification and part-based detection

Comp10 (Train on own data): 1 Method
• Poselets, object context
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AP by Class/Method

h i
playing
i t t di

riding
bik

riding
h i

taking
h t

using
t lki

Comp9 results
phoning instrument reading bike horse running photo computer walking

BONN_ACTION 47.5 51.1 31.9 64.5 69.1 78.5 32.4 53.9 61.1

CVC_BASE 56.2 56.5 34.7 75.1 83.6 86.5 25.4 60.0 69.2

CVC_SEL 49.8 52.8 34.3 74.2 85.5 85.1 24.9 64.1 72.5

INRIA_SPM_HT 53.2 53.6 30.2 78.2 88.4 84.6 30.4 60.9 61.8

NUDT_SVM_WHGO_SIFT_CENTRIST_LLM 47.2 47.9 24.5 74.2 81.0 79.5 24.9 58.6 71.5

SURREY_MK_KDA 52.6 53.5 35.9 81.0 89.3 86.5 32.8 59.2 68.6

UCLEAR_SVM_DOSP_MULTFEATS 47.0 57.8 26.9 78.8 89.7 87.3 32.5 60.0 70.1

UMCO_DHOG_KSVM 53.5 43.0 32.0 67.9 68.8 83.0 34.1 45.9 60.4

WILLOW_A_SVMSIFT_1-A_LSVM 49.2 37.7 22.2 73.2 77.1 81.7 24.3 53.7 56.9

WILLOW_LSVM 40.4 29.9 32.2 53.5 62.2 73.6 17.6 45.8 41.5

WILLOW_SVMSIFT 47.9 29.1 21.7 53.5 76.7 78.3 26.0 42.9 56.4

(1st, 2nd, 3rd place)

Comp10 results
phoning

playing
instrument reading

riding
bike

riding
horse running

taking
photo

using
computer walking

BERKELEY_POSELETS_ACTION 45.9 45.8 23.7 79.9 87.6 83.1 26.2 44.9 66.6

p
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“True Positives”: Riding Horse

UCLEAR_SVM_DOSP_MULTFEATS

SURREY_MK_KDA

INRIA_SPM_HT



133

“False Negatives”: Riding Horse

UCLEAR_SVM_DOSP_MULTFEATS

SURREY_MK_KDA

INRIA_SPM_HT
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“False Positives”: Riding Horse

UCLEAR_SVM_DOSP_MULTFEATS

SURREY_MK_KDA

INRIA_SPM_HT
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“True Positives”: Walking

CVC_SEL

NUDT_SVM_WHGO_SIFT_CENTRIST_LLM

UCLEAR_SVM_DOSP_MULTFEATS
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“False Negatives”: Walking

CVC_SEL

NUDT_SVM_WHGO_SIFT_CENTRIST_LLM

UCLEAR_SVM_DOSP_MULTFEATS



137

“False Positives”: Walking

CVC_SEL

NUDT_SVM_WHGO_SIFT_CENTRIST_LLM

UCLEAR_SVM_DOSP_MULTFEATS
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“True Positives”: Taking Photo

UMCO_DHOG_KSVM

SURREY_MK_KDA

UCLEAR_SVM_DOSP_MULTFEATS
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“False Negatives”: Taking Photo

UMCO_DHOG_KSVM

SURREY_MK_KDA

UCLEAR_SVM_DOSP_MULTFEATS
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“False Positives”: Taking Photo

UMCO_DHOG_KSVM

SURREY_MK_KDA

UCLEAR_SVM_DOSP_MULTFEATS
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Action understanding: Key componentsAction understanding: Key componentsg y pg y p

Image measurements Prior knowledge

Foreground 
segmentation

Image 
gradients Association

Deformable contour 
models

2D/3D body models

Optical flow

Local space-
time featurestime features

AutomaticLearning

Motion priors
Background models

Action labels

• • •

Automatic 
inference

Learning 
associations from 

strong / weak 
supervision

Action labels
• • •
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Foreground segmentationForeground segmentation

Image differencing: a simple way to measure motion/change

- >  Const

Better Background / Foreground separation methods exist:

Modeling of  color variation at each pixel with Gaussian Mixture

Dominant motion compensation for sequences with moving camera

•

•

Motion layer separation for scenes with non-static backgrounds•
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Temporal TemplatesTemporal Templates

Idea: summarize motion in video in a
Motion History Image (MHI):

Descriptor: Hu moments of different orders

[A.F. Bobick  and J.W. Davis, PAMI 2001] 
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Aerobics datasetAerobics dataset

Nearest Neighbor classifier: 66% accuracy
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Temporal Templates: SummaryTemporal Templates: Summary

Not all shapes are valid          
Restrict the space

+ Simple and fast
+ Works in controlled settings

Pros:

Restrict the space 
of admissible silhouettes

Works in controlled settings

- Prone to errors of background subtraction
Cons:

- Prone to errors of background subtraction

Variations in light shadows clothing What is the background here?

