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Announcements   
• Assignments 1 and 2 due today. 
• Solutions for both will be posted online this week. 

• Assignment 3 is out: 
http://www.di.ens.fr/willow/teaching/recvis10/assignment3/ 

• Final projects are out: 
http://www.di.ens.fr/willow/teaching/recvis10/final_project/ 



What we would like to be able to do… 
• Visual scene understanding 
• What is in the image and where 

Dog 1: Terrier 

Motorbike: Suzuki GSX 750 

Ground: Gravel 

Plant 

Wall 

Gate 

Dog 2: Si?ng on Motorbike 

Person: John Smith, holding Dog 2 

• Object categories, identities, properties, activities, relations, … 



Recognition Tasks 
•  Image Classification 

– Does the image contain an aeroplane? 

• Object Class Detection/Localization 
– Where are the aeroplanes (if any)? 

• Object Class Segmentation 
– Which pixels are part of an aeroplane 

(if any)? 



Things vs. Stuff 
Stuff (n): Material defined by a 
homogeneous or repetitive pattern 
of fine-scale properties, but has 
no specific or distinctive spatial 
extent or shape. 

Thing (n): An object with a 
specific size and shape. 

Ted Adelson,  Forsyth et al. 1996. 

Slide: Geremy Heitz 



• Object Class Detection/Localization 
– Where are the aeroplanes (if any)? 

Recognition Task 

• Challenges 
–  Imaging factors e.g. lighting, pose, 

occlusion, clutter 
–  Intra-class variation 

• Compared to Classification 
– Detailed prediction e.g. bounding box 
–  Location usually provided for training 



Challenges: Scale 



Challenges: Background Clutter 



Challenges: Occlusion and truncation 



Challenges: Intra-class variation 



Object Category Recognition by Learning 
• Difficult to define model of a category. Instead, learn from 

example images 



Level of Supervision for Learning 
Image-level label 

Pixel-level segmentation 

Bounding box 

“Parts” 



aeroplane
 bicycle


car
 cow


motorbike
horse


Preview of typical results 



Class of model: Pictorial Structure 

•   Intuitive model of an object 

•   Model has two components 

1.  parts (2D image fragments) 

2.  structure (configuration of parts) 

•  Dates back to Fischler & Elschlager 1973 

Is this complexity of representation necessary ? 

 Which features? 



Restrict deformations 



•  Use a sub-window 
–  At correct position, no clutter is present 
–  Slide window to detect object 
–  Change size of window to search over scale 

Problem of background clutter 



Outline 

1.  Sliding window detectors 

2.  Features and adding spatial information 

3.  Histogram of Oriented Gradients (HOG) 

4.  Two state of the art algorithms and PASCAL VOC 

5.  The future and challenges 



Outline 

1.  Sliding window detectors 

•  Start: feature/classifier agnostic 

•  Method  

•  Problems/limitations 

2.  Features and adding spatial information 

3.  Histogram of Oriented Gradients (HOG) 

4.  Two state of the art algorithms and PASCAL VOC 

5.  The future and challenges 



Yes, 
a car 
No, 

not a car 

Detection by Classification 
• Basic component: binary classifier 

Car/non-car 
Classifier 



Detection by Classification 
• Detect objects in clutter by search 

Car/non-car 
Classifier 

• Sliding window: exhaustive search over position and scale 



Detection by Classification 
• Detect objects in clutter by search 

Car/non-car 
Classifier 

• Sliding window: exhaustive search over position and scale 



Detection by Classification 
• Detect objects in clutter by search 

Car/non-car 
Classifier 

• Sliding window: exhaustive search over position and scale 
(can use same size window over a spatial pyramid of images) 



Window (Image) Classification 

• Features usually engineered 
• Classifier learnt from data 

Feature 
Extraction 

• 
• 
• 
• 
• 

Classifier 

Training Data 

Car/Non-car 



Problems with sliding windows … 

•  aspect  ratio 

•  granularity (finite grid) 

•  partial occlusion 

•  multiple responses 

See recent work  by 

•  Christoph Lampert et al CVPR 08, ECCV 08 



Outline 

1.  Sliding window detectors 

2.  Features and adding spatial information  

•  Bag of visual word (BoW) models 

•  Beyond BoW I: Constellation and ISM models 

•  Beyond BoW II: Grids and spatial pyramids 

3.  Histogram of Oriented Gradients (HOG) 

4.  Two state of the art algorithms and PASCAL VOC 

5.  The future and challenges 



Recap: Bag of (visual) Words representation 

•  Detect affine invariant local features (e.g. 
affine-Harris) 

•  Represent by high-dimensional 
descriptors, e.g. 128-D for SIFT 

•  How to summarize sliding window content in 
a fixed-length vector for classification? 

