Category-level localization

Josef Sivic

http://www.di.ens.fr/~josef
INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548
Laboratoire d'Informatique, Ecole Normale Supérieure, Paris

Includes slides from: Ondra Chum, Alyosha Efros, Mark Everingham, Pedro Felzenszwalb, Rob Fergus, Kristen Grauman, Bastian Leibe, Ivan Laptev, Fei-Fei Li, Marcin Marszalek, Pietro Perona, Deva Ramanan, Bernt Schiele, Jamie Shotton, Andrea Vedaldi and Andrew Zisserman

Announcements

- Assignments 1 and 2 due today.
- Solutions for both will be posted online this week.
- Assignment 3 is out:

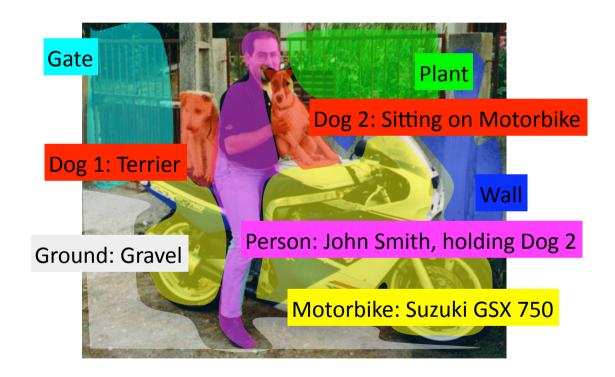
http://www.di.ens.fr/willow/teaching/recvis10/assignment3/

Final projects are out:

http://www.di.ens.fr/willow/teaching/recvis10/final_project/

What we would like to be able to do...

- Visual scene understanding
- What is in the image and where



Object categories, identities, properties, activities, relations, ...

Recognition Tasks

- Image Classification
 - Does the image contain an aeroplane?

- Object Class Detection/Localization
 - Where are the aeroplanes (if any)?

- Object Class Segmentation
 - Which pixels are part of an aeroplane (if any)?



Things vs. Stuff

Ted Adelson, Forsyth et al. 1996.

Stuff (n): Material defined by a homogeneous or repetitive pattern of fine-scale properties, but has no specific or distinctive spatial extent or shape.

Slide: Geremy Heitz

Recognition Task

Object Class Detection/Localization

– Where are the aeroplanes (if any)?

Challenges

- Imaging factors e.g. lighting, pose, occlusion, clutter
- Intra-class variation

Compared to Classification

- Detailed prediction e.g. bounding box
- Location usually provided for training

Challenges: Scale

Challenges: Background Clutter

Challenges: Occlusion and truncation

Challenges: Intra-class variation

Object Category Recognition by Learning

Difficult to define model of a category. Instead, <u>learn</u> from <u>example images</u>

Level of Supervision for Learning

Image-level label

Pixel-level segmentation

Bounding box

"Parts"

Preview of typical results

bicycle

aeroplane

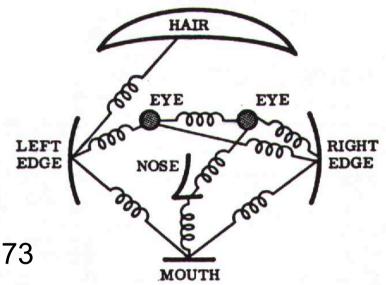
car

cow

horse motorbike

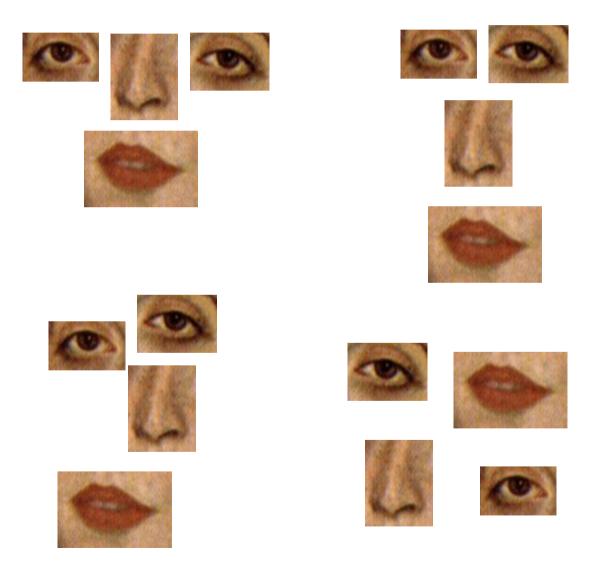
Class of model: Pictorial Structure

- Intuitive model of an object
- Model has two components
 - 1. parts (2D image fragments)
 - 2. structure (configuration of parts)
- Dates back to Fischler & Elschlager 1973



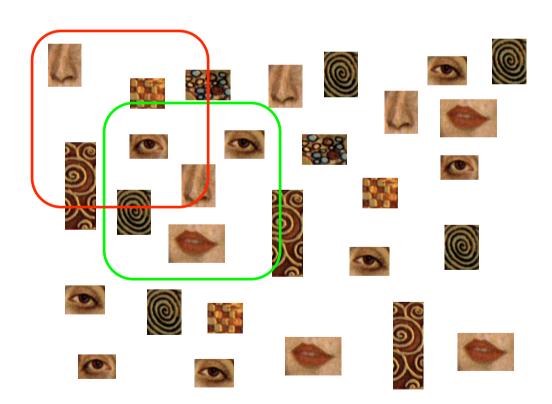
Is this complexity of representation necessary?
Which features?

Restrict deformations



Problem of background clutter

- Use a sub-window
 - At correct position, no clutter is present
 - Slide window to detect object
 - Change size of window to search over scale



Outline

1. Sliding window detectors

2. Features and adding spatial information

3. Histogram of Oriented Gradients (HOG)

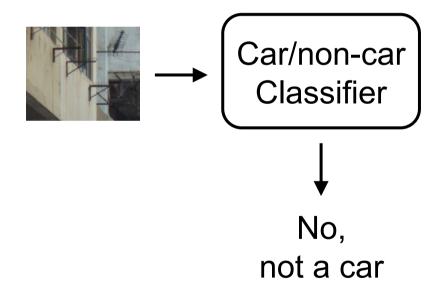
4. Two state of the art algorithms and PASCAL VOC

5. The future and challenges

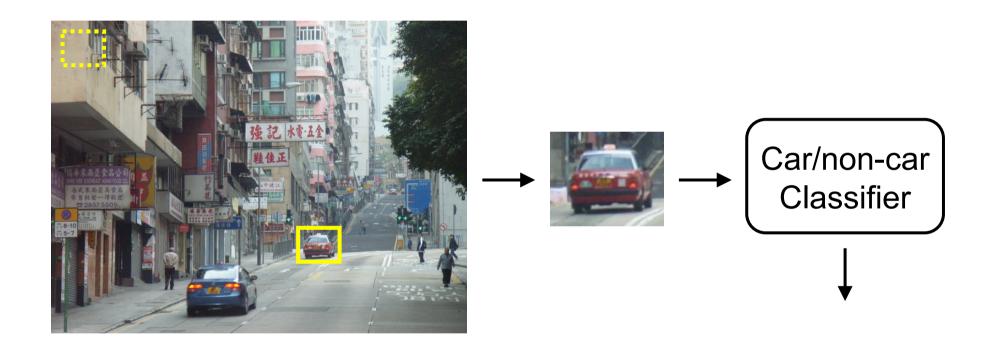
Outline

- 1. Sliding window detectors
 - Start: feature/classifier agnostic
 - Method
 - Problems/limitations
- 2. Features and adding spatial information
- 3. Histogram of Oriented Gradients (HOG)
- 4. Two state of the art algorithms and PASCAL VOC
- 5. The future and challenges

Basic component: binary classifier

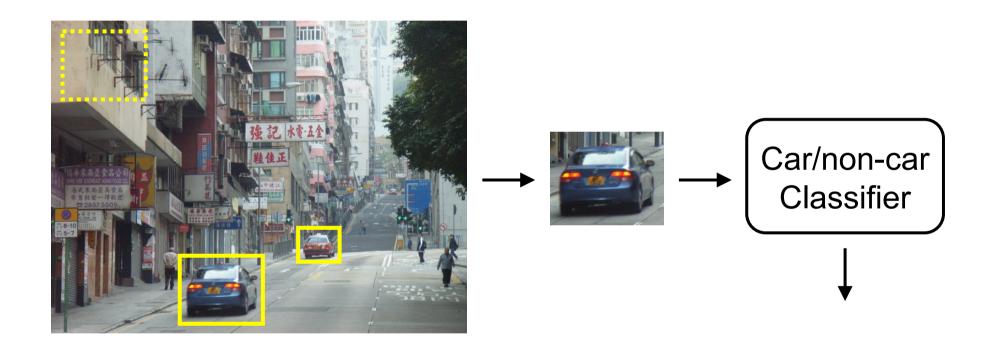


• Detect objects in clutter by **search**



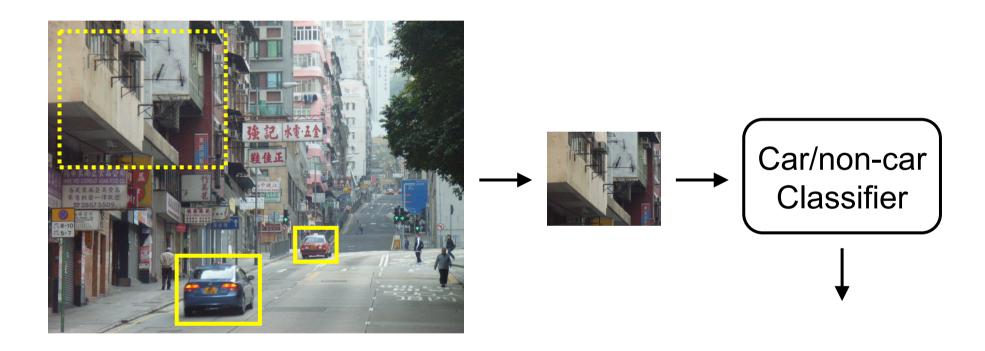
• Sliding window: exhaustive search over position and scale

• Detect objects in clutter by **search**



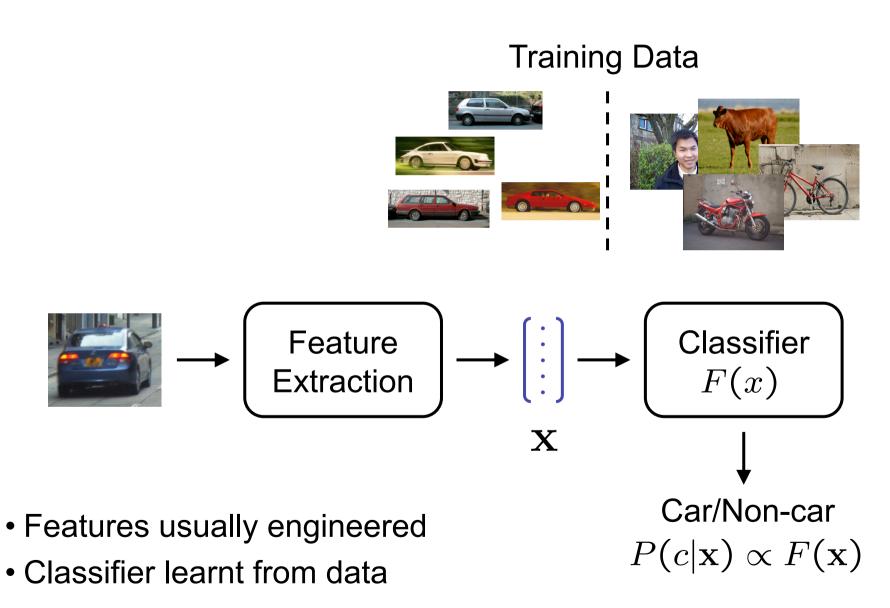
• Sliding window: exhaustive search over position and scale

Detect objects in clutter by <u>search</u>



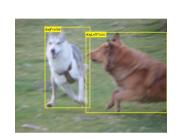
• Sliding window: exhaustive search over position and scale (can use same size window over a spatial pyramid of images)

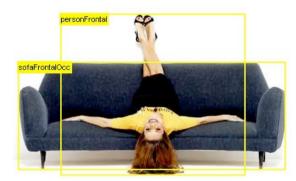
Window (Image) Classification



Problems with sliding windows ...

- aspect ratio
- granularity (finite grid)
- partial occlusion
- multiple responses





See recent work by

Christoph Lampert et al CVPR 08, ECCV 08



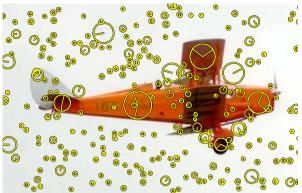
Outline

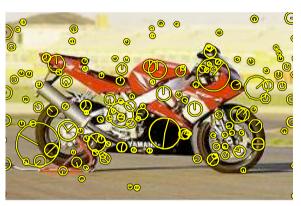
- 1. Sliding window detectors
- 2. Features and adding spatial information
 - Bag of visual word (BoW) models
 - Beyond BoW I: Constellation and ISM models
 - Beyond BoW II: Grids and spatial pyramids
- 3. Histogram of Oriented Gradients (HOG)
- 4. Two state of the art algorithms and PASCAL VOC
- 5. The future and challenges

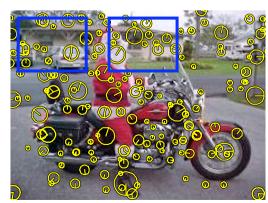
Recap: Bag of (visual) Words representation

- Detect affine invariant local features (e.g. affine-Harris)
- Represent by high-dimensional descriptors, e.g. 128-D for SIFT
- How to summarize sliding window content in a fixed-length vector for classification?

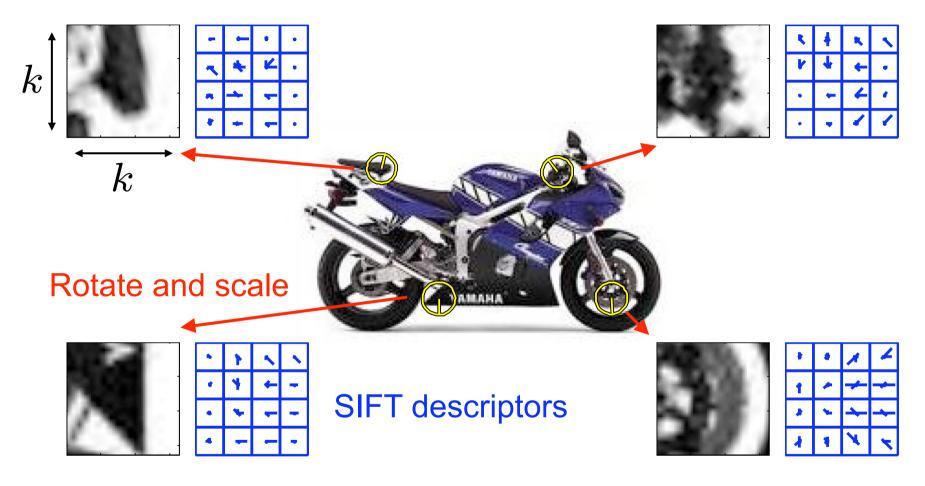
- Map descriptors onto a common vocabulary of visual words
- Represent image as a histogram over visual words a bag of words







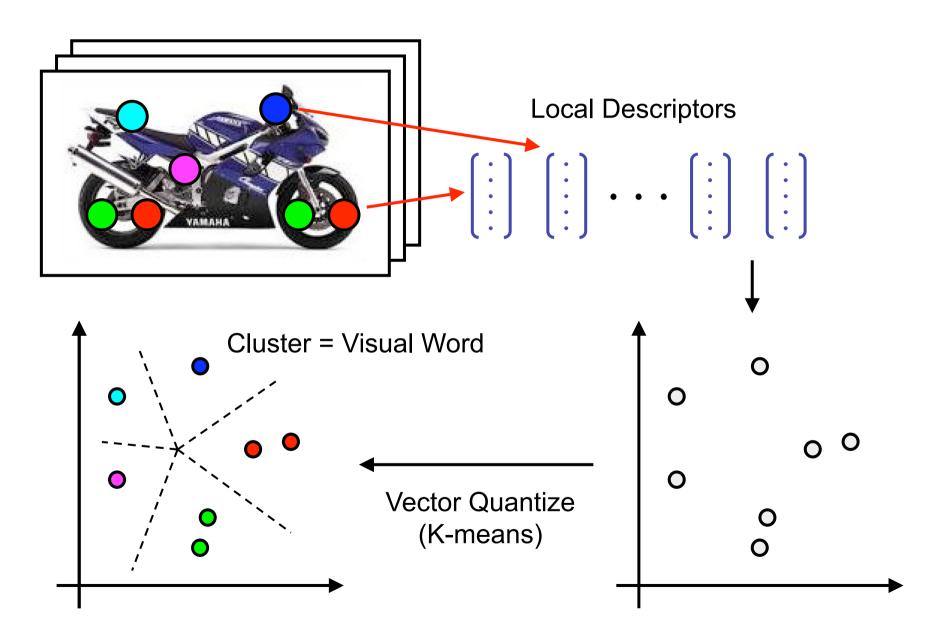
Local region descriptors and visual words