- Does not capture interior
motion and shape

Variations in light, shadows, clothing… What is the background here?

Silhouette 
tells little 
about actions
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Active Shape Models of Active Shape Models of CootesCootes et al.et al.
Point Distribution Model

Represent the shape of samples by a set 
f di i t l d k

•
of corresponding points or landmarks

Assume each shape can be represented 
by the linear combination of basis shapes 

•

such that

for mean shape 

and some parameters
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Active Shape Models of Active Shape Models of CootesCootes et al.et al.
Basis shapes can be found as the main modes of variation of 
in the training data.

•

2D 
E lExample: 
(each point can be 
thought as a 
shape in N-Dim

Principle Component Analysis (PCA):

shape in N Dim 
space)

Principle Component Analysis (PCA):

Covariance matrix 

Eigenvectors eigenvalues
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Active Shape Models of Active Shape Models of CootesCootes et al.et al.

Back-project from shape-space       to image space •

Three main modes of lips-shape variation:

Distribution of eigenvalues:

A small fraction of basis 
shapes (eigenvecors) 
accounts for the most of shape 
variation (=> landmarks are 
redundant)
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Active Shape Models of Active Shape Models of CootesCootes et al.et al.

is orthonormal basis, therefore •

Given estimate of      we can recover shape parameters     

Projection onto the shape-space serves as a regularization•
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Active Shape Models of Active Shape Models of CootesCootes et al.et al.

Given initial guess of model points estimate new positions

How to use Active Shape Models for shape estimation? 

• Given initial guess of model points      estimate new positions      
using local image search, e.g. locate the closest edge point

Re-estimate shape parameters•
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Active Shape Models of Active Shape Models of CootesCootes et al.et al.

To handle translation, scale and rotation, it is useful to normalize   
prior to shape estimation:

•
prior to shape estimation:

using similarity transformationusing similarity transformation 

A simple way to estimate       is to assign             and    to the 
mean position and the standard deviation of points in     
respectively and set            . For more sophisticated 

li ti t h inormalization techniques see: 

Note: model parameters have to be computed using

http://www.isbe.man.ac.uk/~bim/Models/app_model.ps.gz

Note: model parameters           have to be computed using 
normalized image point coordinates 
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Active Shape Models of Active Shape Models of CootesCootes et al.et al.
Iterative ASM alignment algorithm•

1. Initialize with the reasonable guess of      and 
2. Estimate       from image measurements
3. Re-estimate
4. Unless         converged, repeat from step 2

Example: face alignment Illustration of face shape space

Active Shape Models: Their Training and Application
T.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham, CVIU 1995 
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Active Shape Model trackingActive Shape Model tracking
Aim: to track ASM of time-varying shapes, e.g. human silhouettes

• Impose time-continuity constraint on model parameters. 
For example, for shape parameters    :

For similarity transformation

Gaussian noise

y

Update model parameters at each time frame using e g

More complex dynamical models possible

• Update model parameters at each time frame using e.g. 
Kalman filter

•
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Person TrackingPerson Tracking

Learning flexible models from image sequences
A. Baumberg and D. Hogg, ECCV 1994 
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Person TrackingPerson Tracking

Learning flexible models from image sequences
A. Baumberg and D. Hogg, ECCV 1994 
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Active Shape Models: SummaryActive Shape Models: Summary

+ Shape prior helps overcoming segmentation errors
Pros:

+ Shape prior helps overcoming segmentation errors
+ Fast optimization
+ Can handle interior/exterior dynamics

- Optimization gets trapped in local minima
Cons:

Optimization gets trapped in local minima
- Re-initialization is problematic

Possible improvements:

Learn and use motion priors, possibly specific to 
ff

•
different actions
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Motion priorsMotion priors

Accurate motion models can be used both to:•

 Help accurate tracking
 Recognize actions   

Goal: formulate motion models for different types of actions
and use such models for action recognition  