1.  Map descriptors onto a common 
vocabulary of visual words 

2.  Represent image as a histogram over visual 
words – a bag of words 



Local region descriptors and visual words 

•  Normalize regions to fixed size and shape 
•  Describe each region by a SIFT descriptor 
•  Vector quantize into visual words, e.g. using k-means 
NB: aff. detectors/SIFT/visual words originally for view point invariant matching 

Rotate and scale 

SIFT descriptors 



Visual Words 

Cluster = Visual Word 

• 
• 
• 
• 
• 

• 
• 
• 
• 
• 

• 
• 
• 
• 
• 

• 
• 
• 
• 
• 

Local Descriptors 

Vector Quantize 
(K-means) 



Example Visual Words 



Intuition 

Visual Vocabulary 

•  Visual words represent “iconic” image fragments 
•  Feature detectors and SIFT give invariance to local rotation and scale 
•  Discarding spatial information gives configuration invariance 



Learning from positive ROI examples 

Bag of Words 

• 
• 
• 
• 
• 

• 
• 
• 
• 
• 

Feature Vector 



Sliding window detector 
•  Classifier: SVM with linear kernel 

•  BOW representation for ROI 

Example detections for dog 

Lampert et al CVPR 08 



Discussion: ROI as a Bag of Visual Words  

• Advantages 
–  No explicit modelling of spatial information -> 

high level of invariance to position and 
orientation in image 

–  Fixed length vector -> standard machine 
learning methods applicable 

• Disadvantages 
–  No explicit modelling of spatial information -> 

less discriminative power 
–  Inferior to state of the art performance 



Beyond BOW I: Pictorial Structure 

•   Intuitive model of an object 

•   Model has two components 

1.  parts (2D image fragments) 

2.  structure (configuration of parts) 

•  Dates back to Fischler & Elschlager 1973 

Two approaches that have investigated this spring like model: 
•  Constellation model 

•  Implicit shape model 



Spatial Models Considered 

x1 

x3 

x4 

x6 

x5 

x2 

“Star” shape model 

x1 

x3 

x4 

x6 

x5 

x2 

Fully connected shape 
model 

  e.g. Constellation Model 
  Parts fully connected 
  Recognition complexity: O(NP) 
  Method: Exhaustive search 

  e.g. ISM 
  Parts mutually independent 
  Recognition complexity: O(NP) 
  Method: Gen. Hough Transform 

Slide credit: Rob Fergus 



Constellation model 

• Explicit structure model – Joint Gaussian over all 
part positions 

• Part detector determines position and scale 
• Simultaneous learning of parts and structure 
• Learn from images alone using EM algorithm 

x1 

x3 

x4 

x6 

x5 

x2 

Given detections: learn a 
six part model by 
optimizing part and 
configuration similarity 

Fergus, Perona & Zisserman,CVPR 03 



Example – Learnt Motorbike Model 
Samples from appearance model 



Recognized Motorbikes 

position of object determined 



Airplanes 



Spotted cats 



Discussion: Constellation Model 
• Advantages 

–  Works well for many different object categories 
–  Can adapt well to categories where 

•  Shape is more important 
•  Appearance is more important 

–  Everything is learned from training data 
–  Weakly-supervised training possible 

• Disadvantages 
–  Model contains many parameters that need to be estimated 
–  Cost increases exponentially with increasing number of parameters 
⇒ Fully connected model restricted to small number of parts. 