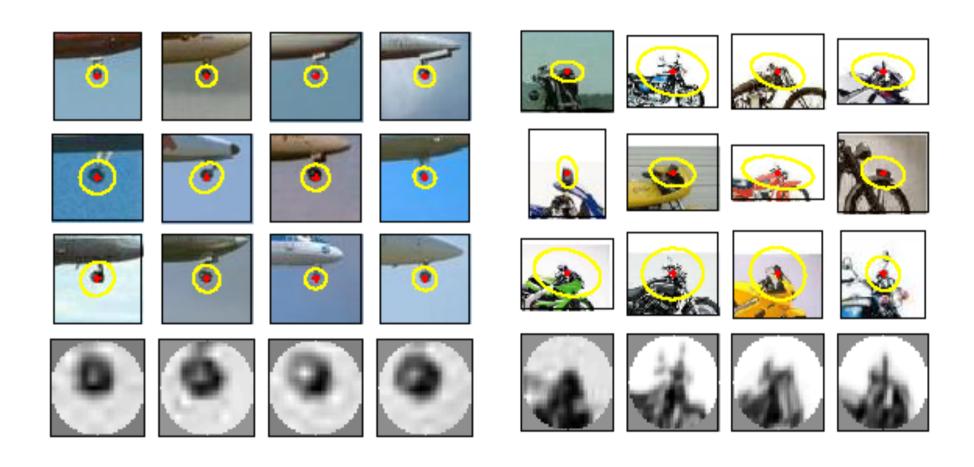
- Normalize regions to fixed size and shape
- Describe each region by a SIFT descriptor
- Vector quantize into visual words, e.g. using k-means

NB: aff. detectors/SIFT/visual words originally for view point invariant matching

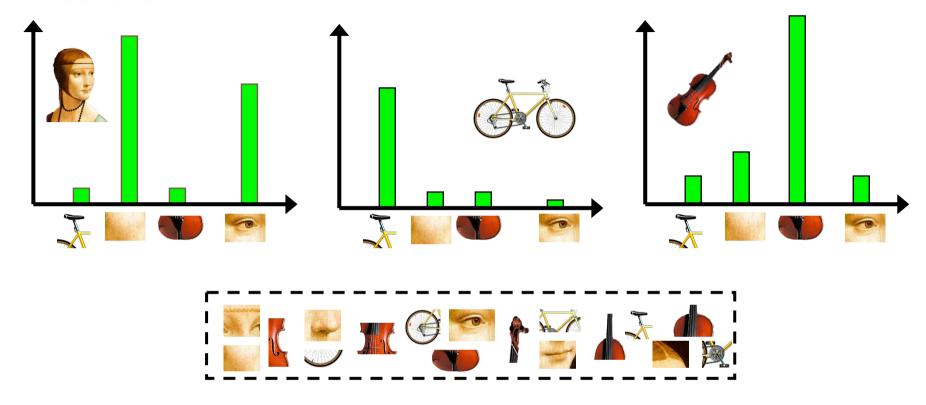
Visual Words



Example Visual Words

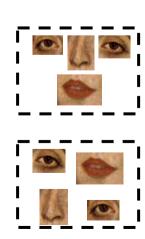


Intuition

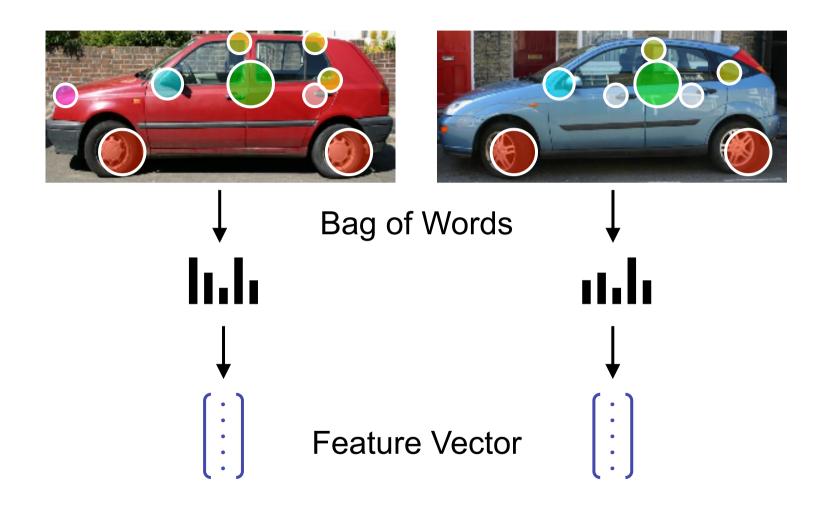


Visual Vocabulary

- Visual words represent "iconic" image fragments
- Feature detectors and SIFT give invariance to local rotation and scale
- Discarding spatial information gives configuration invariance

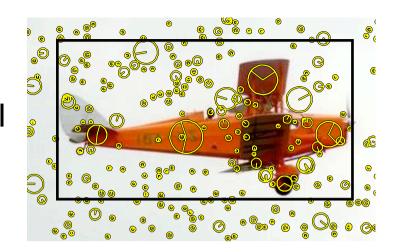


Learning from positive ROI examples

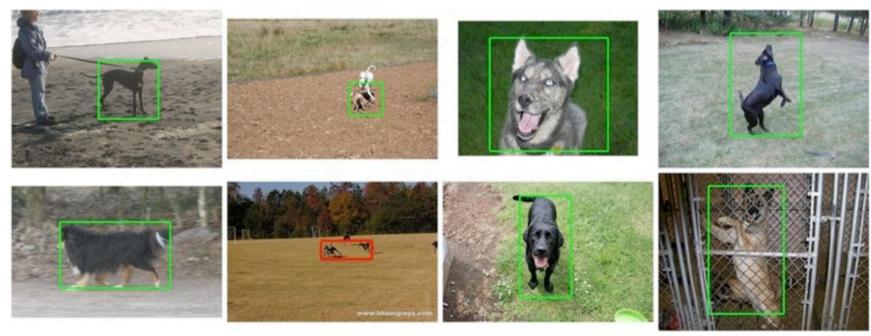


Sliding window detector

- Classifier: SVM with linear kernel
- BOW representation for ROI



Example detections for dog



Lampert et al CVPR 08

Discussion: ROI as a Bag of Visual Words

Advantages

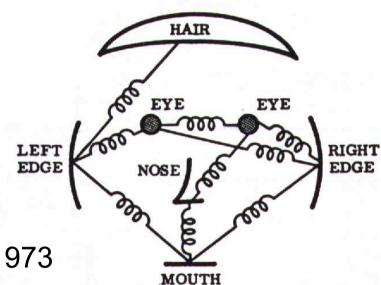
- No explicit modelling of spatial information -> high level of invariance to position and orientation in image
- Fixed length vector -> standard machine learning methods applicable

Disadvantages

- No explicit modelling of spatial information -> less discriminative power
- Inferior to state of the art performance

Beyond BOW I: Pictorial Structure

- Intuitive model of an object
- Model has two components
 - 1. parts (2D image fragments)
 - 2. structure (configuration of parts)
- Dates back to Fischler & Elschlager 1973

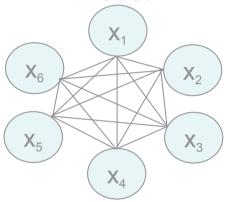


Two approaches that have investigated this spring like model:

- Constellation model
- Implicit shape model

Spatial Models Considered

Fully connected shape model

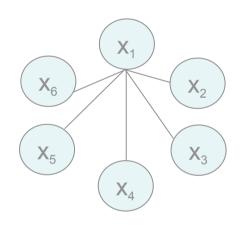


e.g. Constellation Model
Parts fully connected

Recognition complexity: O(N^P)

Method: Exhaustive search

"Star" shape model



e.g. ISM

Parts mutually independent

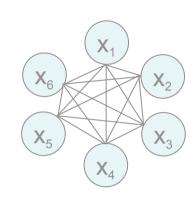
Recognition complexity: O(NP)

Method: Gen. Hough Transform

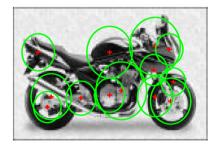
Constellation model

Fergus, Perona & Zisserman, CVPR 03

- Explicit structure model Joint Gaussian over all part positions
- Part detector determines position and scale
- Simultaneous learning of parts and structure
- Learn from images alone using EM algorithm

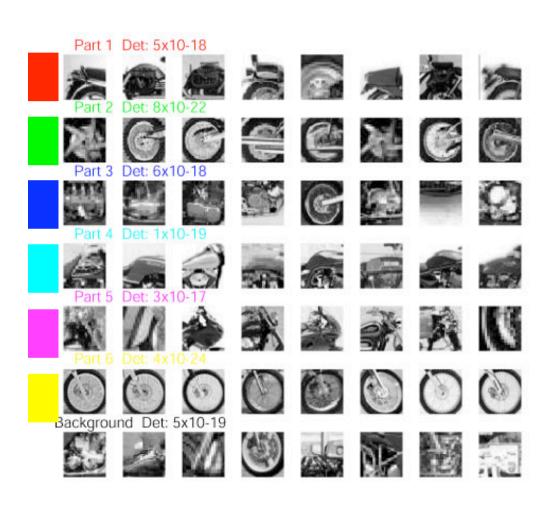


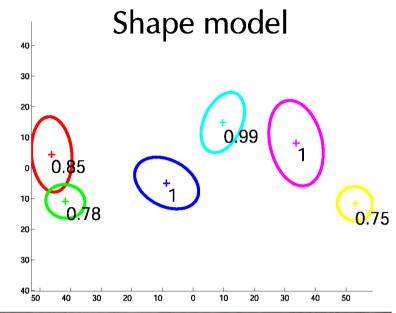
Given detections: learn a six part model by optimizing part and configuration similarity



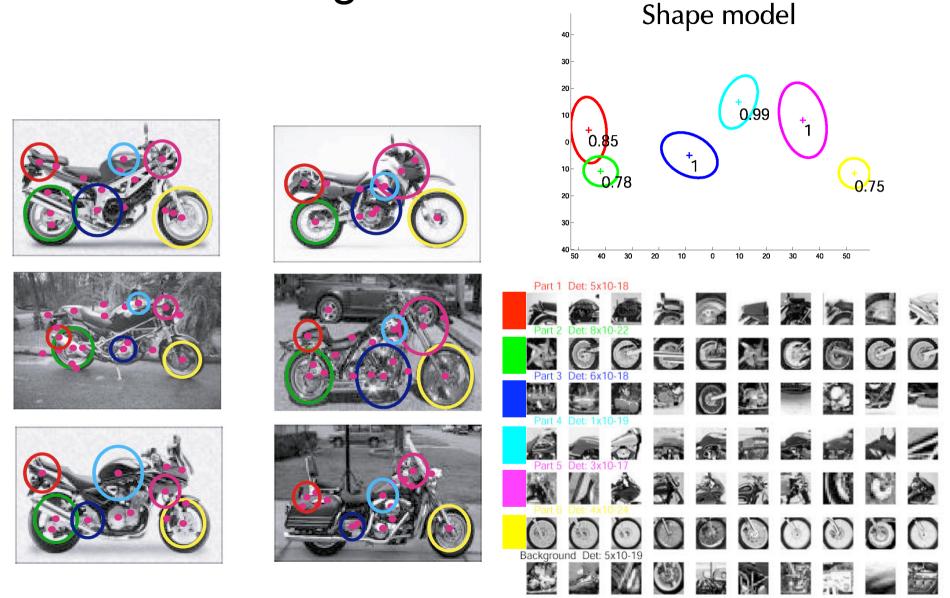
Example – Learnt Motorbike Model

Samples from appearance model



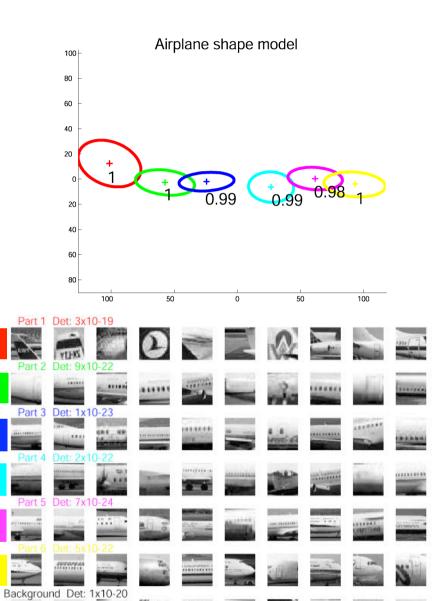


Recognized Motorbikes

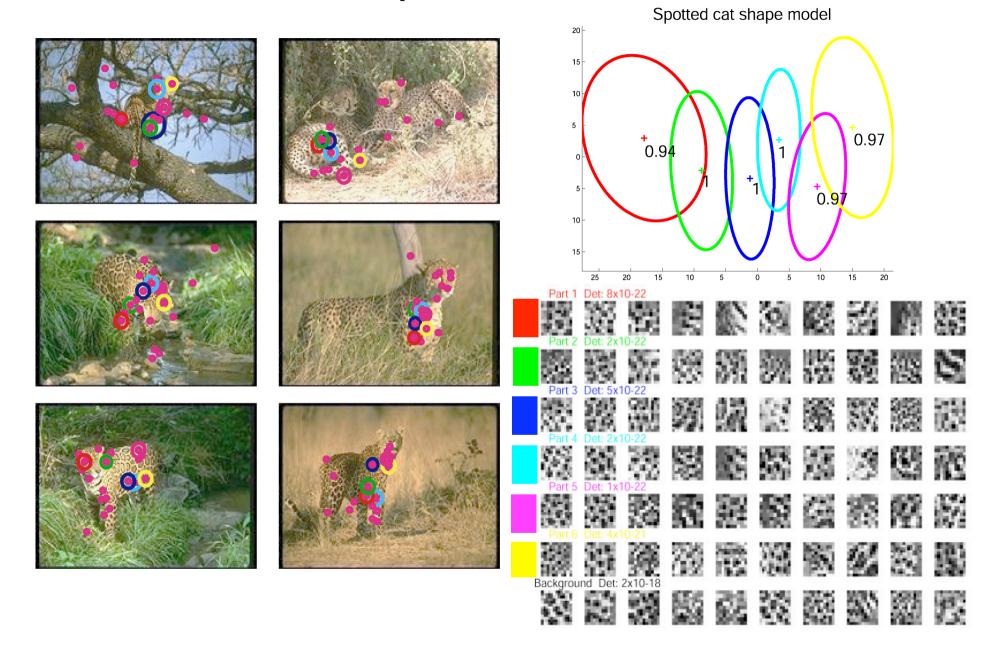


position of object determined

Airplanes



Spotted cats



Discussion: Constellation Model

Advantages

- Works well for many different object categories
- Can adapt well to categories where
 - Shape is more important
 - Appearance is more important
- Everything is learned from training data
- Weakly-supervised training possible

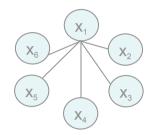
Disadvantages

- Model contains many parameters that need to be estimated
- Cost increases exponentially with increasing number of parameters
- ⇒ Fully connected model restricted to small number of parts.

