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Announcements

» Assignments 1 and 2 due today.
 Solutions for both will be posted online this week.

» Assignment 3 is out:
http://www.di.ens.fr/willow/teaching/recvis10/assignment3/

* Final projects are out:
http://www.di.ens.fr/willow/teaching/recvis10/final project/




What we would like to be able to do...

* Visual scene understanding
* What is in the image and where
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* Object categories, identities, properties, activities, relations, ...



Recognition Tasks

* Image Classification
— Does the image contain an aeroplane? ==#- L
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* Object Class Detection/Localization
— Where are the aeroplanes (if any)?
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* Object Class Segmentation

— Which pixels are part of an aeroplane
(if any)?




Things vs. Stuff Ted Adelson, Forsyth et al. 1996.

Thing (n): An object with a Stuff (n): Material defined by a
specific size and shape. homogeneous or repetitive pattern
of fine-scale properties, but has
no specific or distinctive spatial
extent or shape.

Slide: Geremy Heitz



Recognition Task

* Object Class Detection/Localization
— Where are the aeroplanes (if any)?

« Challenges

— Imaging factors e.g. lighting, pose,
occlusion, clutter

— Intra-class variation

« Compared to Classification
— Detailed prediction e.g. bounding box
— Location usually provided for training




Scale

Challenges




Challenges: Background Clutter




Challenges: Occlusion and truncation
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Challenges: Intra-class variation




Object Category Recognition by Learning

« Difficult to define model of a category. Instead, learn from
example images




Level of Supervision for Learning

Image-level label

Bounding box




Preview of typical results

aeroplane bicycle

car cow

motorbike



Class of model: Pictorial Structure

« Intuitive model of an object
 Model has two components
1. parts (2D image fragments) LEXS A

2. structure (configuration of parts)
« Dates back to Fischler & Elschlager 1973

MOUTH

Is this complexity of representation necessary ?

Which features?



Restrict deformations




Problem of background clutter

» Use a sub-window
— At correct position, no clutter is present
— Slide window to detect object
— Change size of window to search over scale




Outline

. Sliding window detectors

. Features and adding spatial information

. Histogram of Oriented Gradients (HOG)

. Two state of the art algorithms and PASCAL VOC

. The future and challenges
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Outline

. Sliding window detectors

« Start: feature/classifier agnostic
 Method

* Problems/limitations

Features and adding spatial information
Histogram of Oriented Gradients (HOG)

Two state of the art algorithms and PASCAL VOC

The future and challenges



Detection by Classification

« Basic component: binary classifier
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Detection by Classification

* Detect objects in clutter by search
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* Sliding window: exhaustive search over position and scale



Detection by Classification

* Detect objects in clutter by search
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* Sliding window: exhaustive search over position and scale



Detection by Classification

* Detect objects in clutter by search
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* Sliding window: exhaustive search over position and scale
(can use same size window over a spatial pyramid of images)



Window (Image) Classification

Training Data
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Feature
Extraction

Classifier
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* Features usually engineered
P(c|x) < F(x)

» Classifier learnt from data



Problems with sliding windows ...

e aspect ratio

e granularity (finite grid)

* partial occlusion

* multiple responses

See recent work by

* Christoph Lampert et al CVPR 08, ECCV 08




Outline

. Sliding window detectors

. Features and adding spatial information
Bag of visual word (BoW) models

Beyond BoW I: Constellation and ISM models
Beyond BoW II: Grids and spatial pyramids

. Histogram of Oriented Gradients (HOG)
. Two state of the art algorithms and PASCAL VOC

. The future and challenges



Recap: Bag of (visual) Words representation
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* Detect affine invariant local features (e.qg.
affine-Harris)

* Represent by high-dimensional
descriptors, e.g. 128-D for SIFT

* How to summarize sliding window content in
a fixed-length vector for classification?

1. Map descriptors onto a common
vocabulary of visual words

2. Representimage as a histogram over visual
words — a bag of words




Local region descriptors and visual words
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* Normalize regions to fixed size and shape

» Describe each region by a SIFT descriptor

* Vector quantize into visual words, e.g. using k-means

NB: aff. detectors/SIFT/visual words originally for view point invariant matching



Visual Words

Local Descriptors
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Example Visual Words




Intuition

Visual Vocabulary

* Visual words represent “iconic” image fragments
« Feature detectors and SIFT give invariance to local rotation and scale
 Discarding spatial information gives configuration invariance




Learning from positive ROl examples

[ ] Feature Vector [ ]



Sliding window detector

e Classifier: SVM with linear kernel
 BOW representation for ROI
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Example detections for dog
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Lampert et al CVPR 08



Discussion: ROl as a Bag of Visual Words

» Advantages

— No explicit modelling of spatial information ->
high level of invariance to position and
orientation in image