Implicit Shape Model (ISM) 

•  Basic ideas 
–  Learn an appearance codebook 
–  Learn a star-topology structural model 

•  Features are considered independent given object centre 

•  Algorithm: probabilistic Generalized Hough Transform 
Good engineering: 
–  Soft assignment 
–  Probabilistic voting 
–  Continuous Hough space 

x1 

x3 

x4 

x6 

x5 

x2 

Leibe, Leonardis, Schiele, 03/04 



Codebook Representation 

• Extraction of local object features 
–  Interest Points (e.g. Harris detector) 
–  Sparse representation of the object appearance 

• Collect features from whole training set 

• Example: 

Class specific vocabulary 



Leibe & Schiele 03/04: Generalized Hough Transform 

•  Learning: for every cluster, store possible “occurrences” 

•  Recognition: for new image, let the matched patches vote for possible object 
positions 



Voting Space 
(continuous) 

Interest Points Matched Codebook  
Entries 

Probabilistic  
Voting 

Backprojection 
of Maximum 

Leibe & Schiele 03/04: Generalized Hough Transform 



• Mean-Shift formulation for refinement 
–  Scale-adaptive balloon density estimator 

Scale Voting: Efficient Computation 

y 

s 

Binned  
accum. array 

y 

s 

x 

Refinement 
(MSME) 

y 

s 

x 

Candidate 
maxima 

y 

s 

Scale votes 



Detection Results 

•  Qualitative Performance 
–  Recognizes different kinds of cars 
–  Robust to clutter, occlusion, low contrast, noise 



Discussion: ISM and related models 
Advantages 
•  Scale and rotation invariance 

can be built into the 
representation from the start 

•  Relatively cheap to learn and 
test (inference)  

• Works well for many different 
object categories 

•   Max-margin extensions 
possible, Maji & Malik, CVPR09 

Disadvantages 
•  Requires searching for modes in the Hough space 
•  Similar to sliding window in this respect 
•  Is such a degree of invariance required? (many objects are horizontal) 



Beyond BOW II: Grids and spatial pyramids 

Bag of Words 

• 
• 
• 
• 
• 

• 
• 
• 
• 
• 

Feature Vector 

Start from BoW for ROI 
•  no spatial information recorded 

•  sliding window detector 



Adding Spatial Information to Bag of Words 

Bag of Words 

• 
• 
• 
• 
• 

• 
• 
• 
• 
• 

Concatenate 

Feature Vector 
[Fergus et al, 2005] Keeps fixed length feature vector for a window 



Tiling defines (records) the spatial correspondence of the words 

If codebook  has V visual words, then representation has dimension 4V 

Fergus et al ICCV 05 

•  parameter: number of tiles 



Spatial Pyramid – represent correspondence 

• As in scene/image classification can use pyramid kernel 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

1 BoW 

4 BoW 

16 BoW 

[Lazebnik et al, 2006] [Grauman & Darrell, 2005] 



Dense Visual Words 
• Why extract only sparse image 

fragments? 

• Good where lots of invariance 
is needed, but not relevant to 
sliding window detection? 

• Extract dense visual words on an overlapping grid 

• More “detail” at the expense of invariance 
• Pyramid histogram of visual words (PHOW) 

[Luong & Malik, 1999] 
[Varma & Zisserman, 2003] 

[Vogel & Schiele, 2004] 
[Jurie & Triggs, 2005] 

[Fei-Fei & Perona, 2005] 
[Bosch et al, 2006] 

• 
• 
• 
• 
• 

Patch / SIFT 

Quantize 
Word 



Outline 

1.  Sliding window detectors 

2.  Features and adding spatial information  

3.  Histogram of Oriented Gradients + linear SVM classifier 
•  Dalal & Triggs pedestrian detector 

•  HOG and history 

•  Training an object detector 

4.  Two state of the art algorithms and PASCAL VOC 

5.  The future and challenges 



Dalal & Triggs CVPR 2005 Pedestrian 
detection 

• Objective: detect (localize) standing humans in an image 

•   sliding window classifier 

•   train a binary classifier on whether a window contains a 
standing person or not 

• Histogram of Oriented Gradients (HOG) feature 

• although HOG + SVM originally introduced for pedestrians 
has been used very successfully for many object categories 



Feature:  Histogram of Oriented 
Gradients (HOG) 

image 
dominant 
direction HOG 

fre
qu

en
cy

 

orientation 

•  tile 64 x 128 pixel window into 8 x 8 pixel cells 

•  each cell represented by histogram over 8 
orientation bins  (i.e. angles in range 0-180 degrees) 



Histogram of Oriented Gradients (HOG) continued 

• Adds a second level of overlapping spatial bins re-normalizing 
orientation histograms over a larger spatial area 

• Feature vector dimension (approx) =  16 x 8 (for tiling) x 8 
(orientations) x 4 (for blocks) = 4096 



Window (Image) Classification 

• HOG Features 
• Linear SVM classifier 

Feature 
Extraction 

• 
• 
• 
• 
• 

Classifier 

Training Data 

pedestrian/Non-pedestrian 





Averaged examples 



Advantages of linear SVM: 

•  Training (Learning) 
•  Very efficient packages for the linear case, e.g. LIBLINEAR for batch 
training and Pegasos for on-line training.  