Implicit Shape Model (ISM)

Leibe, Leonardis, Schiele, 03/04

- Basic ideas
 - Learn an appearance codebook
 - Learn a star-topology structural model
 - Features are considered independent given object centre

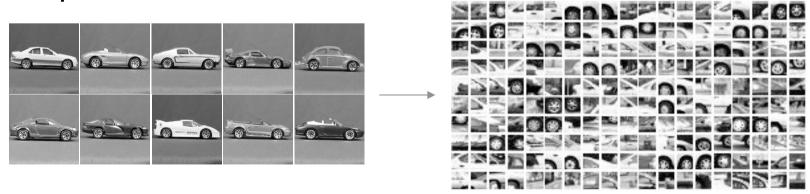


- Algorithm: probabilistic Generalized Hough Transform
 - Good engineering:
 - Soft assignment
 - Probabilistic voting
 - Continuous Hough space

Codebook Representation

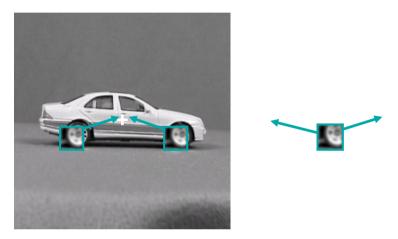
- Extraction of local object features
 - Interest Points (e.g. Harris detector)
 - Sparse representation of the object appearance

- Collect features from whole training set
- Example:

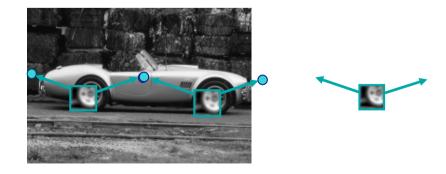


Leibe & Schiele 03/04: Generalized Hough Transform

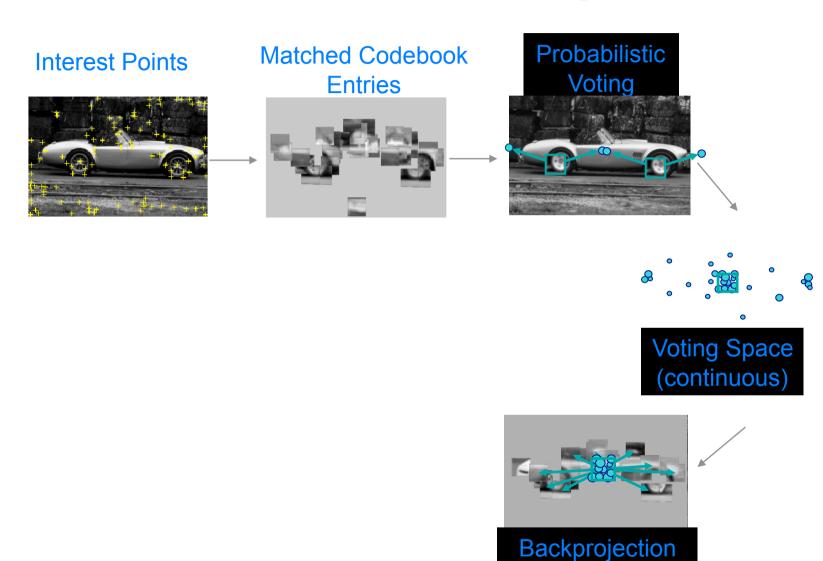
Learning: for every cluster, store possible "occurrences"



 Recognition: for new image, let the matched patches vote for possible object positions

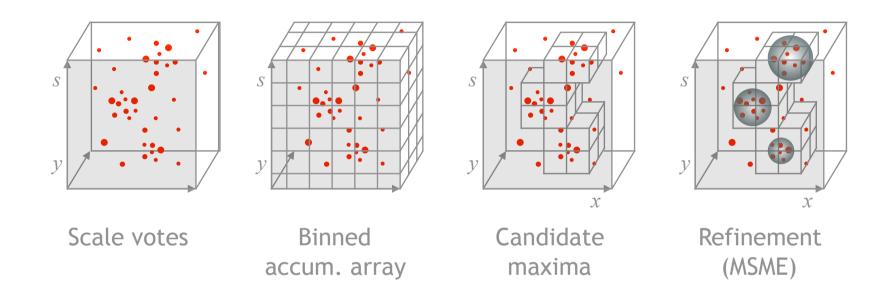


Leibe & Schiele 03/04: Generalized Hough Transform



of Maximum

Scale Voting: Efficient Computation



- Mean-Shift formulation for refinement
 - Scale-adaptive balloon density estimator

$$\hat{p}(o_n, x) = \frac{1}{V_b} \sum_k \sum_j p(o_n, x_j | f_k, \ell_k) K(\frac{x - x_j}{b})$$

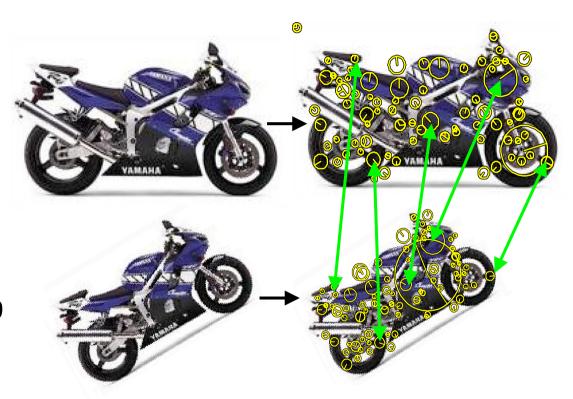
Detection Results

- Qualitative Performance
 - Recognizes different kinds of cars
 - Robust to clutter, occlusion, low contrast, noise

Discussion: ISM and related models

Advantages

- Scale and rotation invariance can be built into the representation from the start
- Relatively cheap to learn and test (inference)
- Works well for many different object categories
- Max-margin extensions possible, Maji & Malik, CVPR09



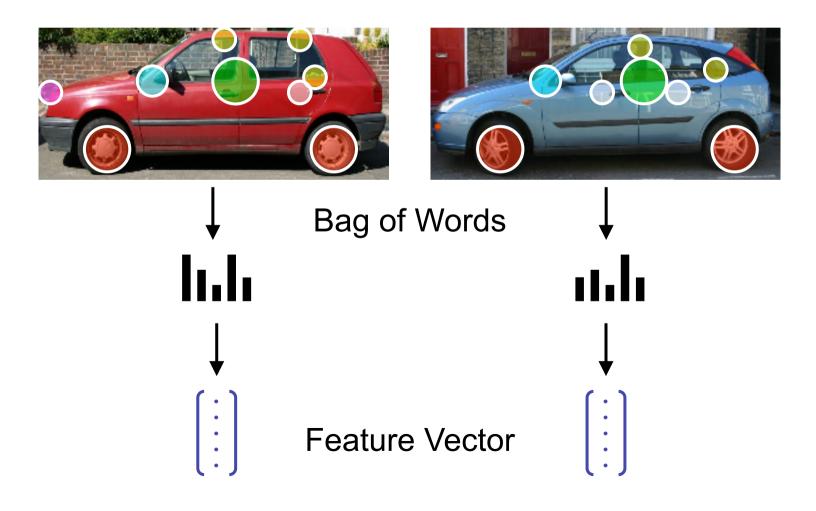
Disadvantages

- Requires searching for modes in the Hough space
- Similar to sliding window in this respect
- Is such a degree of invariance required? (many objects are horizontal)

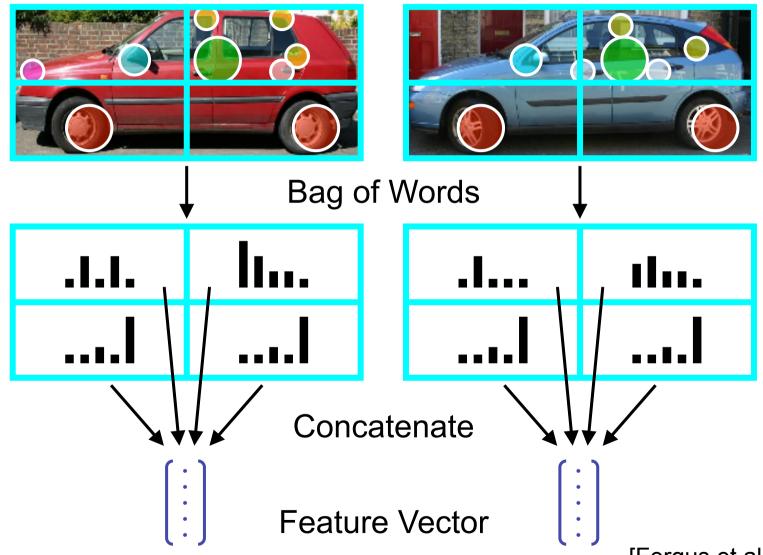
Beyond BOW II: Grids and spatial pyramids

Start from BoW for ROI

- no spatial information recorded
- sliding window detector

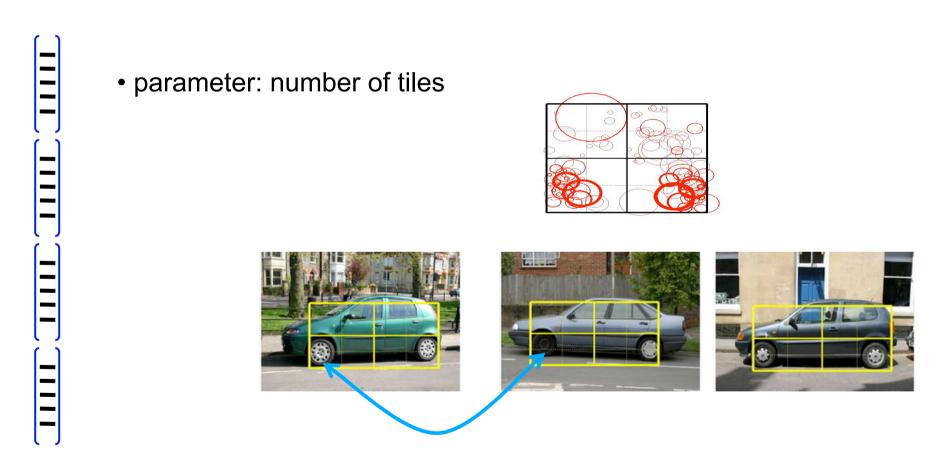


Adding Spatial Information to Bag of Words



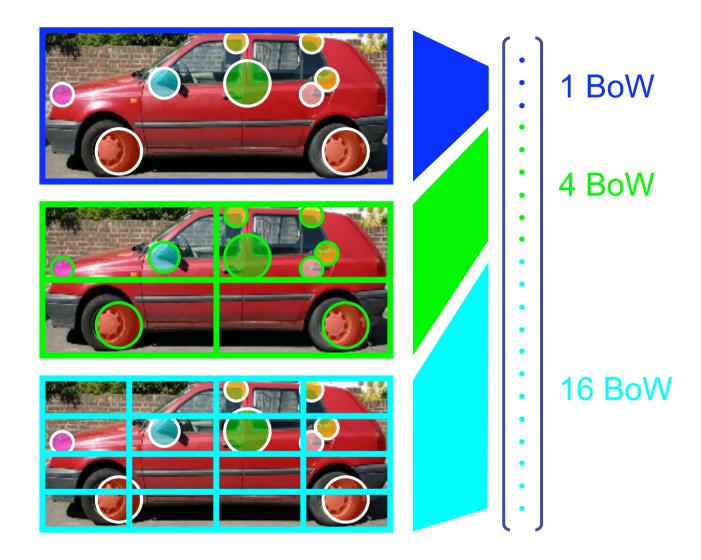
[Fergus et al, 2005]

Tiling defines (records) the spatial correspondence of the words



If codebook has V visual words, then representation has dimension 4V Fergus et al ICCV 05

Spatial Pyramid – represent correspondence

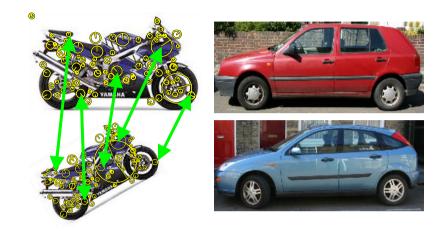


As in scene/image classification can use pyramid kernel

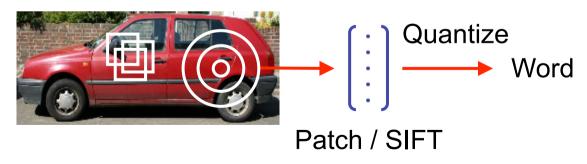
[Grauman & Darrell, 2005] [Lazebnik et al, 2006]

Dense Visual Words

- Why extract only sparse image fragments?
- Good where lots of invariance is needed, but not relevant to sliding window detection?



Extract dense visual words on an overlapping grid



- [Luong & Malik, 1999]
 [Varma & Zisserman, 2003]
 [Vogel & Schiele, 2004]
 [Jurie & Triggs, 2005]
 [Fei-Fei & Perona, 2005]
 [Bosch et al, 2006]
- More "detail" at the expense of invariance
- Pyramid histogram of visual words (PHOW)

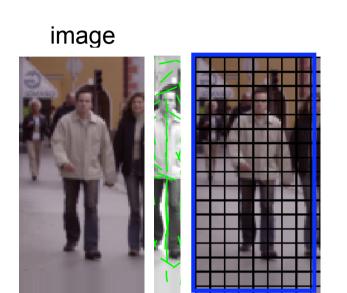
Outline

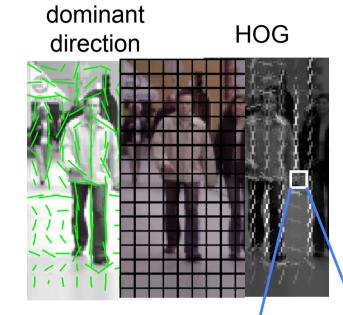
- 1. Sliding window detectors
- 2. Features and adding spatial information
- 3. Histogram of Oriented Gradients + linear SVM classifier
 - Dalal & Triggs pedestrian detector
 - HOG and history
 - Training an object detector
- 4. Two state of the art algorithms and PASCAL VOC
- 5. The future and challenges

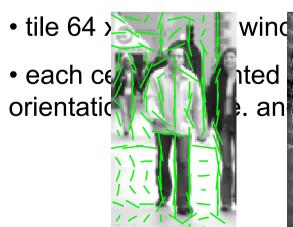
Dalal & Triggs CVPR 2005 Pedestrian detection

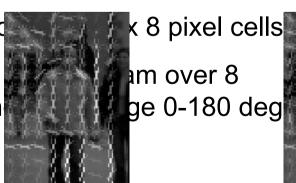
- Objective: detect (localize) standing humans in an image
- sliding window classifier
- train a binary classifier on whether a window contains a standing person or not
- Histogram of Oriented Gradients (HOG) feature
- although HOG + SVM originally introduced for pedestrians has been used very successfully for many object categories

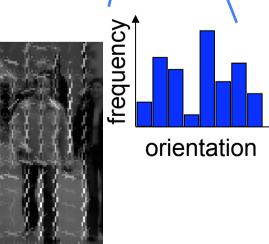
Feature: Histogram of Oriented Gradients (HOG)



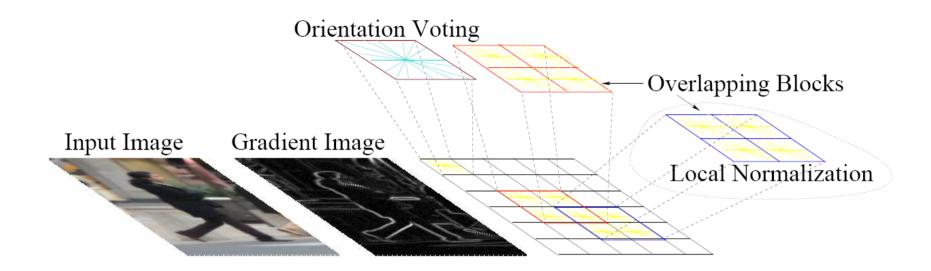






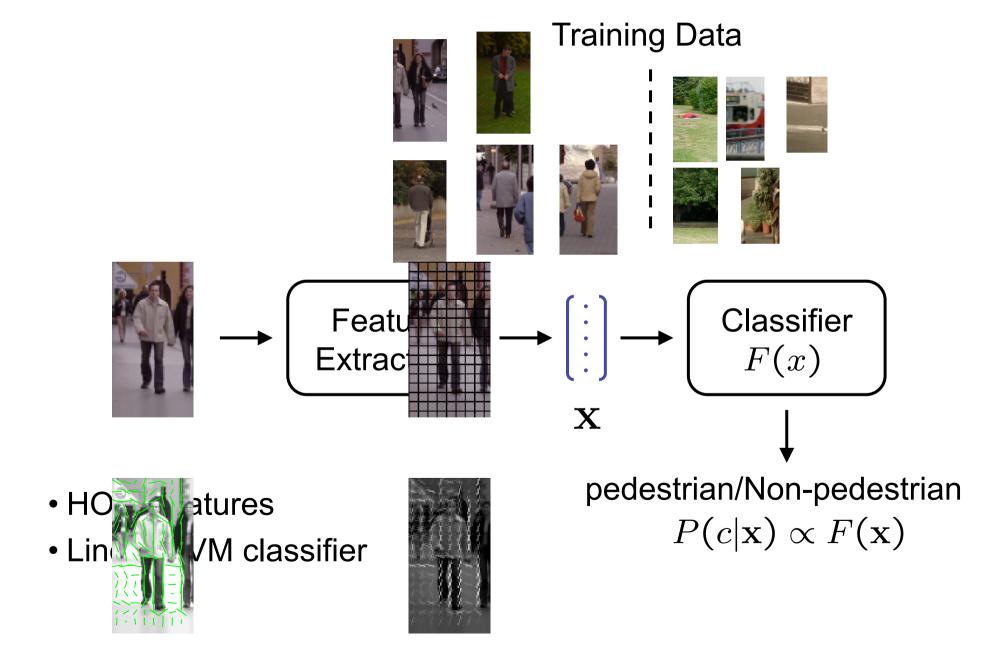


Histogram of Oriented Gradients (HOG) continued

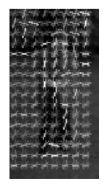


- Adds a second level of overlapping spatial bins re-normalizing orientation histograms over a larger spatial area
- Feature vector dimension (approx) = 16 x 8 (for tiling) x 8 (orientations) x 4 (for blocks) = 4096