— Fixed length vector -> standard machine
learning methods applicable

» Disadvantages

— No explicit modelling of spatial information ->
less discriminative power

— Inferior to state of the art performance




Beyond BOW I: Pictorial Structure

« Intuitive model of an object
 Model has two components
1. parts (2D image fragments) LEXS a0

2. structure (configuration of parts)
« Dates back to Fischler & Elschlager 1973

MOUTH

Two approaches that have investigated this spring like model:
 Constellation model

* Implicit shape model



Spatial Models Considered

Fully connected shape

e.g. Constellation Model

Parts fully connected
Recognition complexity: O(NP)
Method: Exhaustive search

“Star” shape model

e.g. ISM

Parts mutually independent
Recognition complexity: O(NP)
Method: Gen. Hough Transform



Constellation model

Fergus, Perona & Zisserman,CVPR 03

 Explicit structure model — Joint Gaussian over all
part positions

 Part detector determines position and scale

« Simultaneous learning of parts and structure

 Learn from images alone using EM algorithm

Given detections: learn a
six part model by
optimizing part and
configuration similarity




Example — Learnt Motorbike Model

Samples from appearance model Shape model

Part 1 Det: 5x10-18
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Recognized Motorbikes
Shape model
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Airplanes

Airplane shape model
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Spotted cats

Spotted cat shape model
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Discussion: Constellation Model

« Advantages
— Works well for many different object categories

— Can adapt well to categories where
» Shape is more important
* Appearance is more important

— Everything is learned from training data
— Weakly-supervised training possible

* Disadvantages
— Model contains many parameters that need to be estimated
— Cost increases exponentially with increasing number of parameters
= Fully connected model restricted to small number of parts.



Implicit Shape Model (ISM)

Leibe, Leonardis, Schiele, 03/04

« Basic ideas
— Learn an appearance codebook

— Learn a star-topology structural model
« Features are considered independent given object centre

 Algorithm: probabilistic Generalized Hough Transform

Good engineering:

— Soft assignment

— Probabilistic voting

— Continuous Hough space



Codebook Representation

 Extraction of local object features

— Interest Points (e.g. Harris detector)
— Sparse representation of the object appearance

* Collect features from whole training set

« Example:

Class specific vocabulary
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Leibe & Schiele 03/04: Generalized Hough Transform

« Learning: for every cluster, store possible “occurrences”

« Recognition: for new image, let the matched patches vote for possible object
positions




Leibe & Schiele 03/04: Generalized Hough Transform

Interest Points Matched Codebook
Entries




Scale Voting: Efficient Computation
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Detection Results

 Qualitative Performance
— Recognizes different kinds of cars
— Robust to clutter, occlusion, low contrast, noise




Discussion: ISM and related models

Advantages

» Scale and rotation invariance
can be built into the
representation from the start

* Relatively cheap to learn and
test (inference)

» Works well for many different
object categories

« Max-margin extensions
possible, Maji & Malik, CVPR09

Disadvantages

» Requires searching for modes in the Hough space
 Similar to sliding window in this respect

* Is such a degree of invariance required? (many objects are horizontal)



Beyond BOW lI: Grids and spatial pyramids

Start from BoW for ROI

* no spatial information recorded

» sliding window detector
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Adding Spatial Information to Bag of Words

Bag of Words
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Keeps fixed length feature vector for a window

[Fergus et al, 2005]



Tiling defines (records) the spatial correspondence of the words

« parameter: number of tiles
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If codebook has V visual words, then representation has dimension 4V
Fergus et al ICCV 05



Spatial Pyramid — represent correspondence

1 BoW

4 BoW
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 As in scene/image classification can use pyramid kernel

[Grauman & Darrell, 2005] [Lazebnik et al, 2006]



Dense Visual Words

* Why extract only sparse image
fragments?

 Good where lots of invariance
IS needed, but not relevant to
sliding window detection?

 Extract dense visual words on an overlapping grid

[Luong & Malik, 1999]

. Quantize [Varma & Zisserman, 2003]
| —> Word [Vogel & Schiele, 2004]
[Jurie & Triggs, 2005]

[Fei-Fei & Perona, 2005]
Patch / SIFT [Bosch et al, 2006]

* More “detail” at the expense of invariance
* Pyramid histogram of visual words (PHOW)



Outline

. Sliding window detectors
. Features and adding spatial information

. Histogram of Oriented Gradients + linear SVM classifier

Dalal & Triggs pedestrian detector
HOG and history

Training an object detector

. Two state of the art algorithms and PASCAL VOC

. The future and challenges



Dalal & Triggs CVPR 2005 Pedestrian
detection

» Objective: detect (localize) standing humans in an image
» sliding window classifier

* train a binary classifier on whether a window contains a
standing person or not