•  Complexity O(N) for N training points (cf O(N^3) for general SVM) 

•  Testing (Detection) 

Classifier: linear SVM 

S = # of support vectors  

    = (worst case ) N 

    size of training data 

Non-linear 

linear 

Independent of size of training data 

€ 

f(x) = wTx + b

€ 

f(x) = α i
i

S

∑ k(x i,x) + b

€ 

f(x) = α i
i

S

∑ x i
Tx + b

= wTx + b



Dalal and Triggs, CVPR 2005 



Learned model 

average over 
positive training data 

€ 

f(x) = wTx + b



Slide from Deva Ramanan 



Why does HOG + SVM work so well? 
•  Similar to SIFT, records spatial arrangement of histogram orientations 
•  Compare to learning only edges: 

–  Complex junctions can be represented 
–  Avoids problem of early thresholding 
–  Represents also soft internal gradients 

• Older methods based on edges have become largely obsolete 

•  HOG gives fixed length vector for window, 
suitable for feature vector for SVM 



Chamfer Matching 
Input Edges Template • Match points between template 

and image 

• Measure mean distance 

•  Template edgel matches nearest 
image edgel 

Distance 
Transform 

[Gavrila & Philomin, 1999] 

• Distance transform reduces min operation 
to array lookup 

• Computable in linear time 

Best 
match 

•  Localize by sliding window search 



Chamfer Matching 

•  In practice performs poorly in clutter 
• Unoriented edges are not discriminative enough 

(too easy to find…) 
[Gavrila & Philomin, 1999] 

Hierarchy of Templates Detections 



Contour-fragment models 

• Generalized Hough like representation using contour 
fragments 

•  Contour fragments learnt from edges of training images 

•  Hough like voting for detection 

Shotton et al ICCV 05, Opelt et al ECCV 06 

p 
σ 

T x1 

x3 

x4 

x6 

x5 

x2 



Training a sliding window detector 
• Object detection is inherently asymmetric: much more 

“non-object” than “object” data 

• Classifier needs to have very low false positive rate 
• Non-object category is very complex – need lots of data 



Bootstrapping 

1.  Pick negative training 
set at random 

2.  Train classifier 
3.  Run on training data 
4.  Add false positives to 

training set 
5.  Repeat from 2 

• Collect a finite but diverse set of non-object windows 
• Force classifier to concentrate on hard negative examples 

• For some classifiers can ensure equivalence to training on 
entire data set 



 Example: train an upper body detector 
–  Training data – used for training and validation sets 

•  33 Hollywood2 training movies 
•  1122 frames with upper bodies marked 

–  First stage training (bootstrapping) 
•  1607 upper body annotations jittered to 32k positive samples 
•  55k negatives sampled from the same set of frames 

–  Second stage training (retraining) 
•  150k hard negatives found in the training data 



Training data – positive annotations 



Positive windows 

Note: common size and alignment 



Jittered positives 



Jittered positives 



Random negatives 



Random negatives 



Window (Image) first stage classification 

HOG Feature 
Extraction 

• 
• 
• 
• 
• 

Linear SVM 
Classifier 

Jittered positives  

random negatives 

•  find high scoring  false positives detections 

•  these are the hard negatives for the next round of 
training 

•  cost = # training images x inference on each image 

€ 

f(x) = wTx + b

€ 

x



Hard negatives 



Hard negatives 



First stage performance on validation set 



Precision – Recall curve 

all windows 

returned 
windows 

correct 
windows 

•  Precision: % of returned windows that  
    are correct 

•  Recall: % of correct windows that are  
returned 

classifier score decreasing 



First stage performance on validation set 



Performance after retraining 



Effects of retraining 



Side by side 

before retraining after retraining 



Side by side 

before retraining after retraining 



Side by side 
before retraining after retraining 



Tracked upper  body detections 



Accelerating Sliding Window Search 
• Sliding window search is slow because so many windows are 

needed e.g. x × y × scale ≈ 100,000 for a 320×240 image 

• Most windows are clearly not the object class of interest 

• Can we speed up the search? 