•

Example:
Drawing with 3 action          
modes

line drawing

scribbling

idle

[M. Isard and A. Blake, ICCV 1998] 
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Incorporating motion priorsIncorporating motion priorsp g pp g p

Image measurements Data Association Prior knowledge

Foreground 
segmentation Learning motion 

Particle filters
Image gradient

• • •

models for 
different actions

Particle filters

Optical Flow

• • •
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Bayesian TrackingBayesian Trackingy gy g
General framework: recognition by synthesis; 

generative models; 
fi di b t l ti f th d tfinding best explanation of the data 

Notation:
i d t t tiimage data at time
model parameters at time    (e.g. shape and its dynamics)
prior density for  
likelihood of data for the given model configuration       

We search posterior defined by the Bayes’  rule 

For tracking the Markov assumption gives the prior 

Temporal update rule:
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KalmanKalman FilteringFilteringgg
If all probability densities are uni-modal, specifically Gussians, 
the posterior can be evaluated in the closed form
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Particle FilteringParticle Filteringgg
In reality probability densities are almost always multi-modal
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Particle FilteringParticle Filteringgg
In reality probability densities are almost always multi-modal

Approximate distributions with weighted particles pp g p
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Particle FilteringParticle Filteringgg

Tracking examples:

describes leave shape describes head shape

CONDENSATION - conditional density propagation for visual tracking 
A. Blake and M. Isard IJCV 1998 
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Learning dynamic priorLearning dynamic priorg y pg y p
Dynamic model: 2nd order Auto-Regressive Process

St t

•

State

Update rule:

Model parameters:

Learning scheme:Learning scheme:
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Learning dynamic priorLearning dynamic priorg y pg y p

Random simulation of the
Learning point sequence

Random simulation of the 
learned dynamical model

Statistical models of visual shape and motion 
A. Blake, B. Bascle, M. Isard and J. MacCormick, Phil.Trans.R.Soc. 1998
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Learning dynamic priorLearning dynamic priorg y pg y p

Random simulation of the learned gate dynamics
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Dynamics with discrete statesDynamics with discrete statesyy

Introduce “mixed” state Continuous state 
space (as before)space (as before)

Discrete variable 
identifying dynamical Transition probability matrix
model

Transition probability matrix

llor more generally

Incorporation of the mixed-state model into a particle filter is p p
straightforward, simply use         instead of       and the 
corresponding update rules
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Dynamics with discrete statesDynamics with discrete statesyy

Example: Drawing
line idle

line

idle

scribbling

Transition  
probability 

scribblingmatrix

Result: simultaneously 

li d i

y
improved tracking and 
gesture recognition  

line drawing

scribbling

idleidle

A mixed-state Condensation tracker with automatic model-switching
M. Isard and A. Blake, ICCV 1998 
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Dynamics with discrete statesDynamics with discrete statesyy

Similar illustrated on 
gesture recognition in 
the context of a visual 
bl k b d i t fblack-board interface

[M.J. Black and A.D. Jepson, ECCV 1998]
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Motion priors & Motion priors & TrackimgTrackimg: Summary: Summary

Pros:
+ more accurate tracking using specific motion models
+ Simultaneous tracking and motion recognition with

discrete state dynamical models

Pros:

y

Cons:
- Local minima is still an issue
- Re-initialization is still an issue

Cons:
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Shape and Appearance vs. MotionShape and Appearance vs. Motionp ppp pp
Shape and appearance in images depends on many factors: 
clothing, illumination contrast, image resolution, etc… 

•
g, , g ,

[Efros et al. 2003]

Motion field (in theory) is invariant to shape and can be used 
directly to describe human actions 

•
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Motion estimation: Optical FlowMotion estimation: Optical Flowpp
Classic problem of computer vision  [Gibson 1955]•

G l ti t ti fi ldGoal: estimate motion field

How?  We only have access to image pixels
Estimate pixel-wise correspondence 
b t f O ti l Fl

•

between frames = Optical Flow

Brightness Change assumption: corresponding pixels 
preserve their intensity (color)

•
preserve their intensity (color)

 Useful assumption in many cases

 Ph i l d i l

 Breaks at occlusions and
illumination changes

 Physical and visual
motion may be different
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Generic Optical FlowGeneric Optical Flowpp
Brightness Change Constraint Equation (BCCE)•