 Histogram of Oriented Gradients (HOG) feature

e although HOG + SVM originally introduced for pedestrians
has been used very successfully for many object categories



Feature: Histogram of Oriented
Gradients (HOG)

_ dominant
Image direction HOG

« tile 64 x 128 pixel window into 8 x 8 pixel cells

frequency

 each cell represented by histogram over 8
orientation bins (i.e. angles in range 0-180 degrees) orientation



Histogram of Oriented Gradients (HOG) continued

Orientation Voting
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Input Image Gradient Image

L.ocal Normalization

» Adds a second level of overlapping spatial bins re-normalizing
orientation histograms over a larger spatial area

 Feature vector dimension (approx) = 16 x 8 (for tiling) x 8
(orientations) x 4 (for blocks) = 4096



Window (Image) Classification

Trammg Data

4 )
Feature _> _, | Classifier
Extraction F(x)
- J - J
i l
« HOG Features pedestrian/Non-pedestrian

« Linear SVM classifier P(c|x) o< F(x)






Averaged examples
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Classifier: linear SVM

Advantages of linear SVM: f(x) = W Xx+b

* Training (Learning)

* Very efficient packages for the linear case, e.g. LIBLINEAR for batch
training and Pegasos for on-line training.

« Complexity O(N) for N training points (cf O(N”3) for general SVM)
- Testing (Detection)
S
Non-linear f(X) = Eaik(xi,x) +b

S = # of support vectors
= (worst case ) N

size of training data

S
linear f(X) = EaiXiTX +b

=W x+b Independent of size of training data



Dalal and Triggs, CVPR 2005




Learned model

wx+b

f(x)
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What do negative weights mean?

wx >0
(W+-w)x>0

edestrian
ackground
model

pedestrianj’ 7~
model§}-+

| dmene 4 |

EXde

| | | %

Complete system should compete pedestrian/pillar/doorway models
Discriminative models come equipped with own bg

(avoid firing on doorways by penalizing vertical edges)

Slide from Deva Ramanan




Why does HOG + SVM work so well?

« Similar to SIFT, records spatial arrangement of histogram orientations
« Compare to learning only edges:

— Complex junctions can be represented

— Avoids problem of early thresholding

— Represents also soft internal gradients
» Older methods based on edges have become largely obsolete

* HOG gives fixed length vector for window,
suitable for feature vector for SVM




Chamfer Matching

Input Edges Template * Match points between template
and image

A== .
.)[{ = * Measure mean distance

o = N
P %L)_  Template edgel matches nearest
- image edgel

D(T,T) = &

T rnWJd(P7Q)

2
peT d&€

 Distance transform reduces min operation

Distance to array lookup
Transform o _
« Computable in linear time
* Localize by sliding window search
Best
match

[Gavrila & Philomin, 1999]



Chamfer Matching
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Hierarchy of Templates Detections

* In practice performs poorly in clutter

* Unoriented edges are not discriminative enough

(too easy to find...)
[Gavrila & Philomin, 1999]



Contour-fragment models
Shotton et al ICCV 05, Opelt et al ECCV 06

» Generalized Hough like representation using contour
fragments

« Contour fragments learnt from edges of training images

« Hough like voting for detection
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Training a sliding window detector

* Object detection is inherently asymmetric: much more
“non-object” than “object” data

» Classifier needs to have very low false positive rate
« Non-object category is very complex — need lots of data



Bootstrapping

1. Pick negative training
set at random

2. Train classifier
3. Run on training data

4. Add false positives to
training set

5. Repeat from 2

* Collect a finite but diverse set of non-object windows
* Force classifier to concentrate on hard negative examples

* For some classifiers can ensure equivalence to training on
entire data set



Example: train an upper body detector

— Training data — used for training and validation sets
« 33 Hollywood2 training movies
« 1122 frames with upper bodies marked

— First stage training (bootstrapping)
« 1607 upper body annotations jittered to 32k positive samples
« 55k negatives sampled from the same set of frames

— Second stage training (retraining)
« 150k hard negatives found in the training data




Training data — positive annotations




Positive windows
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Note: common size and alignment



Jittered positives




Jittered positives
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Random negatives
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Random negatives
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Window (Image) first stage classification

Jittered positives
—>

random negatives

- find high scoring false positives detections

\

-
HOG Featur

Extraction
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* these are the hard negatives for the next round of

training

« cost = # training images x inference on each image

" Linear SVM )
Classifier

. fX)=wx+b
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Hard negatives
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First stage performance on validation set
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* Precision: % of returned windows that ‘

* Recall: % of correct windows that are ‘

precision

Precision — Recall curve
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First stage performance on validation set
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Performance after retraining

Retrained (0.44) —o—
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Effects of retraining
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Side by side

before retraining after retraining




Side by side

before retraining after retraining




Side by side




Tracked ‘upper body detections
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Accelerating Sliding Window Search

« Sliding window search is slow because so many windows are
needed e.g. x x y x scale = 100,000 for a 320x240 image

* Most windows are clearly not the object class of interest

« Can we speed up the search?