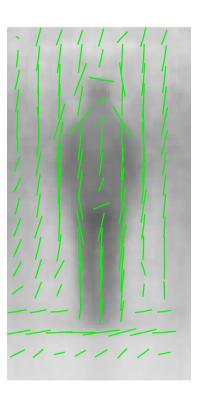
Window (Image) Classification

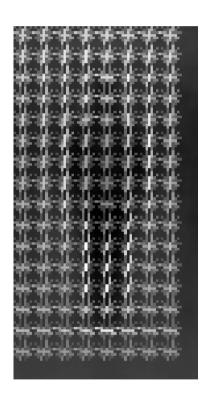






Averaged examples





Classifier: linear SVM

Advantages of linear SVM:

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

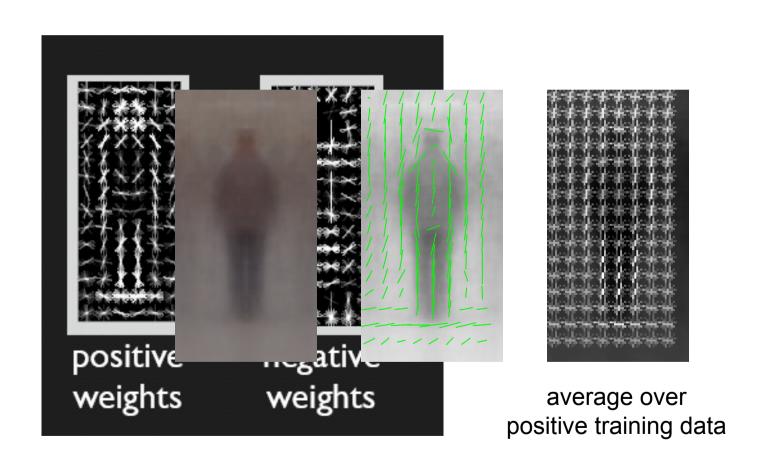
- Training (Learning)
 - Very efficient packages for the linear case, e.g. LIBLINEAR for batch training and Pegasos for on-line training.
 - Complexity O(N) for N training points (cf O(N^3) for general SVM)
- Testing (Detection)

Non-linear
$$f(\mathbf{x}) = \sum_{i}^{S} \alpha_{i} \mathbf{k}(\mathbf{x}_{i}, \mathbf{x}) + b$$
 S = # of support vectors = (worst case) N size of training data
$$f(\mathbf{x}) = \sum_{i}^{S} \alpha_{i} \mathbf{x}_{i}^{T} \mathbf{x} + b$$
 Independent of size of training data

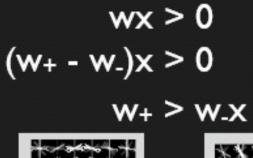
Dalal and Triggs, CVPR 2005

Learned model

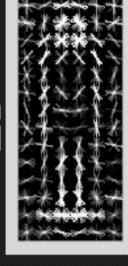
$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

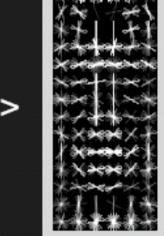


What do negative weights mean?



pedestrian model





pedestrian background model

Complete system should compete pedestrian/pillar/doorway models

Discriminative models come equipped with own bg

(avoid firing on doorways by penalizing vertical edges)

Slide from Deva Ramanan

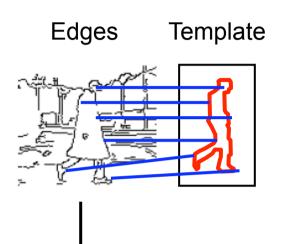
Why does HOG + SVM work so well?

- Similar to SIFT, records spatial arrangement of histogram orientations
- Compare to learning only edges:
 - Complex junctions can be represented
 - Avoids problem of early thresholding
 - Represents also soft internal gradients
- Older methods based on edges have become largely obsolete

 HOG gives fixed length vector for window, suitable for feature vector for SVM

Chamfer Matching

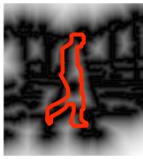
Input



- Match points between template and image
- Measure mean distance
- Template edgel matches <u>nearest</u> image edgel

$$D(T, I) = \frac{1}{|T|} \sum_{\mathbf{p} \in T} \min_{\mathbf{q} \in I} d(\mathbf{p}, \mathbf{q})$$

Distance Transform

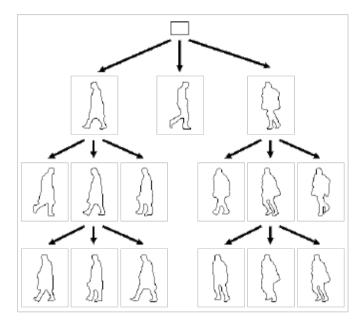


- Distance transform reduces min operation to array lookup
- Computable in linear time

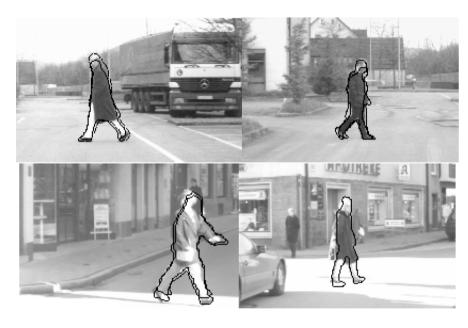
Best match

Localize by sliding window search

Chamfer Matching



Hierarchy of Templates



Detections

- In practice performs poorly in clutter
- Unoriented edges are not discriminative enough (too easy to find...)

[Gavrila & Philomin, 1999]

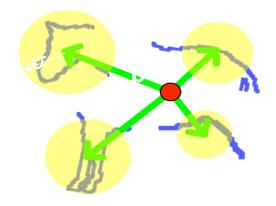
Contour-fragment models

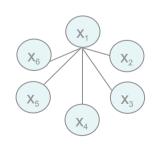
Shotton et al ICCV 05, Opelt et al ECCV 06

Generalized Hough like representation using contour fragments

Contour fragments learnt from edges of training images

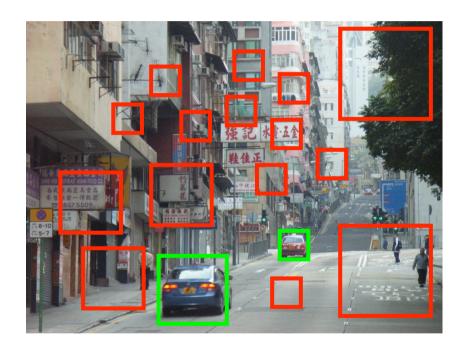
Hough like voting for detection





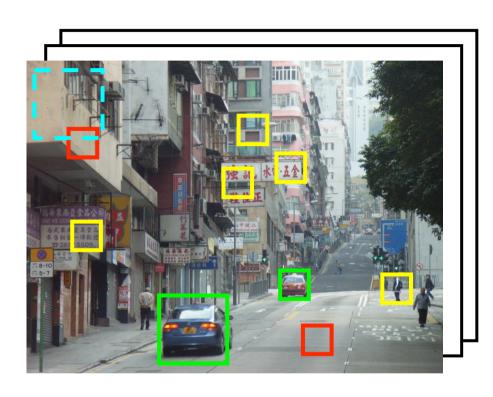
Training a sliding window detector

 Object detection is inherently asymmetric: much more "non-object" than "object" data



- Classifier needs to have very low false positive rate
- Non-object category is very complex need lots of data

Bootstrapping



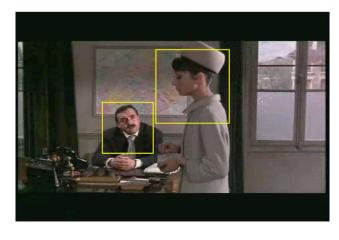
- 1. Pick negative training set at random
- 2. Train classifier
- 3. Run on training data
- 4. Add false positives to training set
- 5. Repeat from 2

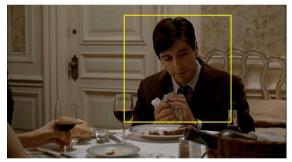
- Collect a finite but diverse set of non-object windows
- Force classifier to concentrate on hard negative examples
- For some classifiers can ensure equivalence to training on entire data set

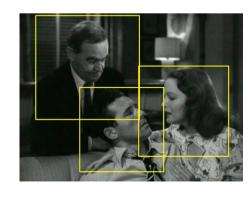
Example: train an upper body detector

- Training data used for training and validation sets
 - 33 Hollywood2 training movies
 - 1122 frames with upper bodies marked
- First stage training (bootstrapping)
 - 1607 upper body annotations jittered to 32k positive samples
 - 55k negatives sampled from the same set of frames
- Second stage training (retraining)
 - 150k hard negatives found in the training data

Training data – positive annotations



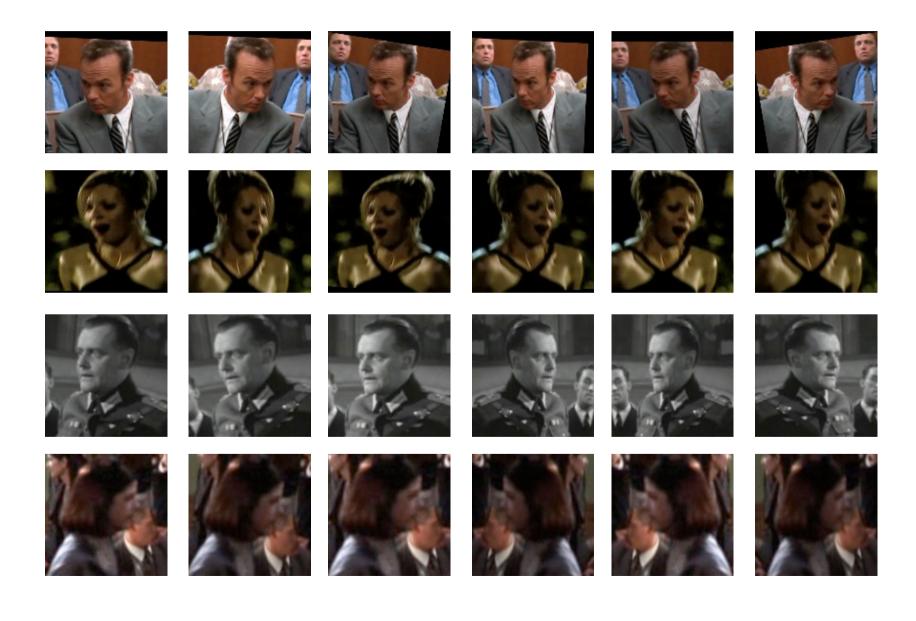




Positive windows

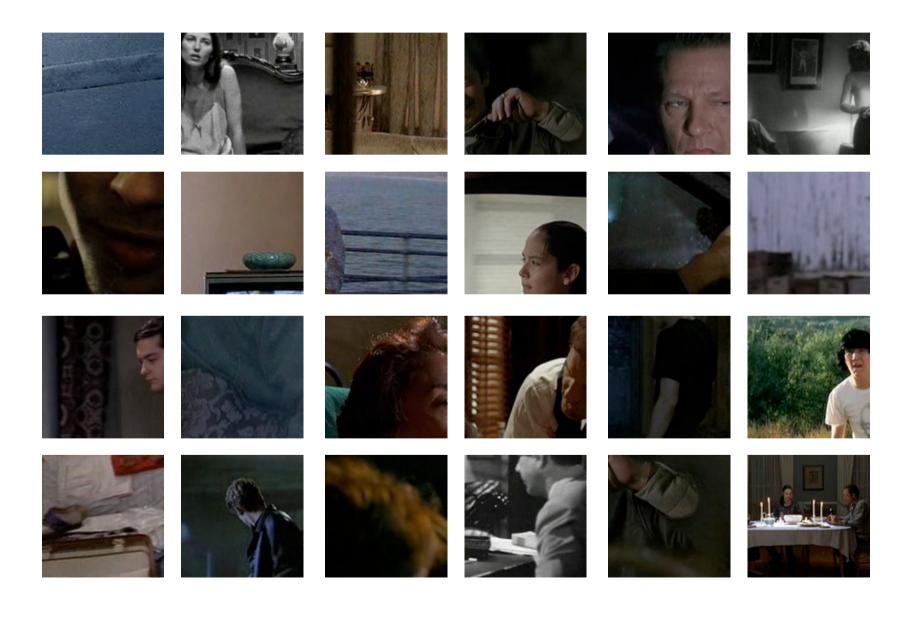
Note: common size and alignment

Jittered positives

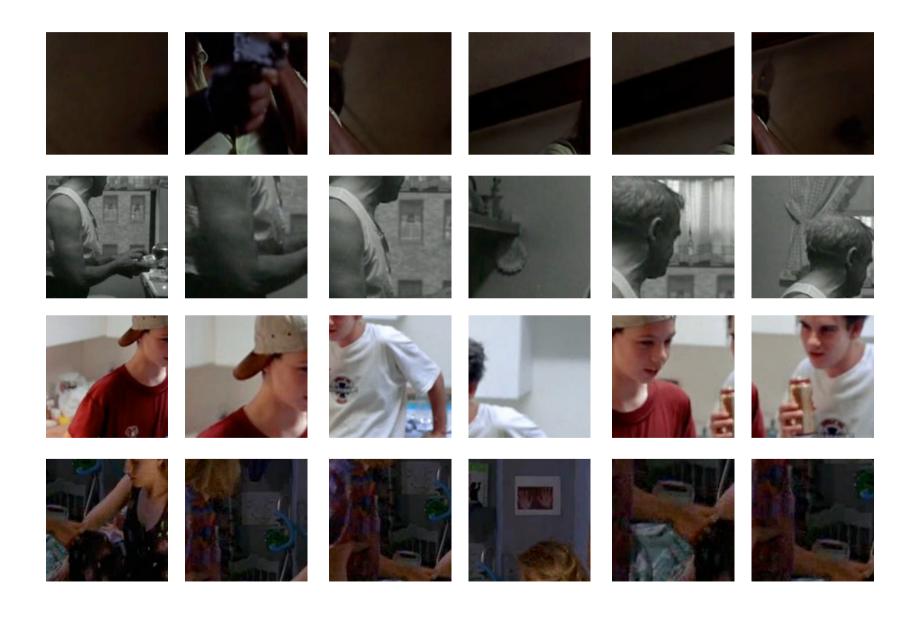


Jittered positives

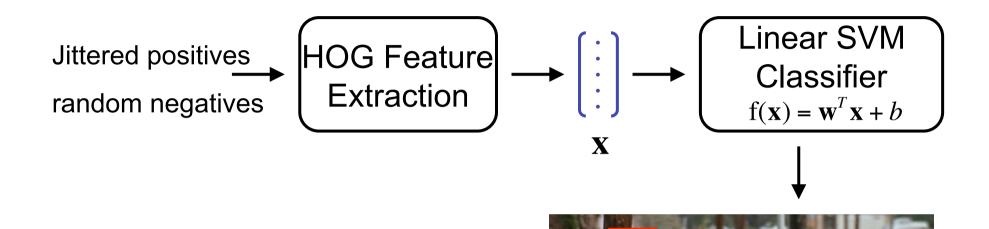
Random negatives



Random negatives

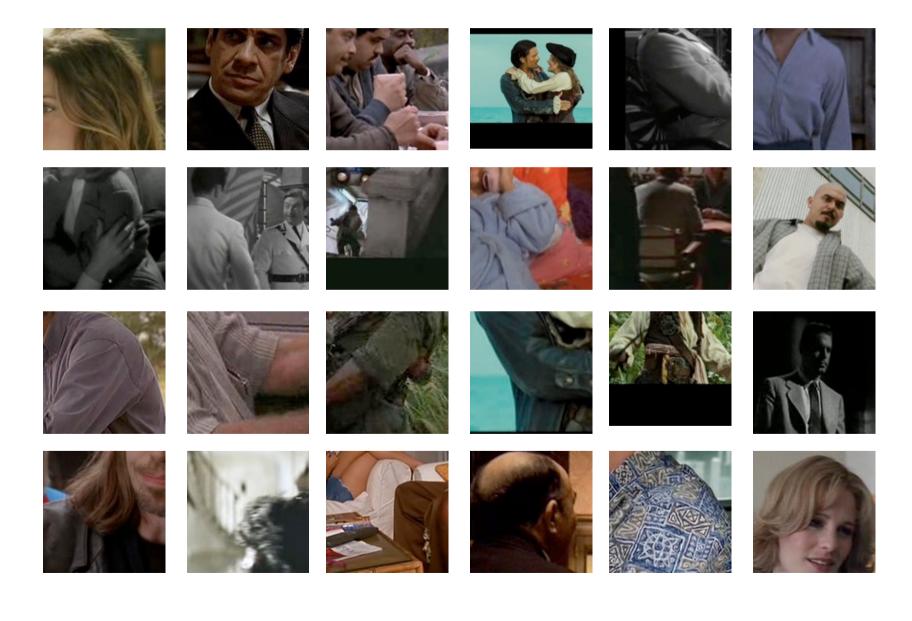


Window (Image) first stage classification

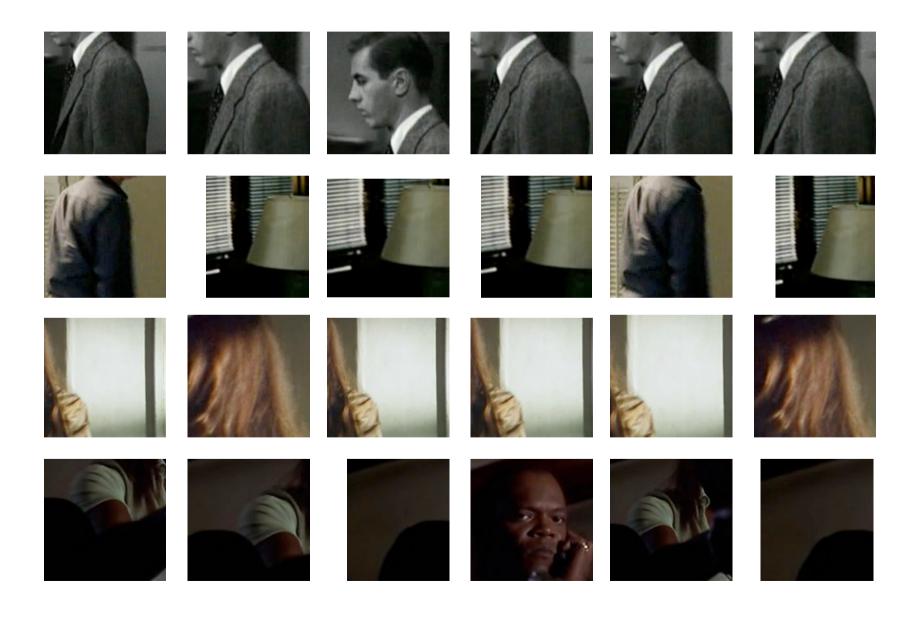


- find high scoring false positives detections
- these are the hard negatives for the next round of training
- cost = # training images x inference on each image