Cascaded Classification 
• Build a sequence of classifiers with increasing complexity 

Classifier 
N 

Face 

Non-face 

Classifier 
2 

Non-face 

Classifier 
1 

Non-face 

Window 

More complex, slower, lower false positive rate 

• Reject easy non-objects using simpler and faster classifiers 

Possibly a 
face 

Possibly a 
face 



Cascaded Classification 

• Slow expensive classifiers only applied to a few windows  
significant speed-up 

• Controlling classifier complexity/speed: 
–  Number of support vectors  [Romdhani et al, 2001] 
–  Number of features   [Viola & Jones, 2001] 
–  Type of SVM kernel   [Vedaldi et al, 2009] 



Summary: Sliding Window Detection 
• Can convert any image classifier into an 

object detector by sliding window. Efficient 
search methods available. 

• Requirements for invariance are reduced by 
searching over e.g. translation and scale 

• Spatial correspondence can be 
“engineered in” by spatial tiling 



Outline 

1.  Sliding window detectors 

2.  Features and adding spatial information  

3.  HOG + linear SVM classifier 

4.  Two state of the art algorithms and PASCAL VOC 
•  VOC challenge 

•  Vedaldi et al – multiple kernels and features, cascade 

•  Felzenswalb et al – multiple parts, latent SVM 

5.  The future and challenges 



The PASCAL Visual Object Classes 
(VOC) Dataset and Challenge 

Mark Everingham 
Luc Van Gool 
Chris Williams 

John Winn 
Andrew Zisserman 



The PASCAL VOC Challenge 

• Challenge in visual object 
recognition funded by 
PASCAL network of 
excellence 

• Publicly available dataset of 
annotated images 

• Main competitions in classification (is there an X in this 
image), detection (where are the X’s), and segmentation 
(which pixels belong to X) 

• “Taster competitions” in 2-D human “pose estimation” (2007-
present) and static action classes 

• Standard evaluation protocol (software supplied) 



Dataset Content 
• 20 classes: aeroplane, bicycle, boat, bottle, bus, car, cat, 

chair, cow, dining table, dog, horse, motorbike, person, 
potted plant, sheep, train, TV 

• Real images downloaded from flickr, not filtered for “quality” 

• Complex scenes, scale, pose, lighting, occlusion, ... 



Annotation 
•  Complete annotation of all objects 

•  Annotated in one session with written guidelines 

Truncated 
Object extends 
beyond BB 

Occluded 
Object is significantly 
occluded within BB 

Pose 
Facing left 

Difficult 
Not scored in 
evaluation 



Examples 

Aeroplane 

Bus 

Bicycle Bird Boat Bottle 

Car Cat Chair Cow 



Examples 

Dining Table 

Potted Plant 

Dog Horse Motorbike Person 

Sheep Sofa Train TV/Monitor 



Main Challenge Tasks 

• Classification 
–  Is there a dog in this image? 
–  Evaluation by precision/recall 

• Detection 
–  Localize all the people (if any) in 

this image 
–  Evaluation by precision/recall 

based on bounding box overlap 



Detection: Evaluation of Bounding Boxes 

• Area of Overlap (AO) Measure 
Ground truth Bgt 

Predicted Bp 

Bgt ∩ Bp 

> Threshold Detection if 
50% 



















Detection 

Wide variety of methods: sliding window, combination with whole 
image classifiers, segmentation based 



Multiple Kernels for Object Detection 

Andrea Vedaldi, Varun Gulshan, 
Manik Varma, Andrew Zisserman 

ICCV 2009 



Approach 

• Three stage cascade 
–  Each stage uses a more powerful and more expensive classifier 

• Multiple kernel learning for the classifiers over multiple features 
• Jumping window first stage 

Feature vector 

Fast Linear SVM 

Quasi-linear SVM 

Jumping Window 

Non-linear SVM 



Multiple Kernel Classification 

PHOW Gray 

Visual Words 

PHOG 

SSIM 

PHOW Color 

PHOG Sym 

MK SVM 

combine one kernel per histogram 

[Varma & Rai, 2007] 
[Gehler & Nowozin, 2009] 

Feature vector 



Multiple Kernel Detection: Challenges 
• Goal: sliding window MK classifier 

–  Inference space is huge 
–  #windows = 100 millions 
–  TMK = seconds 

Candidate region 

Image 

Feature vector 

MK SVM 
Time required: 