Cascaded Classification

* Build a sequence of classifiers with increasing complexity

More complex, slower, lower false positive rate

1 f&te fade

Window l l l

Non-face Non-face Non-face
I

* Reject easy non-objects using simpler and faster classifiers

[Classifier] | [I@dasﬂ:if;ea] ;,[RB&SHWEH]_, Face




Cascaded Classification

* Slow expensive classifiers only applied to a few windows =»

significant speed-up

 Controlling classifier complexity/speed:

— Number of support vectors
— Number of features
— Type of SVM kernel

'Romdhani et al, 2001]
Viola & Jones, 2001]

Vedaldi et al, 2009]



Summary: Sliding Window Detection

« Can convert any image classifier into an
object detector by sliding window. Efficient
search methods available.

* Requirements for invariance are reduced by
searching over e.g. translation and scale

- Spatial correspondence can be " E L‘_:;,.,""’
“engineered in” by spatial tiling s-g:
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Outline

. Sliding window detectors

Features and adding spatial information
HOG + linear SVM classifier

Two state of the art algorithms and PASCAL VOC
VOC challenge

Vedaldi et al — multiple kernels and features, cascade

Felzenswalb et al — multiple parts, latent SVM

The future and challenges



The PASCAL Visual Object Classes
(VOC) Dataset and Challenge

Mark Everingham
Luc Van Gool
Chris Williams

John Winn

Andrew Zisserman

~‘ > PASCAL

‘ Pattern Analysis, Statistical Modelling and
Computational Learning



The PASCAL VOC Challenge

 Challenge in visual object
recognition funded by

PASCAL network of
excellence

 Publicly available dataset of
annotated images

« Main competitions in classification (is there an X in this
image), detection (where are the X’s), and segmentation
(which pixels belong to X)

 “Taster competitions™ in 2-D human “pose estimation” (2007-
present) and static action classes

« Standard evaluation protocol (software supplied)



Dataset Content

« 20 classes: aeroplane, bicycle, boat, bottle, bus, car, cat,
chair, cow, dining table, dog, horse, motorbike, person,
potted plant, sheep, train, TV

* Real images downloaded from flickr, not filtered for “quality”

« Complex scenes, scale, pose, lighting, occlusion, ...



Annotation

« Complete annotation of all objects

» Annotated in one session with written guidelines

personFrontal TruncDiff

OCCI Ud ed personOce
Obiject is significantly
occluded within BB

hicycleSideFaceRight Trunc

Truncated
Obiject extends
beyond BB

Difficult

Not scored in
evaluation

Pose
Facing left



Examples

Aeroplane Bicycle Bottle

catleftTrunc,




Examples

Horse Motorbike

| ' Lot

5 il

[T Ll

. personTrunc =

trainTruncDifficut
rsicRightTrunc.

shezpLett

Person

TV /Monito

pattedplant [ »
potiecplant



Main Challenge Tasks

* Classification

— |Is there a dog in this image?
— Evaluation by precision/recall

* Detection

— Localize all the people (if any) in
this image

— Evaluation by precision/recall
based on bounding box overlap




Detection: Evaluation of Bounding Boxes

 Area of Overlap (AO) Measure
Ground truth B,

Byt (1 Bpl
AO(Bgy, Bp) = Zotl15
N B O gt p) | Byt U Byl

Bgt p

Predicted Bp

> Threshold
50%

Detection if

-
-




Dataset Statistics

train val trainval test
Images Objects Images Objects Images Objects Images Objects

Aeroplane 201 267 206 266 407 533
Bicycle 167 232 181 236 348 468
Bird 262 381 243 379 505 760
Boat 170 270 155 267 325 537
Bottle 220 394 200 393 420 787
Bus 132 179 126 186 258 365
Car 372 664 358 653 730 1,317
Cat 266 308 277 314 543 622
Chair 338 716 330 713 668 1,429
Cow 86 164 86 172 172 336
Diningtable 140 153 131 153 271 306
Dog 316 391 333 392 649 783
Horse 161 237 167 245 328 482
Motorbike 171 235 167 234 338 469
Person 1,333 2,819 1,446 2,996 2,779 5815
Pottedplant 166 311 166 316 332 627
Sheep 67 163 64 175 131 338
Sofa 155 172 153 175 308 347
Train 164 190 160 191 324 381
Tvmonitor 180 259 173 257 353 516