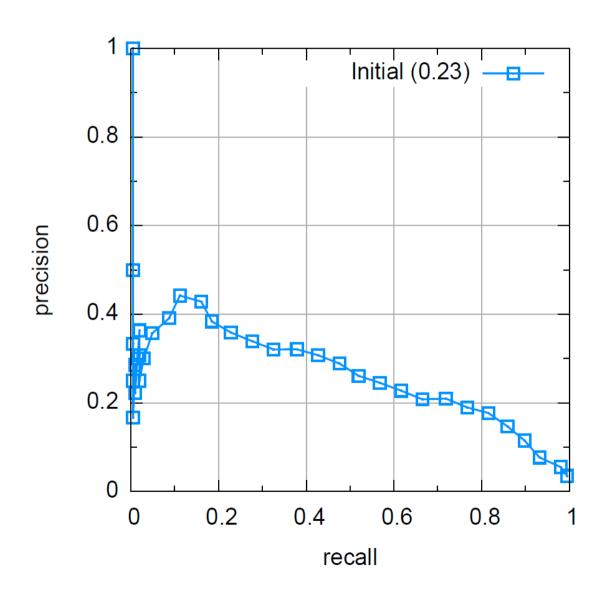
Hard negatives



Hard negatives



First stage performance on validation set

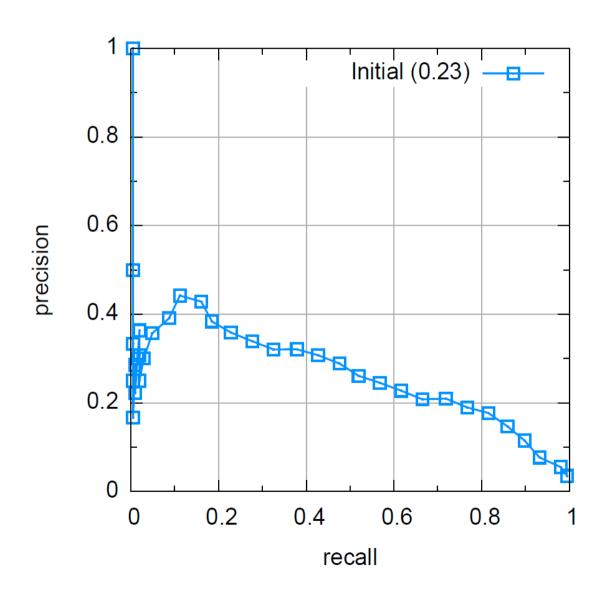


Precision – Recall curve

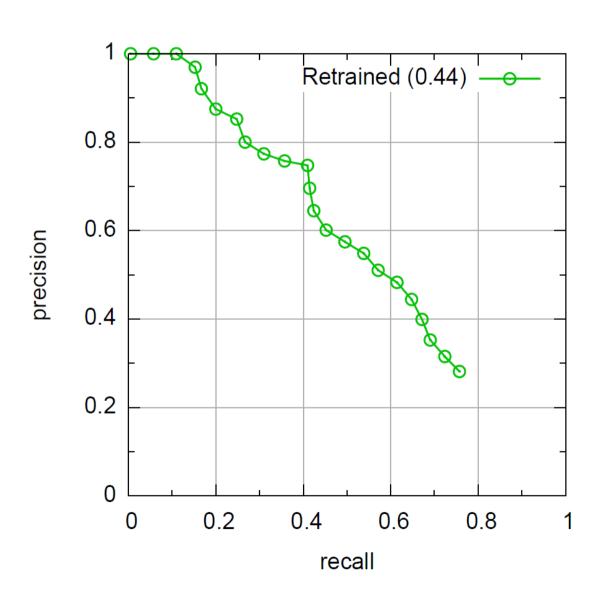
returned correct windows windows Precision: % of returned windows that are correct Recall: % of correct windows that are returned all windows 8.0 classifier score decreasing precision 9.0 9.0 0.2 0.2 8.0 0.4

recall

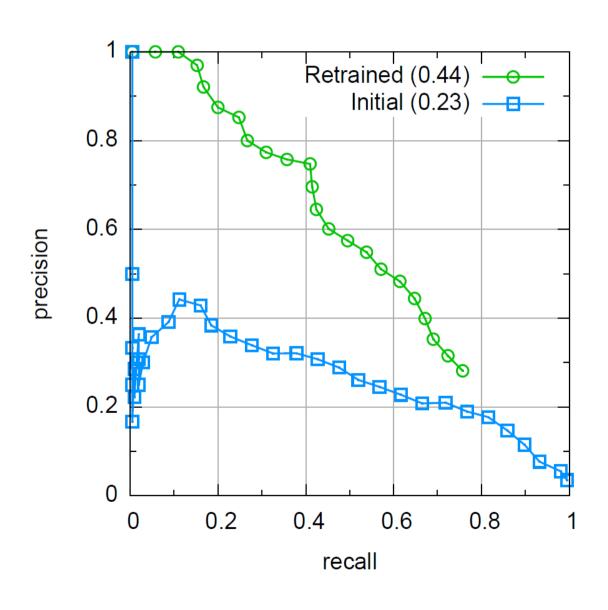
First stage performance on validation set



Performance after retraining

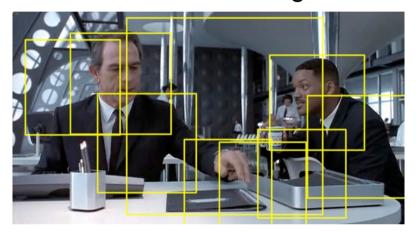


Effects of retraining

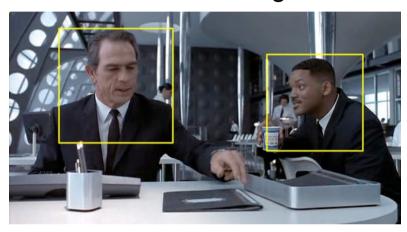


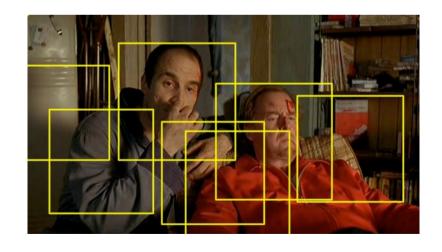
Side by side

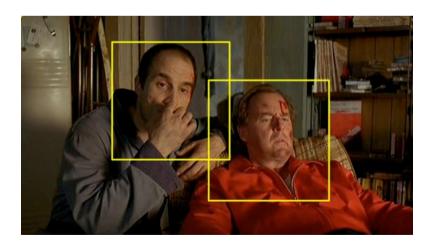
before retraining



after retraining

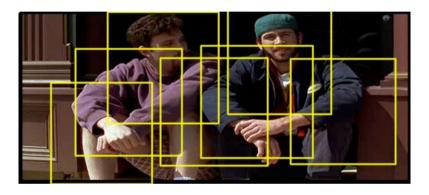




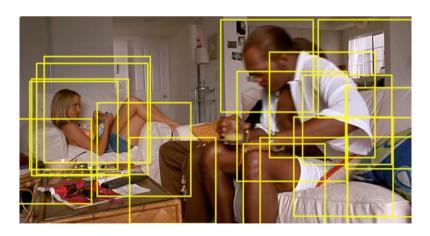


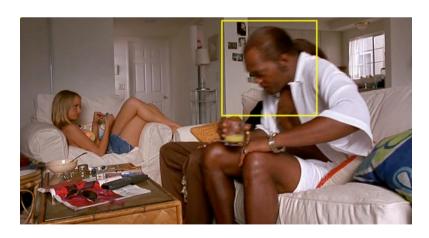
Side by side

before retraining

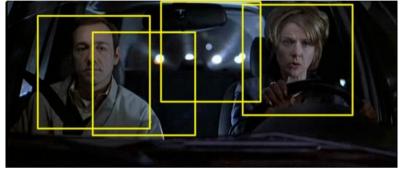


after retraining

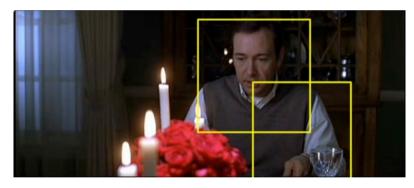


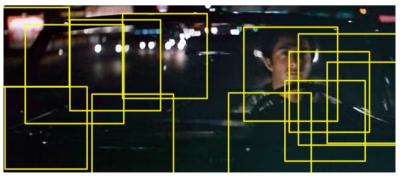


Side by side

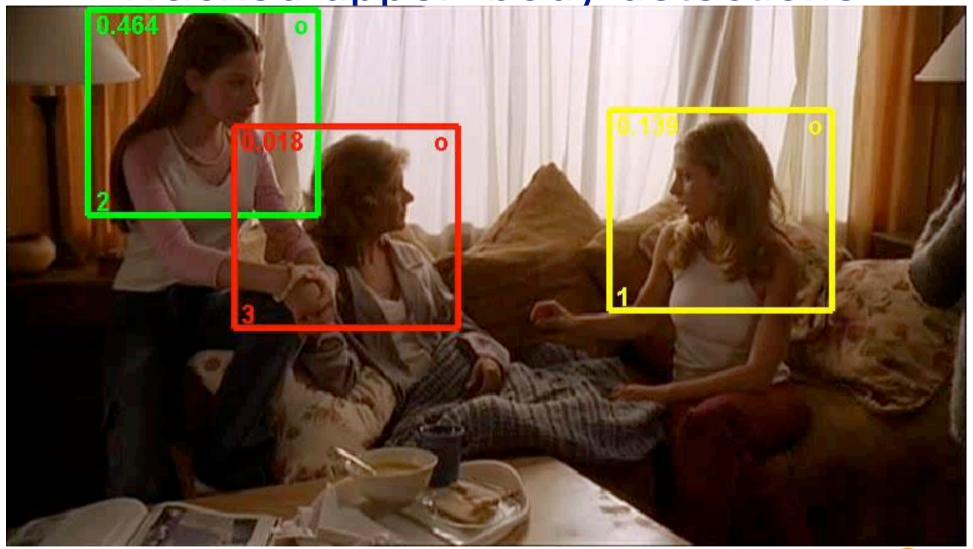


after retraining



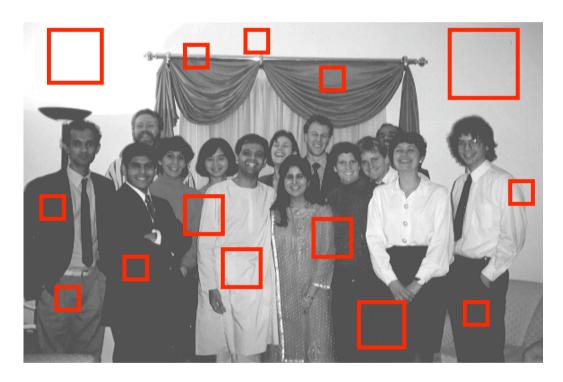


Tracked upper body detections



Accelerating Sliding Window Search

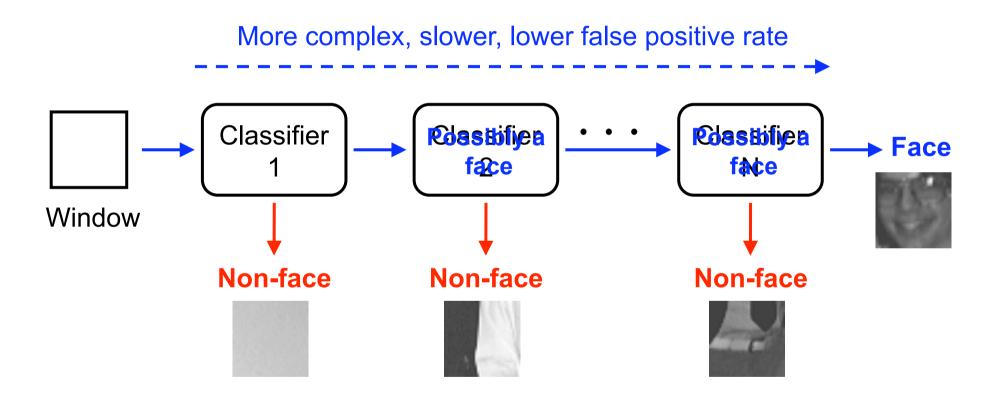
 Sliding window search is slow because so many windows are needed e.g. x × y × scale ≈ 100,000 for a 320×240 image



- Most windows are clearly not the object class of interest
- Can we speed up the search?

Cascaded Classification

Build a sequence of classifiers with increasing complexity



Reject easy non-objects using simpler and faster classifiers

Cascaded Classification

- Slow expensive classifiers only applied to a few windows → significant speed-up
- Controlling classifier complexity/speed:
 - Number of support vectors
 - Number of features
 - Type of SVM kernel

[Romdhani et al, 2001]

[Viola & Jones, 2001]

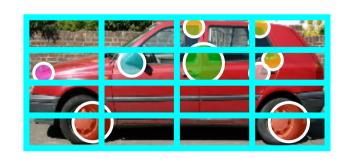
[Vedaldi et al, 2009]

Summary: Sliding Window Detection

 Can convert any image classifier into an object detector by sliding window. Efficient search methods available.

 Requirements for invariance are reduced by searching over e.g. translation and scale

 Spatial correspondence can be "engineered in" by spatial tiling



Outline

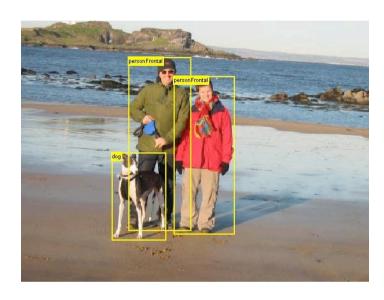
- 1. Sliding window detectors
- 2. Features and adding spatial information
- 3. HOG + linear SVM classifier
- 4. Two state of the art algorithms and PASCAL VOC
 - VOC challenge
 - Vedaldi et al multiple kernels and features, cascade
 - Felzenswalb et al multiple parts, latent SVM
- 5. The future and challenges

The PASCAL Visual Object Classes (VOC) Dataset and Challenge

Mark Everingham
Luc Van Gool
Chris Williams
John Winn
Andrew Zisserman

The PASCAL VOC Challenge

- Challenge in visual object recognition funded by PASCAL network of excellence
- Publicly available dataset of annotated images



- Main competitions in classification (is there an X in this image), detection (where are the X's), and segmentation (which pixels belong to X)
- "Taster competitions" in 2-D human "pose estimation" (2007-present) and static action classes
- Standard evaluation protocol (software supplied)

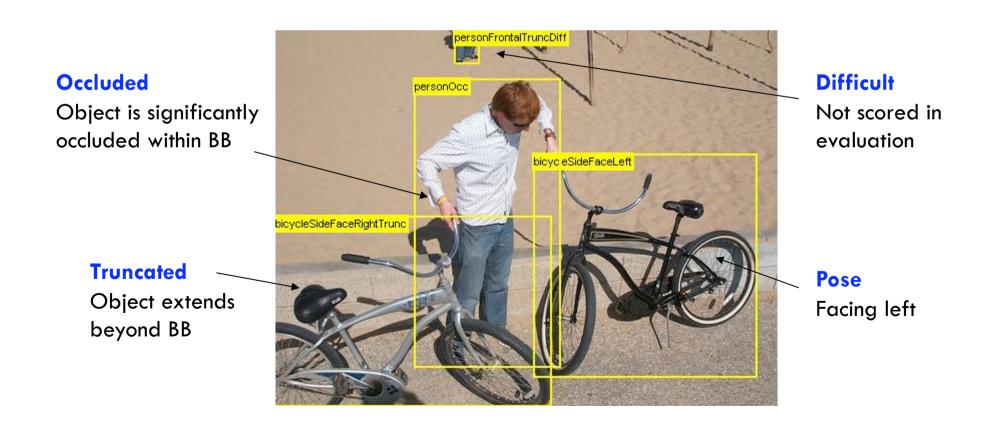
Dataset Content

- 20 classes: aeroplane, bicycle, boat, bottle, bus, car, cat, chair, cow, dining table, dog, horse, motorbike, person, potted plant, sheep, train, TV
- Real images downloaded from flickr, not filtered for "quality"

• Complex scenes, scale, pose, lighting, occlusion, ...