TMK × #windows 

TMK 

Excruciatingly slow (days per image) 



Cascade 

Feature vector 

Fast Linear SVM 

Quasi-linear SVM 

Non-linear SVM 

• all full MK SVMs 
• all look at all features 
• trade-off speed and power by 

choosing the kernel structure 



Architecture 

PHOW Gray


Visual Words


PHOG


SSIM


PHOW Color


PHOG Sym

Feature vector


Fast Linear SVM


Quasi-linear SVM


Jumping Window


Non-linear SVM
 Post Processing




Cascade 

Feature vector


Fast Linear SVM


Quasi-linear SVM


Non-linear SVM




Non-linear sliding SVM 

Feature Vector 

i-th Support Vector 

Candidate region 

Image 

Support Vectors (SVs) 

Training Data Time required: 
#dimensions × #windows × #SVs 



Cascade 

Feature vector


Fast Linear SVM


Quasi-linear SVM


Non-linear SVM




Quasi-linear  SVM 

Feature Vector 

i-th Support Vector 

Time required: 
#dimensions × #windows × #SVs 

Candidate region 

Image Quasi-linear (or additive) kernel 
decompose as: 

Thus SVM score rewrites: 

#dimensions × #windows 

Pre-compute look-up table. 

Maji, Berg, Malik, CVPR 08 

€ 

β jk(x j ,yi=1

N
∑

ij
)

j=1

d
∑

ψ j (x j )



Cascade 

Feature vector


Fast Linear SVM


Quasi-linear SVM


Non-linear SVM




Fast linear SVM 

Feature vector 

Candidate region 

Linear SVM score 
Image 

Score map 

Pre-compute 
scores 

for each pixel. 

Compute sum with 
integral images 

Feature vector 

Image 

Pixel 

Time required: 
#dimensions × #windows × #SVs 

#windows 



Jumping window 

Hypothesis 

Position of visual word with respect to the object 

learn the position/scale/aspect ratio of the ROI with respect to the visual word 

Tr
ai

ni
ng

 
D

et
ec

tio
n 

Handles change of aspect ratio 
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SVMs overview 
•  First stage 

–  linear SVM 
–  (or jumping window) 
–  time: #windows 

•  Second stage 
–  quasi-linear SVM 
–  χ2 kernel 
–  time: #windows × #dimensions 

•  Third stage 
–  non-linear SVM 
–  χ2-RBF kernel 
–  time:  

#windows × #dimensions × #SVs 

134 

Feature vector 

Fast Linear SVM 

Quasi-linear SVM 

Jumping Window 

Non-linear SVM 



Results 



Results 



Results 



Single Kernel vs. Multiple Kernels 
• Multiple Kernels gives substantial boost 
• Multiple Kernel Learning: 

–  small improvement over averaging 
–  sparse feature selection 



Precision/Recall: VOC2009 Aeroplane 



Object Detection with Discriminatively 
Trained Part Based Models 

Pedro F. Felzenszwalb, David Mcallester, 
Deva Ramanan, Ross Girshick 

PAMI 2010 



Approach 

• Mixture of deformable part-based models 
–  One component per “aspect” e.g. front/side view 

• Each component has global template + deformable parts 
• Discriminative training from bounding boxes alone 



Example Model 
• One component of person model 

root filters 
coarse resolution 

part filters 
finer resolution 

deformation 
models 

x1 

x3 

x4 

x6 

x5 

x2 



Starting Point: HOG Filter 

• Search: sliding window over position and scale 
• Feature extraction: HOG Descriptor 
• Classifier: Linear SVM 

HOG pyramid H 

Score of F at position p is  
F ⋅ φ(p, H) 

Filter F 

φ(p, H) = concatenation of 
HOG features from 

subwindow specified by p 

p 

Dalal & Triggs [2005] 



Object Hypothesis 
• Position of root + each part 
• Each part: HOG filter (at higher resolution) 

Score is sum of filter 
scores minus 

deformation costs 

p0 : location of root 
p1,..., pn : location of parts 

z = (p0,..., pn) 



Score of a Hypothesis 

• Linear classifier applied to feature subset defined by hypothesis 

filters deformation parameters 

displacements 

Appearance term Spatial prior 

concatenation of 
HOG features and 
part displacement 

features 

concatenation of filters 
and deformation 

parameters 



Training 
• Training data = images + bounding boxes 
• Need to learn: model structure, filters, deformation costs 

Training 



Latent SVM (MI-SVM) 

Minimize 

Training data 

We would like to find β such that: 

Classifiers that score an example x using 

β are model parameters 
z are latent values 

• Which component? 
• Where are the parts? 