Total 3,473 8,505 3,581 8,713 7,054 17,218 6,650 16,829




Bicycle

True Positives -

OXFORD_MKL

UoCTTI_LSVM-MDPM

NECUIUC_CLS-DTCT




False Positives - Bicycle

UoCTTI_LSVM-MDPM




True Positives — TV /monitor




False Positives — TV /monitor




Precision/Recall - Aeroplane
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Precision/Recall - Car
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AP by Class Detection
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Wide variety of methods: sliding window, combination with whole
image classifiers, segmentation based



Multiple Kernels for Object Detection

Andrea Vedaldi, Varun Gulshan,
Manik Varma, Andrew Zisserman

ICCV 2009



Approach

* Three stage cascade

J0)09A 9injesa4

Fast Linear SVM

Quasi-linear SVM

Non-linear SVM

\. J

----------------------

0
---------------------

— Each stage uses a more powerful and more expensive classifier
* Multiple kernel learning for the classifiers over multiple features

« Jumping window first stage



Multiple Kernel Classification

hi h
4 )
[ PHOW Gray ]I$ : :: [:%
111/ MK SVM
\ J
[ PHOW Color J : : : %
— combine one kernel per histogram
N
PHOG 11 . / /
[ )'f;> ...%g K (h,h') ZalKhz,hz
\ 2
[ PHOG Sym |$ T : : : % ) [Varma & Rai, 2007]
< \UEEY, [Gehler & Nowozin, 2009]
[ Visual Words J L1 11 %
X L1l
[ SSIM J 11
X L1l

E



Multiple Kernel Detection: Challenges

» Goal: sliding window MK classifier

— Inference space is huge
— #windows = 100 millions

— TMK = seconds

Image

Candidate region —

10}99A ainjeaq

MK SVM

Tk

Time required:
Tvk x #windows

Excruciatingly slow (days per image)



Cascade

( 1 eall full MK SVMs

® all look at all features

® trade-off speed and power by
L ) choosing the kernel structure

Y

Quasi-linear SVM

Fast Linear SVM

10)99A 3injea

\. J

e

Non-linear SVM

\. J




Architecture
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Cascade

10]00A a9injes4

Fast Linear SVM

Y

Quasi-linear SVM

Y




Non-linear sliding SVM

Image

Candidate region

10)09/, ainjea
103}29A poddng yj-i
SN

Time required:

#dimensions x #windows x #SVs

Support Vectors (SVs)

Training Data



Cascade

Fast Linear SVM

U

10]00A a9injes4

U

Non-linear SVM




Quasi-linear SVM

Image

Candidate region

10}09/, ainjea
103}09/ Joddng yj-1
SN

Time required:
#dimensions x #windows X @K

~_

#dimensions x #windows

Quasi-linear (or additive) kernel
decompose as:

d
K(Q?, y) — Z k(xja yj)
J=1
Thus SVM score rewrites:

Pre-compute look-up table.

Maiji, Berg, Malik, CVPR 08



Cascade

10]00A a9injes4

Y

Quasi-linear SVM

U

Non-linear SVM




Fast linear SVM

Image
4 N
Linear SVM score

Candidate region "

<

W)

J0}O9A 9injesa4

Time required:
#diny&ﬁns x #windows X 5’3&(

~_

#windows

N
J0)09A d9injesa4

Image
r
Pixel
.
4 N

Score map

Compute sum with
integral images

W)

Pre-compute
scores
for each pixel.



Jumping window

Tt

Position of visual word with pt to the bject

Training

learn the position/scale/aspect ratio of the ROI with respect to the visual word

Handles change of aspect ratio

Detection

T R SR TN

Hypothesis



SVMs overview

First stage

linear SVM
(or jumping window)
time: #windows

Second stage

quasi-linear SVM
X? kernel
time: #windows x #dimensions

Third stage

non-linear SVM

X?-RBF kernel

time:

#windows x #dimensions x #SVs

J0)O9A dinjesaqd

(

Fast Linear SVM

Y\

Quasi-linear SVM

\.

Non-linear SVM

J

llllllllllllllllllllll

----------------------
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Results




Single Kernel vs. Multiple Kernels

* Multiple Kernels gives substantial boost

* Multiple Kernel Learning:
— small improvement over averaging

— sparse feature selection 1 e VKL 50.4%
09 B T Ay L= avg 49.9%
— % — ssim39.1%
08 w/ — 2 — phog180 39.8%
07 1 — & — phog360 40.9%
— 3 — phowColor 42.6%
< 0.6 — + — phowGray 44.4%
2 05
o
Q.