Annotation

- Complete annotation of all objects
- Annotated in one session with written guidelines



Examples

Aeroplane Bottle Bicycle Bird Boat Chair Car Cat Cow Bus TRANSIT CENTRE

Examples

Dining Table

Dog

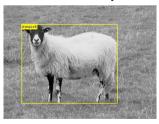
Horse

Motorbike

Person

Potted Plant

Sheep



Sofa

Train

TV/Monitor

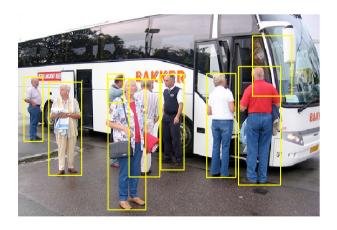
Main Challenge Tasks

Classification

- Is there a dog in this image?
- Evaluation by precision/recall

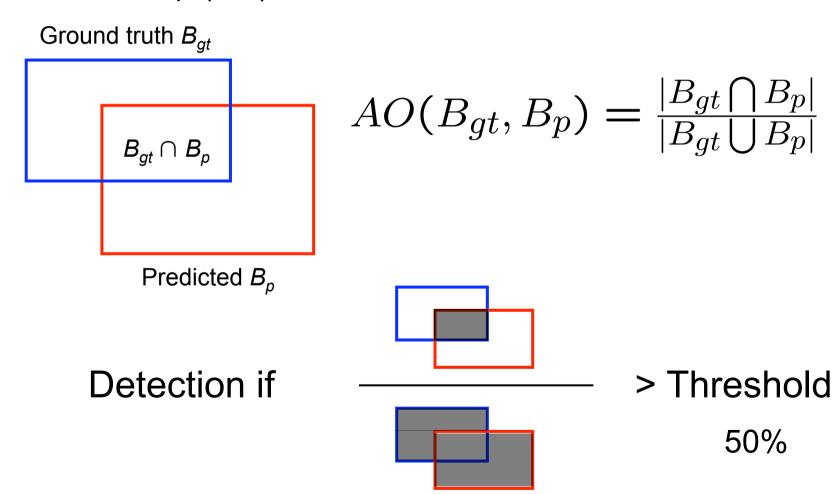
Detection

- Localize all the people (if any) in this image
- Evaluation by precision/recall based on bounding box overlap



Detection: Evaluation of Bounding Boxes

Area of Overlap (AO) Measure



Dataset Statistics

	train		val		trainval		test	
	lmages	Objects	I mages	Objects	lmages	Objects	I mages	Objects
Aeroplane	201	267	206	266	407	533		
Bicycle	167	232	181	236	348	468		
Bird	262	381	243	379	505	760		
Boat	170	270	155	267	325	537		
Bottle	220	394	200	393	420	787		
Bus	132	179	126	186	258	365		
Car	372	664	358	653	730	1,317		
Cat	266	308	277	314	543	622		
Chair	338	716	330	713	668	1,429		
Cow	86	164	86	172	172	336		
Diningtable	140	153	131	153	271	306		
Dog	316	391	333	392	649	783		
Horse	161	237	167	245	328	482		
Motorbike	171	235	167	234	338	469		
Person	1,333	2,819	1,446	2,996	2,779	5,815		
Pottedplant	166	311	166	316	332	627		
Sheep	67	163	64	175	131	338		
Sofa	155	172	153	175	308	347		
Train	164	190	160	191	324	381		
Tymonitor	180	259	173	257	353	516		
Total	3,473	8,505	3,581	8,713	7,054	17,218	6,650	16,829

True Positives - Bicycle

UoCTTI_LSVM-MDPM

OXFORD_MKL

NECUIUC_CLS-DTCT

False Positives - Bicycle

UoCTTI_LSVM-MDPM

OXFORD_MKL

NECUIUC_CLS-DTCT

True Positives – TV/monitor

OXFORD_MKL

UoCTTI_LSVM-MDPM

LEAR_CHI-SVM-SIFT-HOG-CLS

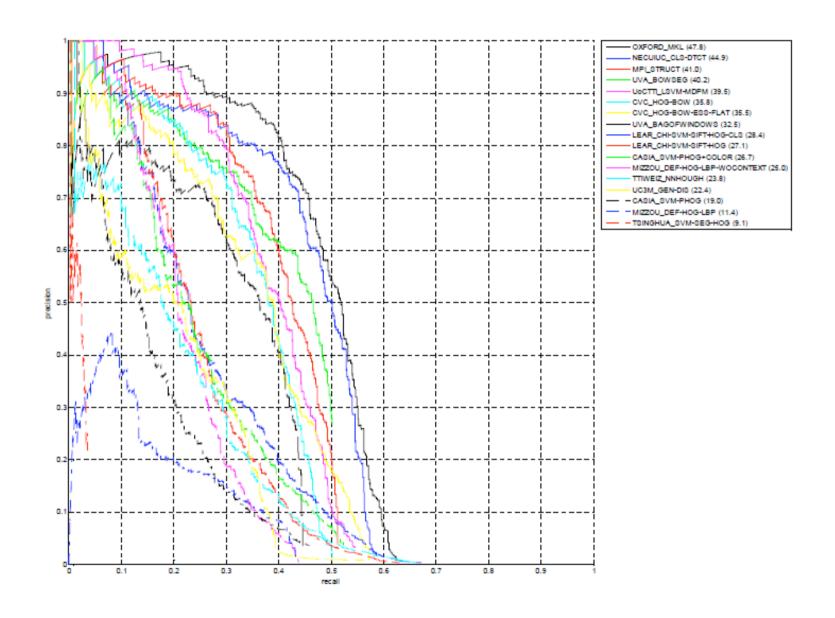
False Positives – TV/monitor

OXFORD_MKL

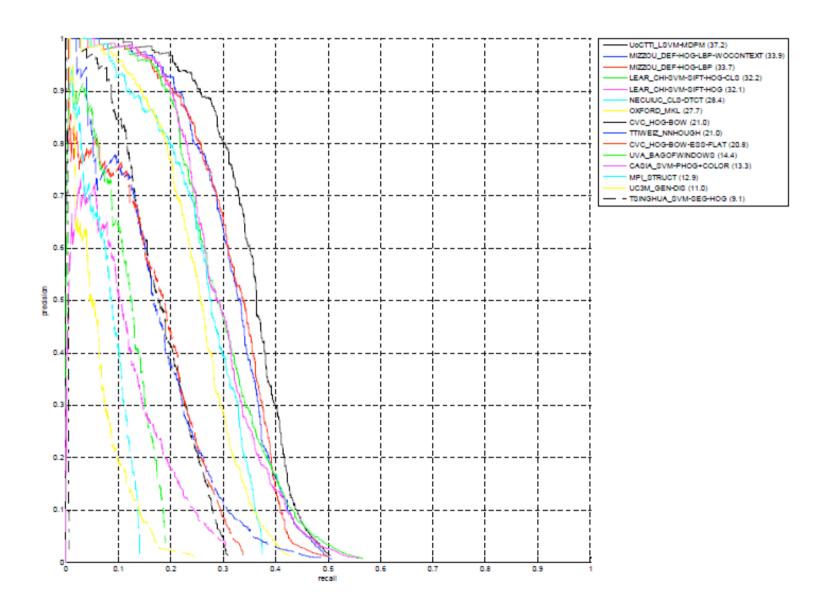
UoCTTI_LSVM-MDPM

LEAR_CHI-SVM-SIFT-HOG-CLS

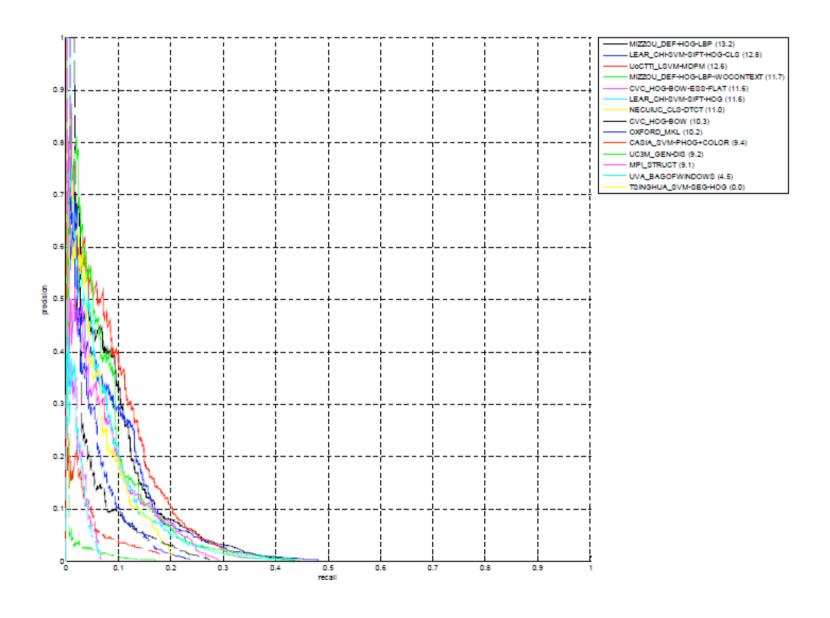
Precision/Recall - Aeroplane



Precision/Recall - Car

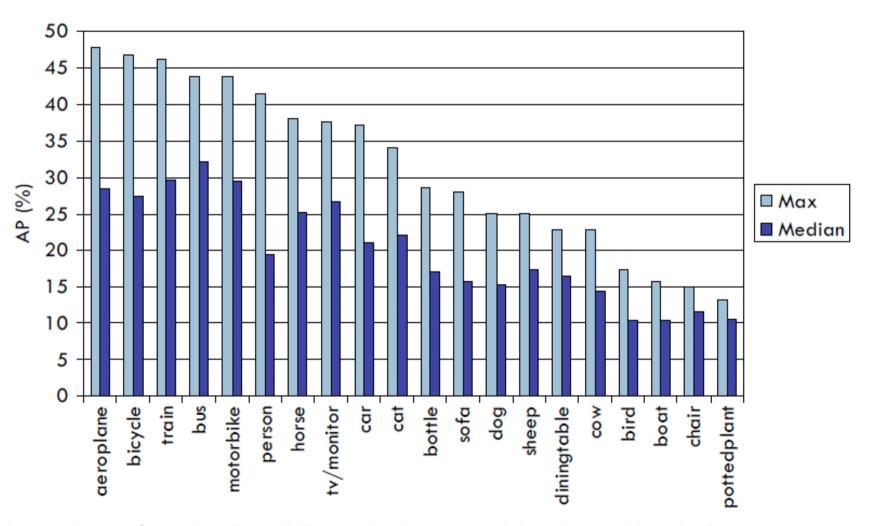


Precision/Recall - Potted plant



AP by Class

Detection

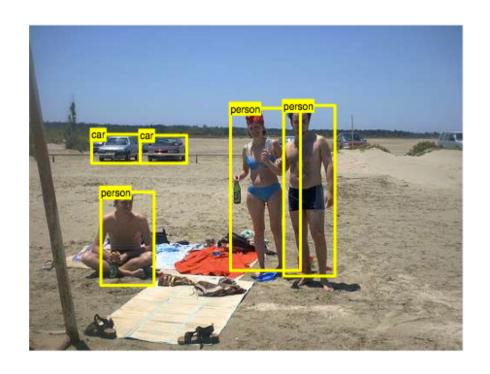


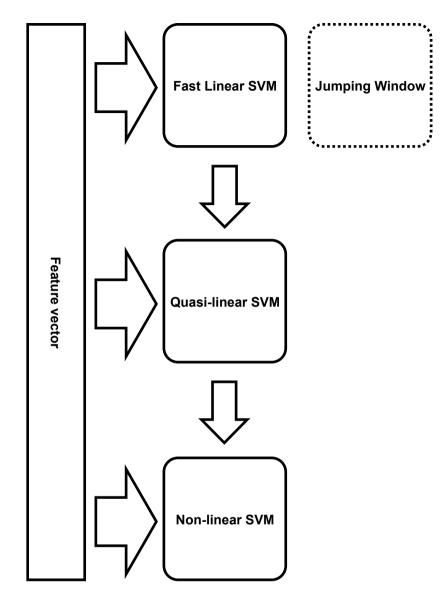
Wide variety of methods: sliding window, combination with whole image classifiers, segmentation based

Multiple Kernels for Object Detection

Andrea Vedaldi, Varun Gulshan, Manik Varma, Andrew Zisserman ICCV 2009

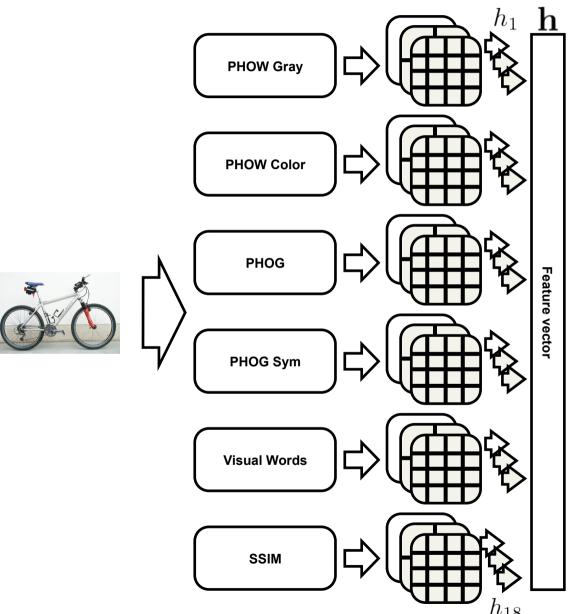
Approach

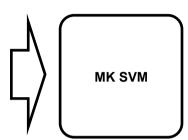




- Three stage cascade
 - Each stage uses a more powerful and more expensive classifier
- Multiple kernel learning for the classifiers over multiple features
- Jumping window first stage

Multiple Kernel Classification





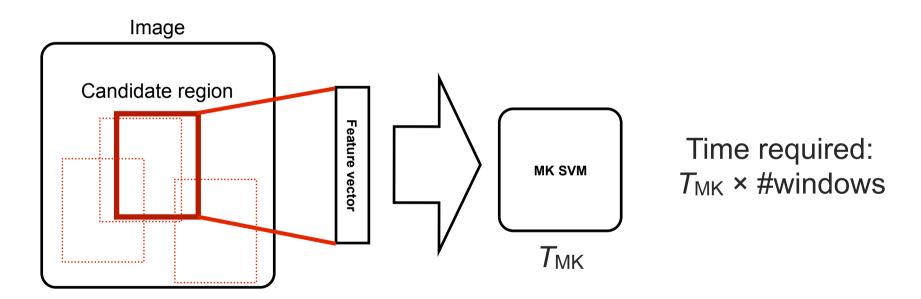
combine one kernel per histogram

$$K(\mathbf{h}, \mathbf{h}') = \sum_{i=1}^{F} d_i K(h_i, h_i')$$

[Varma & Rai, 2007] [Gehler & Nowozin, 2009]

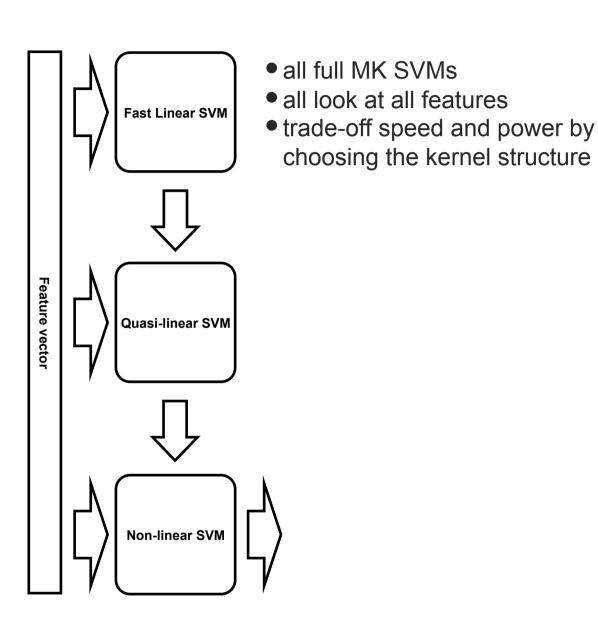
Multiple Kernel Detection: Challenges

- Goal: sliding window MK classifier
 - Inference space is huge
 - #windows = 100 millions
 - TMK = seconds