SVM objective 



Latent SVM Training 

• Convex if we fix z for positive examples 

• Optimization: 
–  Initialize β and iterate: 

•  Pick best z for each positive example 
•  Optimize β with z fixed 

• Local minimum: needs good initialization 
–  Parts initialized heuristically from root 

Alternation 
strategy 



Person Model 

root filters

coarse resolution


part filters

finer resolution


deformation

models


Handles partial occlusion/truncation 



Car Model 

root filters

coarse resolution


part filters

finer resolution


deformation

models




Car Detections 

high scoring false positives high scoring true positives 



Person Detections 

high scoring true positives 
high scoring false positives 

(not enough overlap) 



Precision/Recall: VOC2008 Person 



Precision/Recall: VOC2008 Bicycle 



Comparison of Models 



Summary 
• Multiple features and multiple kernels boost 

performance 
• Discriminative learning of model with latent 

variables for single feature (HOG): 
–  Latent variables can learn best alignment in the 

ROI  training annotation 
–  Parts can be thought of as local SIFT vectors 
–  Some similarities to Implicit Shape Model/

Constellation models but with discriminative/
careful training throughout 

NB: Code available for latent model ! 



Outline 

1.  Sliding window detectors 

2.  Features and adding spatial information  

3.  HOG + linear SVM classifier 

4.  Two state of the art algorithms and PASCAL VOC 

5.  The future and challenges 



Current  Research Challenges 
• Context 

–  from scene properties: GIST, BoW, stuff  
–  from other objects 
–  from geometry of scene, e.g.  Hoiem et al CVPR 06 

• Occlusion/truncation 
–  Winn & Shotton, Layout Consistent Random Field, CVPR 06 
–  Vedaldi & Zisserman, NIPS 09 
–  Yang et al, Layered Object Detection, CVPR 10 

• 3D 

• Scaling up – thousands of classes 
–  Torralba et al, Feature sharing 
–  ImageNet 

• Weak and noisy supervision 





Pictorial structure model re-visited: 
efficient fitting 

Let’s have a closer look at the LSVM deformable part-based model… 



Object Hypothesis 
• Position of root + each part 
• Each part: HOG filter (at higher resolution) 

Score is sum of filter 
scores minus 

deformation costs 

p0 : location of root 
p1,..., pn : location of parts 

z = (p0,..., pn) 



What is the cost of fitting the PS model? 
• For fixed (learned) Fi and di 

• For simplicity, consider only single scale of the pyramid 
• Parts can appear anywhere in the image (h=number of pixels) 

filters deformation parameters 

displacements 

Appearance term Spatial prior 

p0 : location of root 
p1,..., pn : location of parts 

    pi = (xi , yi )  
  dxi = xi – x0 
  dyi = yi – y0 

Fitting cost: Naïve search is O(nh2) 



What is the cost of fitting the PS model? 
• For fixed (learned) Fi and di 

• For simplicity, consider only single scale of the pyramid 
• Parts can appear anywhere in the image (h=number of pixels) 

filters deformation parameters 

displacements 

Appearance term Spatial prior 

Fitting cost: Naïve search is O(nh2) 
Need to evaluate the deformation cost of each part with respect to 

the root. 

Can be done in O(nh)  



Special case of a more general problem 

filters deformation parameters 

displacements 

Appearance term Spatial prior 

1 

3 

4 5 

6 

2 

Maximization of the PS score can be re-written as a minimization of 
the following cost function on a “star” graph: 



Dynamic programming on graphs 



Dynamic programming - review 

•  Discrete optimization 

•  Each variable x has a finite number of possible 
states 

•  Applies to problems that can be decomposed into a 
sequence of stages 

•  Each stage expressed in terms of results of fixed 
number of previous stages 

•  The cost function need not be convex 

•  The name “dynamic” is historical 

•  Also called the “Viterbi” algorithm 

•  Let’s first consider a chain: 
5 4 6 1 2 3 



Consider a cost function                                            of the form  

where xi can take one of h values 

e.g. h=5, n=6 

x1 x2 x3 x4 x5 x6 

find 
shortest 

path 

Complexity of minimization: 