04
0.2

0.1




Precision/Recall: VOC2009 Aeroplane

precision

09

08
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Object Detection with Discriminatively
Trained Part Based Models

Pedro F. Felzenszwalb, David Mcallester,
Deva Ramanan, Ross Girshick

PAMI 2010



Approach

» Mixture of deformable part-based models
— One component per “aspect” e.g. front/side view

« Each component has global template + deformable parts
* Discriminative training from bounding boxes alone



Example Model

* One component of person model

deformation

part filters

root filters
coarse resolution finer resolution

models



Starting Point: HOG Filter

p

Filter F

Score of F at position p is
F - @(p, H)

¢@(p, H) = concatenation of
| HOG features from
HOG pyramid H subwindow specified by p

« Search: sliding window over position and scale
 Feature extraction: HOG Descriptor
 Classifier: Linear SVM Dalal & Triggs [2005]



Object Hypothesis

* Position of root + each part
« Each part: HOG filter (at higher resolution)

Z = (po,..., Pn)
. location of root
. location of parts

scores minus

@ Score is sum of filter
deformation costs

» lmagepyramld - HOG feature pyramid



Score of a Hypothesis

Appearance term Spatial prior

score(po,...,pn)=ZF¢-¢(H,IJ7, Zd (dﬂ: dyz)
=0 1 I displacements

filters deformation parameters

score(z) = B - V(H, 2)
/ \

concatenation of filters concatenation of

and deformation HOG features and

parameters part displacement
features

* Linear classifier applied to feature subset defined by hypothesis



Training

 Training data = images + bounding boxes
* Need to learn: model structure, filters, deformation costs




Latent SVM (MI-SVM)

Classifiers that score an example x using

fs(z) = max (- ®(z,2)

ZGZ(«T) / '_: : 5.
3 are model parameters

* Which component?
z are latent values < - Where are the parts?

Training data D = ({(z1,91),-- -, (Tn,¥n)) ¥ €{-1,1}
We would like to find 8 such that: ¥ifs(z:) >0

Minimize

1 n
Lp(B) = §||)3||2 + CZmax(O, 1 —y;fa(x;))
1=1 SVM objective



Latent SVM Training

Lo(8) = 5181 + O3 max(0,1 - yifs(a:))

1=1

« Convex if we fix z for positive examples

» Optimization:
— Initialize f and iterate:
 Pick best z for each positive example
* Optimize g with z fixed

 Local minimum: needs good initialization
— Parts initialized heuristically from root

>

Alternation
strategy



Person Model

s
%
PEMA N K

part filters deformation

finer resolution

root filters
coarse resolution

models

Handles partial occlusion/truncation



Car Model

root filters part filters deformation
coarse resolution finer resolution models



Car Detections

high scoring true positives high scoring false positives




Person Detections

high scoring false positives
(not enough overlap)

high scoring true positives




Precision/Recall: VOC2008 Person

precision
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Precision/Recall: VOC2008 Bicycle
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Comparison of Models

precision
°o o
O, (o3}

o
-
T

0.3+

0.2+

0.1+

class: car, year 2006

~4—-1 Root (0.48)
2 Root (0.58)

1 Root+Parts (0.55)
—e— 2 Root+Parts (0.62)

—v— 2 Root+Parts+BB (0.64)

|

0.1 0.2

0.3

0.4
recall

0.5

0.6

0.7



Summary

* Multiple features and multiple kernels boost
performance

* Discriminative learning of model with latent
variables for single feature (HOG):

— Latent variables can learn best alignment in the
ROI training annotation

— Parts can be thought of as local SIFT vectors

— Some similarities to Implicit Shape Model/
Constellation models but with discriminative/
careful training throughout

FIGEE
ARAR KN

-
alelv]»

NB: Code available for latent model !



Outline

. Sliding window detectors

. Features and adding spatial information

. HOG + linear SVM classifier

. Two state of the art algorithms and PASCAL VOC

. The future and challenges



Current Research Challenges

» Context
— from scene properties: GIST, BoW, stuff
— from other objects
— from geometry of scene, e.g. Hoiem et al CVPR 06

* Occlusion/truncation
— Winn & Shotton, Layout Consistent Random Field, CVPR 06
— Vedaldi & Zisserman, NIPS 09
— Yang et al, Layered Object Detection, CVPR 10

* 3D

« Scaling up — thousands of classes
— Torralba et al, Feature sharing
— ImageNet

* Weak and noisy supervision






Pictorial structure model re-visited:
efficient fitting

MOUTH

Let’s have a closer look at the LSVM deformable part-based model...



Object Hypothesis

* Position of root + each part
« Each part: HOG filter (at higher resolution)

Z = (po,..., Pn)
. location of root
. location of parts

scores minus

@ Score is sum of filter
deformation costs

» lmagepyramld - HOG feature pyramid



What is the cost of fitting the PS model?