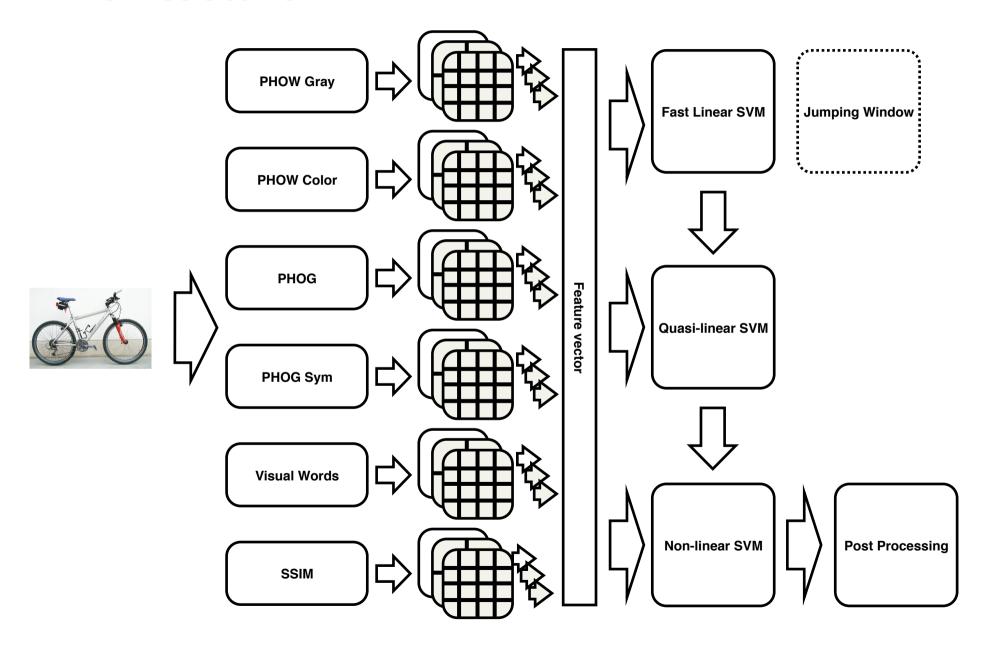


Excruciatingly slow (days per image)

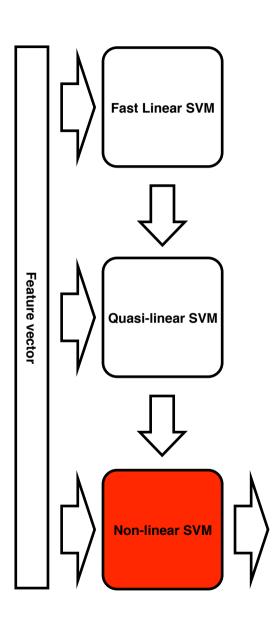
Cascade



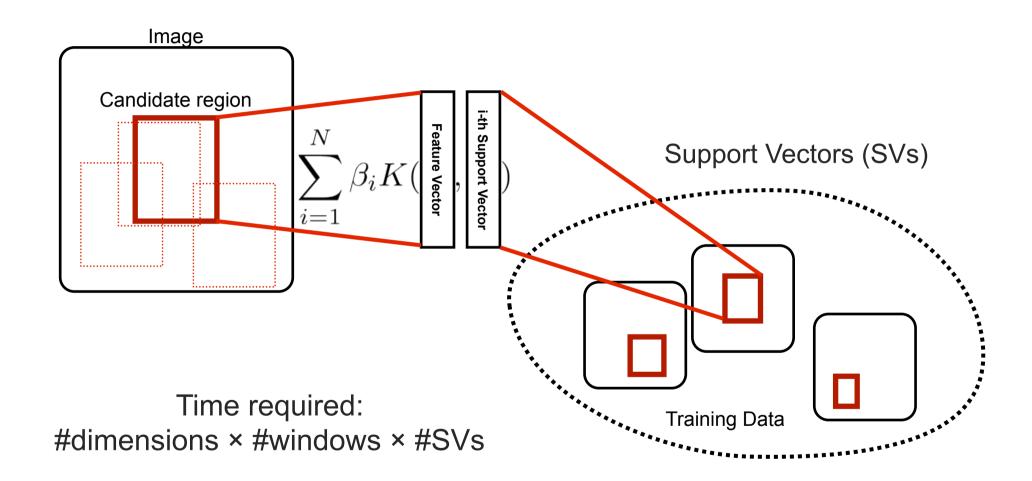
Architecture



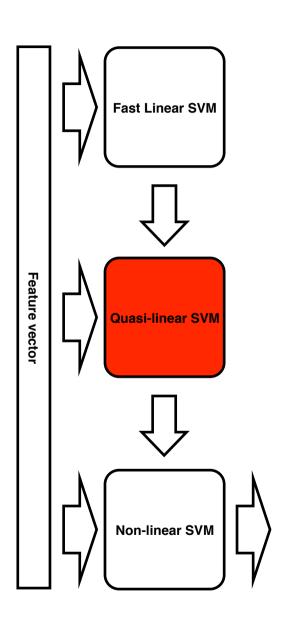
Cascade



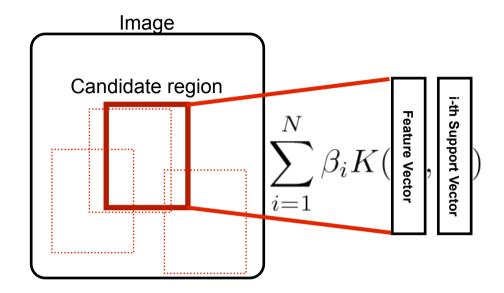
Non-linear sliding SVM



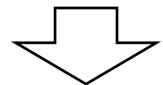
Cascade



Quasi-linear SVM



Time required: #dimensions × #windows × #\$\square*



#dimensions × #windows

Quasi-linear (or additive) kernel decompose as:

$$K(x,y) = \sum_{j=1}^{d} k(x_j, y_j)$$

Thus SVM score rewrites:

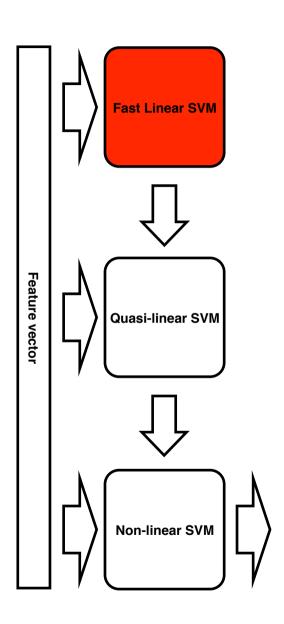
$$\sum_{j=1}^{d} \sum_{i=1}^{N} \beta_{j} k(x_{j}, y_{ij})$$

$$\psi_{j}(x_{j})$$

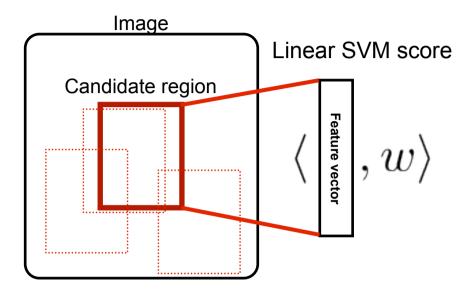
Pre-compute look-up table.

Maji, Berg, Malik, CVPR 08

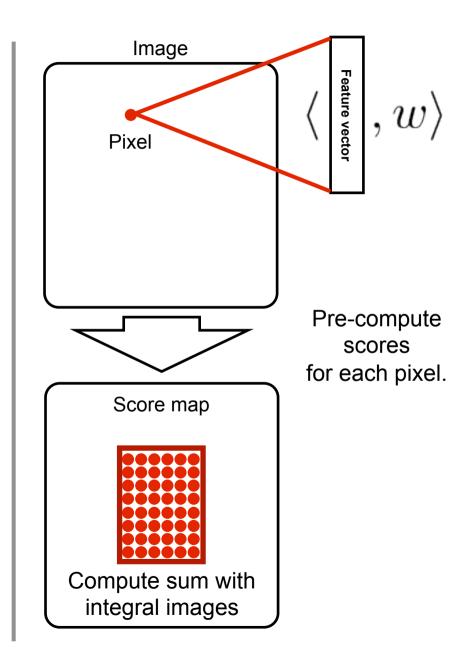
Cascade



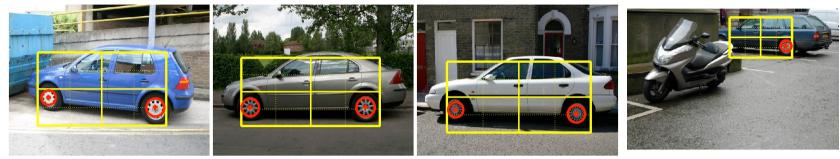
Fast linear SVM



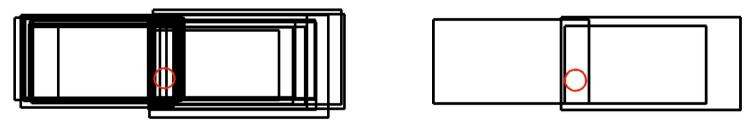
Time required:
#dimensions × #windows × #\$\sigmas \sigma #windows



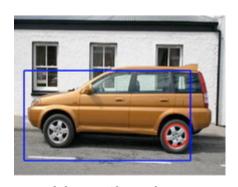
Jumping window



Position of visual word with respect to the object



learn the position/scale/aspect ratio of the ROI with respect to the visual word



Hypothesis

Handles change of aspect ratio

SVMs overview

First stage

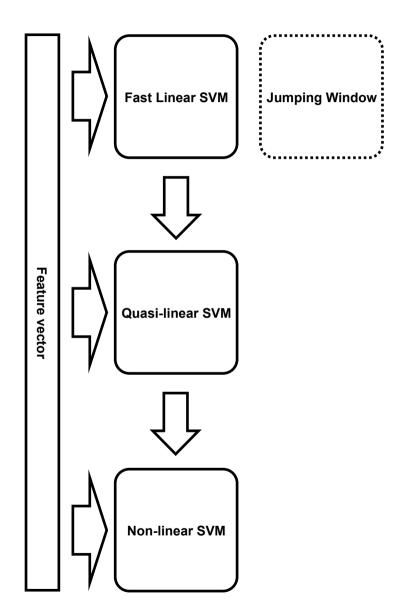
- linear SVM
- (or jumping window)
- time: #windows

Second stage

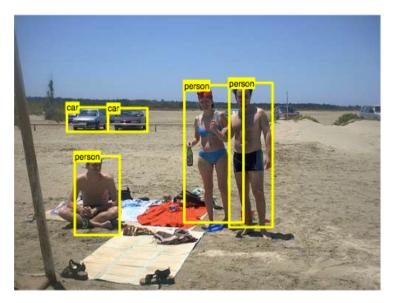
- quasi-linear SVM
- $-\chi^2$ kernel
- time: #windows × #dimensions

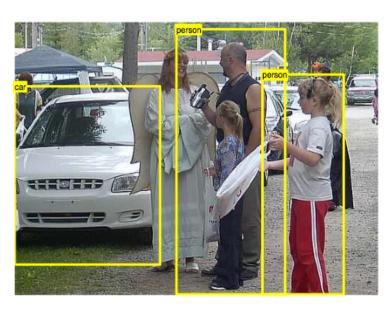
Third stage

- non-linear SVM
- $-\chi^2$ -RBF kernel
- time: #windows × #dimensions × #SVs

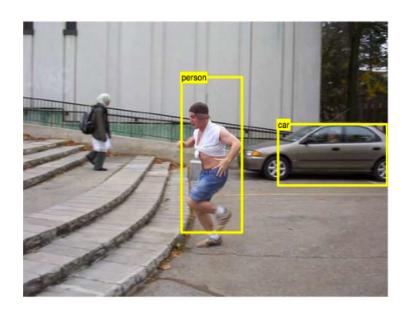


Results



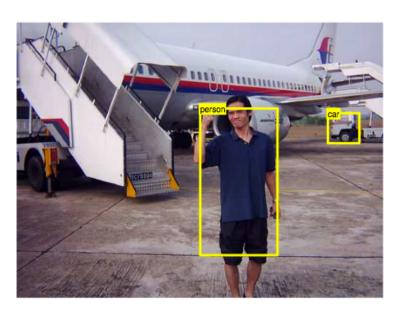


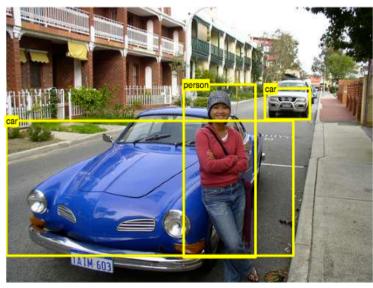
Results

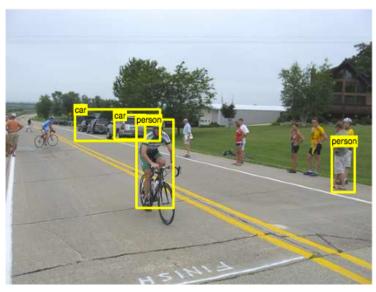


Results



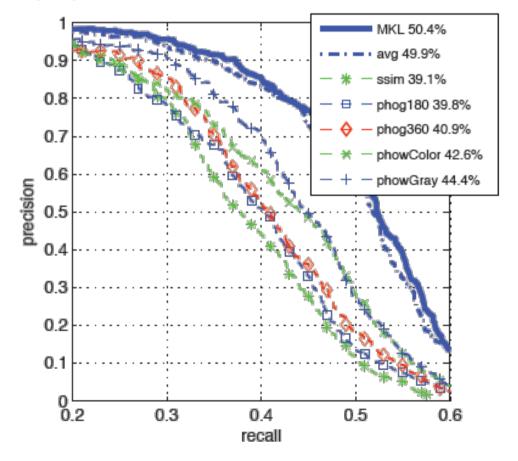




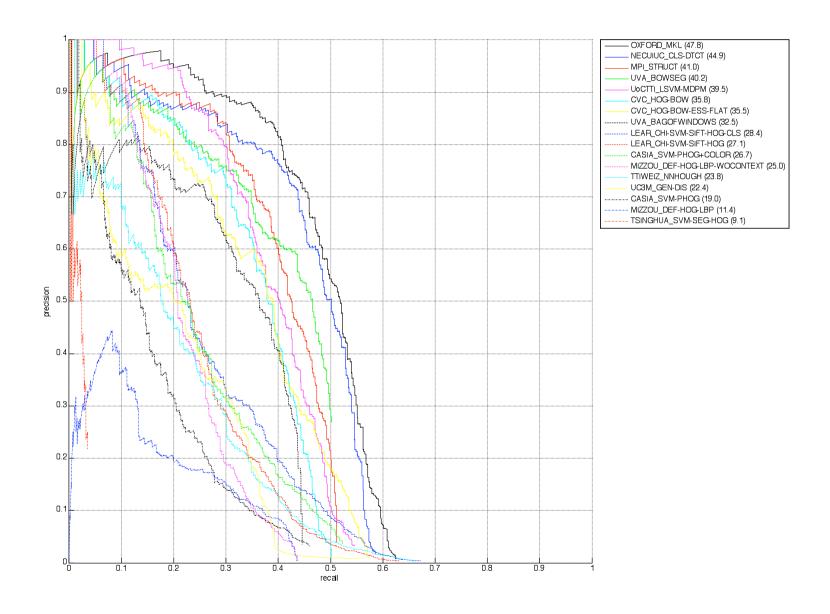


Single Kernel vs. Multiple Kernels

- Multiple Kernels gives substantial boost
- Multiple Kernel Learning:
 - small improvement over averaging
 - sparse feature selection