•  exhaustive search O(hn) 

•  dynamic programming O(nh2) 

trellis 



x1 x2 x3 x4 x5 x6 

Key idea: the optimization can be broken down into n  sub-optimizations 



x1 x2 x3 x4 x5 x6 



Viterbi Algorithm 

Complexity O(nh2) 



Dynamic programming on graphs 

5 4 6 1 2 3 



Different graph structures 

Fully connected 

1 
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2 

O(hn) 
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Star structure 

O(nh2) 

1 

3 

4 

5 

6 

2 

Tree structure 

O(nh2) 

n parts 

h positions (e.g. every pixel for translation) 

Can use dynamic programming  



Distance transforms for DP 



Special case of DP cost function 

• Distance transforms 
–  O(nh2)  O(nh) for DP cost functions 

–  Assume model is quadratic, i.e. 



x1 

x2 

a b 



x1 

x2 

Felzenszwalb and Huttenlocher ’05 

For each x2 
•  Finding min over x1 is equivalent finding minimum over set of offset parabolas 
•  Lower envelope computed in O(h) rather than O(h2) via distance transform 



x1 

x2 

Felzenszwalb and Huttenlocher ’05 

For each x2 
•  Finding min over x1 is equivalent finding minimum over set of offset parabolas 
•  Lower envelope computed in O(h) rather than O(h2) via distance transform 





1D Examples 

f(p) 

Df(q) 

p, q 

p, q 



1D Examples 

f(p) 

Df(q) 

p, q 

p, q 





“Lower Envelope” Algorithm 

Add first Add second 

Try adding third 

Remove second 

Try again and add 
…  



Algorithm for Lower Envelope 

• Quadratics ordered left to right 
•  At step j consider adding j-th quadratic to LE of first j-1 quadratics 

–  Maintain two ordered lists 
•  Quadratics currently visible on LE 
•  Intersections currently visible on LE 

–  Compute intersection of j-th quadratic and rightmost quadratic visible on LE 
•  If to right of rightmost visible intersection, add quadratic and 

intersection to lists 
•  If not, this quadratic hides at least rightmost quadratic, remove it and try 

again 

Code available online: http://people.cs.uchicago.edu/~pff/dt/ 



Running Time of LE Algorithm 
•  Considers adding each of h quadratics just once 

–  Intersection and comparison constant time 
–  Adding to lists constant time 
–  Removing from lists constant time 

•  But then need to try again 

•  Simple amortized analysis 
–  Total number of removals O(h) 

•  Each quadratic once removed never considered for removal again 

•  Thus overall running time O(h) 



Coming back to fitting pictorial structures 

filters deformation parameters 

displacements 

Appearance term Spatial prior 

1 

3 

4 5 

6 

2 

Maximization of the PS score can be re-written as a minimization of 
the following cost function on a “star” graph: 

As the spatial prior is a quadratic function of part 
positions, (xi, yi), finding the optimal configuration 
of parts can be done in O(nh) time, instead of 
naïve O(nh2). 



Part Detection 

head filter 

Transformed response 

Distance transform computed in linear time 
(spreading, local max, etc) 

input image 

Response of filter in l-th pyramid level 

cross-correlation 



System 



Other applications of PS models:  
facial feature detection in images 

•  Parts V= {v1, … vn} 

•  Connected by springs in a star configuration to 
nose (can be a tree) 

•  Quadratic cost for springs 

high spring cost 

v3 

Model


v1 

v2 

v4 

The goal: Localize facial features in faces 
output by face detector 



Example part localizations in video 



Example of a model with 9 parts 

Support parts-based face descriptors 
Provide initialization for global face descriptors 

Code available online: http://www.robots.ox.ac.uk/~vgg/research/nface/index.html 



Example II: Hand tracking for sign language 
interpretation 

Buehler et al. BMVC’2008 



Summary 
• Pictorial structure models with tree configuration of parts can 

be fitted in O(nh2). {n=number of parts, h=number of pixels} 

• For quadratic pair-wise terms this can be reduced to O(nh).  

• This can lead to significant speed-ups if h is large (e.g. 
number of pixels). 

Other applications:  
• Facial feature finding 
• Fitting articulated models  