* For fixed (learned) F, and d,
 For simplicity, consider only single scale of the pyramid
 Parts can appear anywhere in the image (h=number of pixels)

Appearance term Spatial prior

score(po, ... ,Pn) = ZR -d(H, p;) — Zdi : (dwz?ady?)
— ;

1 1=1 1 displacements
filters deformation parameters
po: location of root p; = (X;, ¥;)
: X. = X.— X
p1,..., Pn : location of parts ax; 70
ay; = y,— Yo

Fitting cost: Naive search is O(nh?)



What is the cost of fitting the PS model?

* For fixed (learned) F, and d,
 For simplicity, consider only single scale of the pyramid
 Parts can appear anywhere in the image (h=number of pixels)

Appearance term Spatial prior

score(po, ..., pn) = ¥ Fy - ¢(H, p;) Zd - (dz?, dy?)
'=01 1 displacements

filters deformation parameters

Fitting cost: Naive search is O(nh?)

Need to evaluate the deformation cost of each part with respect to
the root.

Can be done in O(nh)



Special case of a more general problem

Appearance term Spatial prior

score(pg, . . . ,Pn) = ZF - d(H, p;) —Zd - (dx3, dyy)
1 1=1 1 displacements

filters deformation parameters

Maximization of the PS score can be re-written as a minimization of
the following cost function on a “star” graph:

F(x)= > mi(v;)) + > o(vi,v;)
v; eV e ;€L

e Graph (V, E)

e Verticesvy; forie=1,...,n

e Edges ¢;; connect v; to other vertices v.



Dynamic programming on graphs
e Graph (V, FE)
e Verticesv; for:=1,...,n

e Edges ¢;; connect v; to other vertices v;

F(x)= > mi(v))+ > o(v,v;)

v; €V e ;€L



Dynamic programming - review

Discrete optimization

Each variable x has a finite number of possible
states

Applies to problems that can be decomposed into a
sequence of stages

Each stage expressed in terms of results of fixed
number of previous stages

The cost function need not be convex
The name “dynamic” is historical
Also called the “Viterbi” algorithm

O @66 w66 6

Let’s first consider a chain:




Consider a cost function f(x) : ]Rn — R of the form

n n
f&x) =) mi(z) + ) di(xi—1,z;)
1=1 1=2
where x; can take one of h values +rellis
e.g. h=5, n=6 find
shortest
path

m1(z1) + ma(z2) + m3(z3) + ma(za) + ms(zs) + me(zs)
f(X) — { ¢(z1,z2) + (2, 23) + ¢(z3, 24) + d(z4,25) + ¢(xs, T6)

Complexity of minimization:
« exhaustive search O(h")

* dynamic programming O(nh2)



n

f(x)= > mi(z;) + Xn: ¢(zi—1, ;)
i=2

=1

Key idea: the optimization can be broken down into n sub-optimizations

Step 1: For each value of zo determine the best value of z1

e Compute

Sa(z2) min{mz(z2) + mi(21) + ¢(21,22)}

ma(22) + min{m1(z1) + ¢(z1,22)}

e Record the value of z1 for which S2(z2) is @ minimum

To compute this minimum for all z, involves O(k?) operations



Step 2: For each value of z3 determine the best value of zo and z;

e Compute

S3(z3) = ma(z3) + min{Sa(z2) + ¢(z2, 23)}

e Record the value of zo for which S3(z3) is @ minimum

Again, to compute this minimum for all 3 involves O(h2) operations
Note Si(zp) encodes the lowest cost partial sum for all nodes up to k&
which have the value z; at node k, i.e.

k k
Sp(zr) = min > mi(z;) + > ¢(zi_1,2;)

H rk I 1y YOURRR 4 A
15%2502%k o1 i=2



Viterbi Algorithm

e Initialize S1(z1) = m1(z1)
e FOork=2:n

Sp(zr) = mi(zr) + Min{Sk—1(zk-1) + ¢(zk—1,2k)}
br(zk) arg min{Sy_1(zx—1) + ¢(zp—1, )}

Th—1

e [erminate

x, = arg min Sn(zn)

e Backtrack

z;—1 = b;j(z;)

Complexity O(nh?)



Dynamic programming on graphs
e Graph (V, FE)
e Verticesv; for:=1,...,n

e Edges ¢;; connect v; to other vertices v;

F(x)= > mi(v))+ > o(v,v;)

v; €V e ;€L

So far have considered chains

O @66 w666




Different graph structures

Can use dynamic programming

Fully connected Tree structure Star structure
O(hn) O(nh?) O(nh?)
n parts

h positions (e.g. every pixel for translation)



Distance transforms for DP



Special case of DP cost function

* Distance transforms
— O(nh?) = O(nh) for DP cost functions

— Assume model is quadratic, i.e. ¢(wk_1 Cﬂk) — )\2(%_1 o wkz)Q

Recall that we need to compute

mMin{Sy_1(zx—1) + ¢(xr—_1,71)}

Lk—1

e.g. for £ = 2, compute for each value of x5

rgiln{ml(:cl) + ¢(z1,72)}

Plot ming, {mi(x1) + ¢(x1,22)} as function of x5



Plot ming,{m1(xz1) + ¢(x1,x2)} as function of x5
¢(r1 = a,x2)
= \2(z5 — a)?
A2(z5 — b)?