Image gradient
Optical flow

One equation, two unknowns => cannot be solved directly

Integrate several measurements in the local neighborhood 
and obtain a Least Squares Solution [Lucas & Kanade 1981]and obtain a Least Squares Solution [Lucas & Kanade 1981] 

Denotes integration over a spatial (or spatio temporal)

Second-moment 
matrix, the same 
one used to 

Denotes integration over a spatial (or spatio-temporal) 
neighborhood of a point 

compute Harris 
interest points!
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Generic Optical FlowGeneric Optical Flowpp
The solution of                                                        assumes

1 B i ht h t i t h ld i

•

1. Brightness change constraint holds in

2. Sufficient variation of image gradient in 

3 Approximately constant motion in3. Approximately constant motion in  

Motion estimation becomes inaccurate if any of assumptions 
1-3 is violated.

(2) Insufficient gradient variation

Solutions:•

known as aperture problem
Increase integration neighborhood

(3) Non constant motion in(3) Non-constant motion in

Use more sophisticated motion model 
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Parameterized Optical FlowParameterized Optical Flowpp
Constant velocity model:•

Upgrade to affine motion model:

N ti d d th iti i id th i hb h d

•

Now motion depends on the position              inside the neighborhood
Examples of Affine motion models for different parameters:

• Can be formulated as Least Squares approach to estimate     
as before! 
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Parameterized Optical FlowParameterized Optical Flowpp
Another extension of the constant motion model is to compute 
PCA basis flow fields from training examples

•
PCA basis flow fields from training examples 

1. Compute standard Optical Flow for many examples
2. Put velocity components into one vector 

3. Do PCA on     and obtain most informative PCA flow basis vectors

Training samples PCA flow bases

Learning Parameterized Models of Image Motion 
M.J. Black, Y. Yacoob, A.D. Jepson and D.J. Fleet, CVPR 1997
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Parameterized Optical FlowParameterized Optical Flowpp
Use PCA flow bases to regularize solution of motion estimation•
Motion estimation for test samples can be computed without• Motion estimation for test samples can be computed without 
explicit computation of optical flow!

•

Solution formulation e.g. in terms of Least Squares

Direct flow recovery:

Learning Parameterized Models of Image Motion 
M.J. Black, Y. Yacoob, A.D. Jepson and D.J. Fleet, CVPR 1997
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Parameterized Optical FlowParameterized Optical Flowpp
• Estimated coefficients of PCA flow bases can be used as action 

descriptorsp

Frame numbers

Learning Parameterized Models of Image Motion 
M.J. Black, Y. Yacoob, A.D. Jepson and D.J. Fleet, CVPR 1997

Frame numbers
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Parameterized Optical FlowParameterized Optical Flowpp
• Estimated coefficients of PCA flow bases can be used as action 

descriptorsp

Frame numbers

Optical flow seems to be an interesting descriptor for p g p
motion/action recognition
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Spatial Motion DescriptorSpatial Motion Descriptor

Image frame Optical flow Fage a e Optical flow yxF ,

yx FF , +−+−
yyxx FFFF ,,, blurred +−+−

yyxx FFFF ,,,
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T l t t E

SpatioSpatio--Temporal Motion DescriptorTemporal Motion Descriptor

……

Σ
Sequence A

Temporal extent E

……
Σ

Sequence B

t

A AE

E

B B

I matrix
E

B
frame-to-frame
similarity matrix

motion-to-motion
similarity matrix

B

blurry I

E



186

Football Actions: matchingFootball Actions: matching

InputInput
Sequence

Matched 
Frames

i t t h dinput matched
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Football Actions: classificationFootball Actions: classification

10 actions; 4500 total frames; 13-frame motion descriptor  
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Classifying Ballet ActionsClassifying Ballet Actions
16 Actions; 24800 total frames; 51-frame motion descriptor. Men 

used to classify women and vice versa.
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Classifying Tennis ActionsClassifying Tennis Actions

6 actions; 4600 frames; 7-frame motion descriptor
Woman player used as training, man as testing.
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Where are we so far ?Where are we so far ?

Temporal templates:
+ simple, fast

sensitive to

Active shape models:
+ shape regularization
- sensitive to

Tracking with motion priors:
+ improved tracking and 

simultaneous action recognition - sensitive to
segmentation errors initialization and

tracking failures

g
- sensitive to initialization and 

tracking failures

Motion based recognition:Motion-based recognition:
+ generic descriptors; 

less depends on  
appearance

- sensitive to
localization/tracking 
errors