__}_l%
+ 8
l—.\
T
T <
—




Plot ming,{m1(x1) + ¢(x1,x2)} as function of x5

IIIIIIIIIIIIIIIIIIIII=X2

For each x5
- Finding min over x, is equivalent finding minimum over set of offset parabolas
« Lower envelope computed in O(h) rather than O(h2) via distance transform

Felzenszwalb and Huttenlocher '05



Plot ming,{m1(x1) + ¢(x1,x2)} as function of x5

||||=)(1

IIIIIIIIIIIIIIIIIIIII=X2

For each x5
- Finding min over x, is equivalent finding minimum over set of offset parabolas
« Lower envelope computed in O(h) rather than O(h2) via distance transform

Felzenszwalb and Huttenlocher '05



Generalized distance transform

Given a function f:G—R,

Dy(q) = min (llg = 2l + £ ()

— for each location ¢, find nearby location p with f(p) small.

— equals DT of points P if f is an indicator function.

f(p) = {O Tpe P.

~c otherwise



1D Examples
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1D Examples
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There is a simple geometric algorithm that computes Df(p) N
O(h) time for the 1D case.

— similar to Graham's scan convex hull algorithm.

— about 20 lines of C code.

The 2D case is ‘“separable”, it can be solved by sequential 1D
transformations along rows and columns of the grid.

See Distance Transforms of Sampled Functions, Felzen-
szwalb and Huttenlocher.



“Lower Envelope” Algorithm

Add first Add second

\ Try adding third
Remove second

Try again and add




Algorithm for Lower Envelope

« Quadratics ordered left to right
« At step j consider adding j-th quadratic to LE of first j-1 quadratics

— Maintain two ordered lists
* Quadratics currently visible on LE
* Intersections currently visible on LE

— Compute intersection of j-th quadratic and rightmost quadratic visible on LE

« If to right of rightmost visible intersection, add quadratic and
intersection to lists

* If not, this quadratic hides at least rightmost quadratic, remove it and try
again

Code available online: http://people.cs.uchicago.edu/~pff/dt/



Running Time of LE Algorithm

« Considers adding each of h quadratics just once
— Intersection and comparison constant time
— Adding to lists constant time
— Removing from lists constant time
« But then need to try again

« Simple amortized analysis
— Total number of removals O(h)
» Each quadratic once removed never considered for removal again

* Thus overall running time O(h)



Coming back to fitting pictorial structures

Appearance term Spatial prior

score(pg, . . . ,Pn) = ZF - d(H, p;) —Zd - (dx3, dyy)
1 1=1 1 displacements

filters deformation parameters

Maximization of the PS score can be re-written as a minimization of
the following cost function on a “star” graph:

F(x)= > mi(v;)) + > o(vi,v;)

v; eV e ;€L

As the spatial prior is a quadratic function of part
positions, (x;, y;), finding the optimal configuration

of parts can be done in O(nh) time, instead of
naive O(nh?).




Part Detection

iInput image

head filter
Response of filter in I-th pyramid level

Ry(z,y) =F - ¢(H,(z,y,1))
cross-correlation

Transformed response
Di(z,y) = max (Ri(z + dz,y + dy) — d; - (da”, dy”))

Distance transform computed in linear time
(spreading, local max, etc)




System

model

feature map at twice the resolution

lresponse of part fitters

transformed responses

response of root filter

>\ .
+ .

color encoding of filter
response values
root locations



Other applications of PS models:
facial feature detection in images

Model

The goal: Localize facial features in faces
v output by face detector

e Parts V= {v,, ... v,;}

« Connected by springs in a star configuration to
nose (can be a tree)

« Quadratic cost for springs

high spring cost




Example part localizations in video




Example of a model with 9 parts

Support parts-based face descriptors
Provide initialization for global face descriptors

Code available online: http://www.robots.ox.ac.uk/~vgg/research/nface/index.html



Example lI: Hand tracking for sign language
interpretation

3
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Pose estimation for sign
language recognition

Signer 1

(5 min of an one hour sequence)

Distinctive frames are marked by a “D”
Buehler et al. BMVC’2008 in the upper right corner




Summary

* Pictorial structure models with tree configuration of parts can
be fitted in O(nh?). {(n=number of parts, h=number of pixels}

 For quadratic pair-wise terms this can be reduced to O(nh).

 This can lead to significant speed-ups if h is large (e.qg.
number of pixels).

Other applications:
* Facial feature finding
* Fitting articulated models