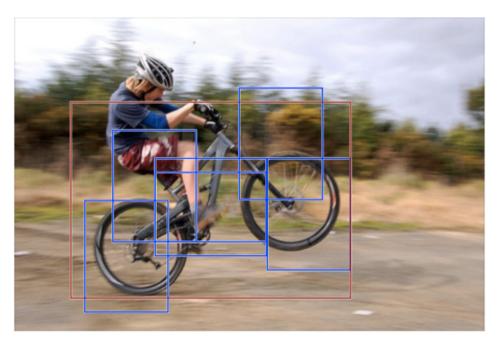
Precision/Recall: VOC2009 Aeroplane

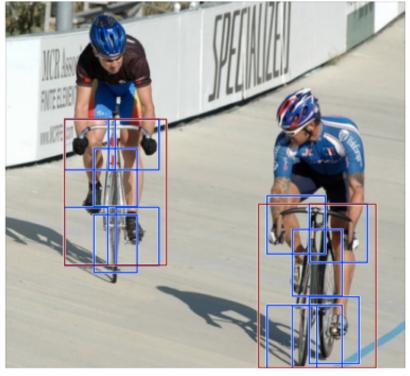


Object Detection with Discriminatively Trained Part Based Models

Pedro F. Felzenszwalb, David Mcallester, Deva Ramanan, Ross Girshick PAMI 2010

Approach

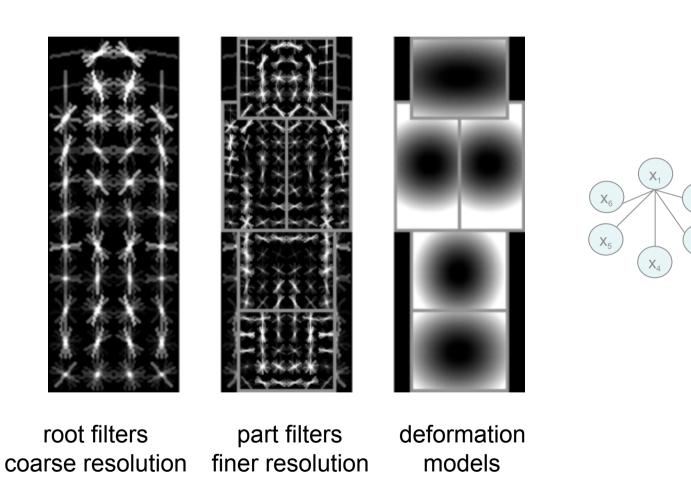




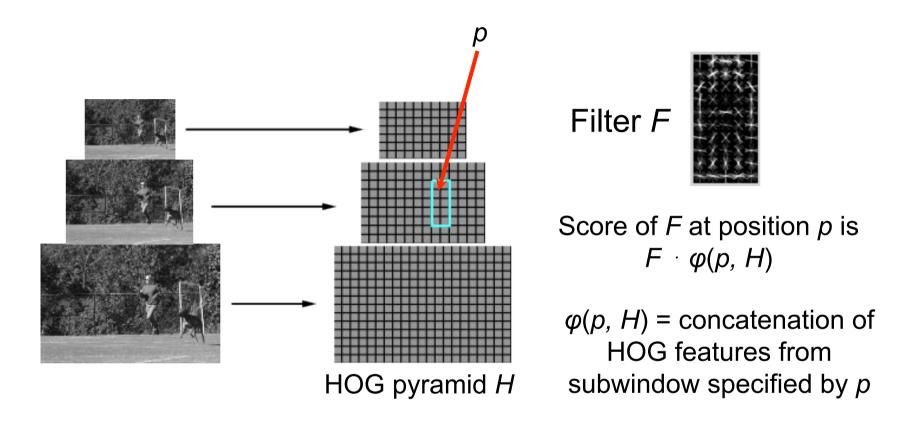
- Mixture of deformable part-based models
 - One component per "aspect" e.g. front/side view
- Each component has global template + deformable parts
- Discriminative training from bounding boxes alone

Example Model

One component of person model



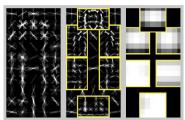
Starting Point: HOG Filter

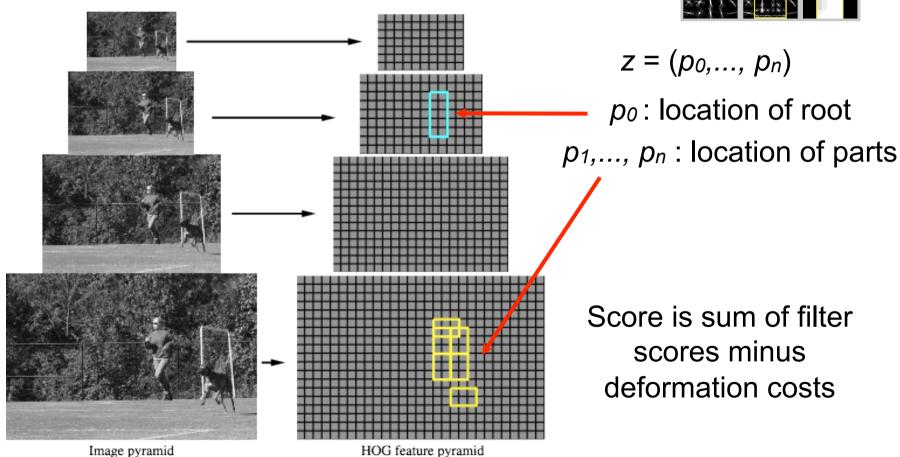


- Search: sliding window over position and scale
- Feature extraction: HOG Descriptor
- Classifier: Linear SVM

Object Hypothesis

- Position of root + each part
- Each part: HOG filter (at higher resolution)



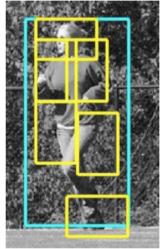


Score of a Hypothesis

Appearance term

Spatial prior

$$\operatorname{score}(p_0,\ldots,p_n) = \sum_{i=0}^n F_i \cdot \phi(H,p_i) - \sum_{i=1}^n d_i \cdot (dx_i^2,dy_i^2)$$
 displacements deformation parameters



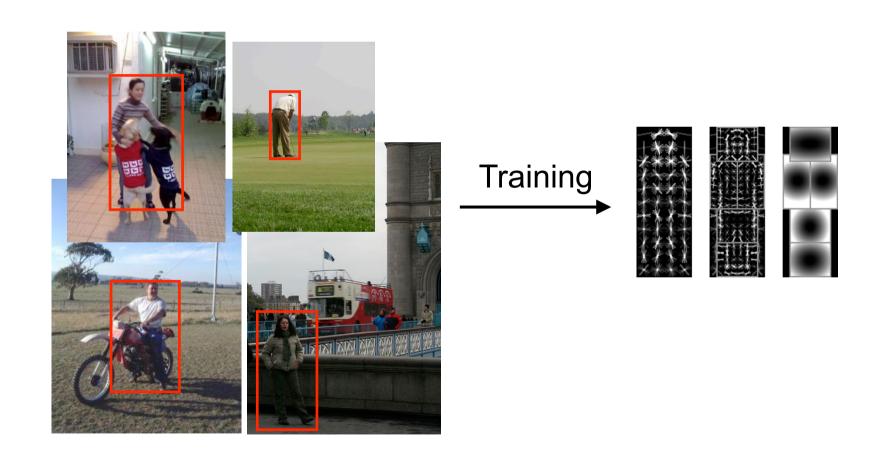
$$score(z) = \beta \cdot \Psi(H,z)$$

$$concatenation of filters concatenation of and deformation parameters part displacement features$$

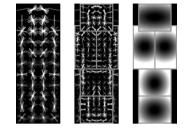
Linear classifier applied to feature subset defined by hypothesis

Training

- Training data = images + bounding boxes
- Need to learn: model structure, filters, deformation costs

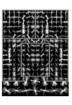


Latent SVM (MI-SVM)



Classifiers that score an example x using

$$f_{\beta}(x) = \max_{z \in Z(x)} \beta \cdot \Phi(x, z)$$



β are model parameters

z are latent values

- Which component?
- Where are the parts?

Training data
$$D = (\langle x_1, y_1 \rangle, \dots, \langle x_n, y_n \rangle)$$
 $y_i \in \{-1, 1\}$

We would like to find β such that: $y_i f_{\beta}(x_i) > 0$

Minimize

$$L_D(eta) = rac{1}{2}||eta||^2 + C\sum_{i=1}^n \max(0,1-y_if_eta(x_i))$$
 SVM objective

Latent SVM Training

$$L_D(\beta) = \frac{1}{2}||\beta||^2 + C\sum_{i=1}^n \max(0, 1 - y_i f_{\beta}(x_i))$$

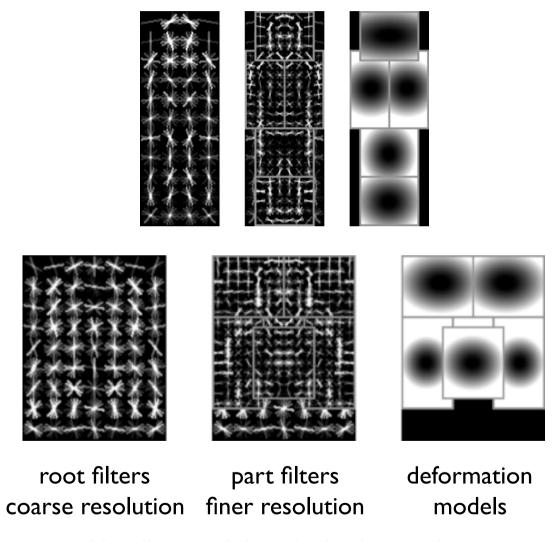
- Convex if we fix z for positive examples
- Optimization:
 - Initialize β and iterate:
- nitialize β and iterate:

 Pick best z for each positive example

 * Strategy
 - Optimize β with z fixed

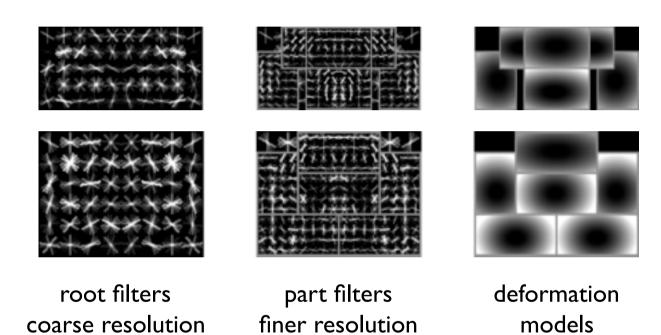
- Local minimum: needs good initialization
 - Parts initialized heuristically from root

Person Model



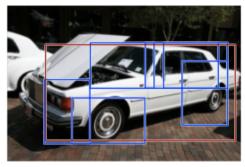
Handles partial occlusion/truncation

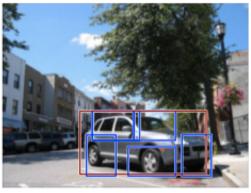
Car Model



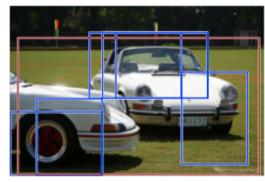
Car Detections

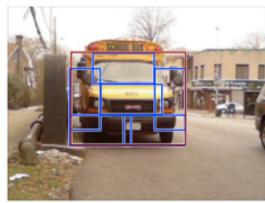
high scoring true positives





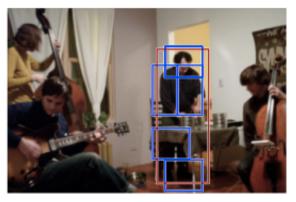
high scoring false positives

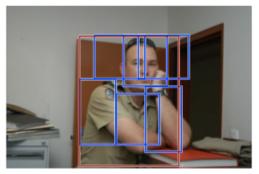


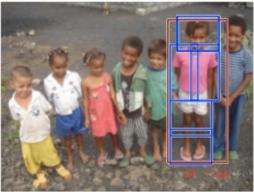


Person Detections

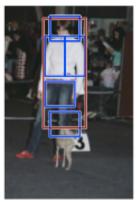
high scoring true positives



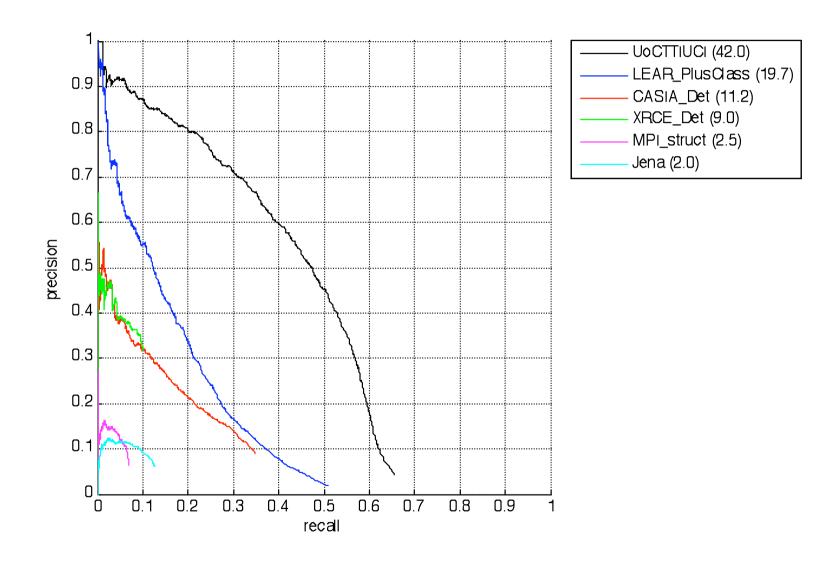




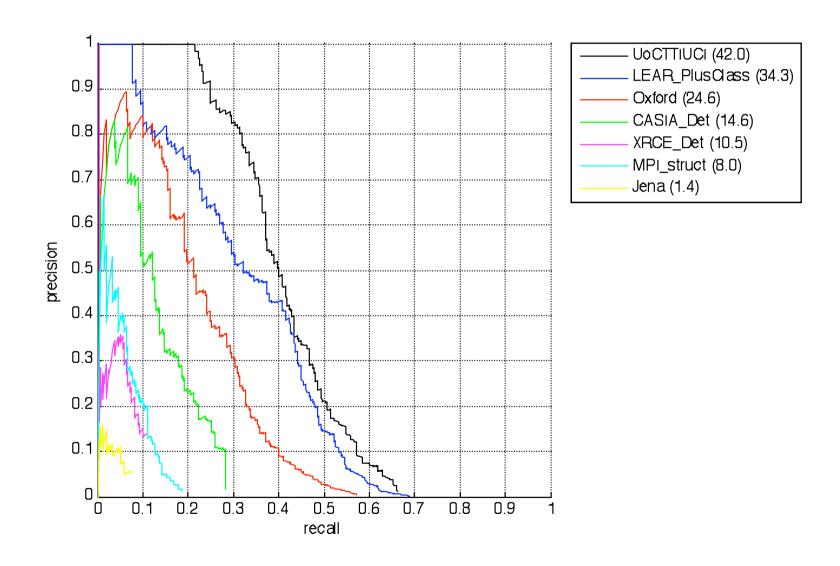
high scoring false positives (not enough overlap)



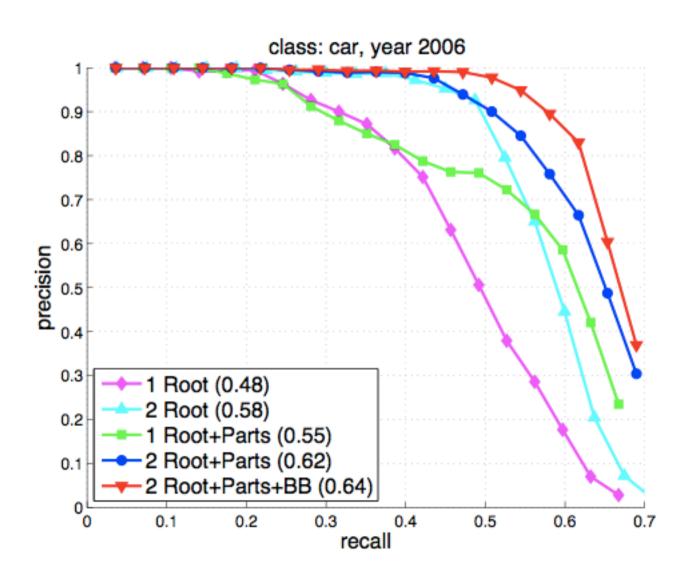
Precision/Recall: VOC2008 Person



Precision/Recall: VOC2008 Bicycle

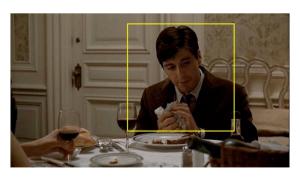


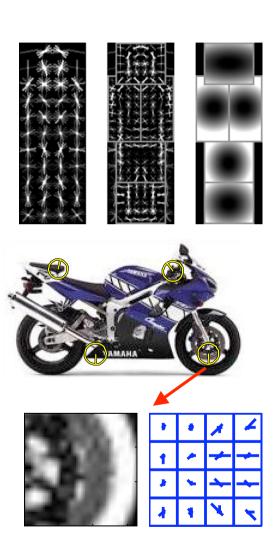
Comparison of Models



Summary

- Multiple features and multiple kernels boost performance
- Discriminative learning of model with latent variables for single feature (HOG):
 - Latent variables can learn best alignment in the ROI training annotation
 - Parts can be thought of as local SIFT vectors
 - Some similarities to Implicit Shape Model/
 Constellation models but with discriminative/
 careful training throughout





NB: Code available for latent model!

Outline

1. Sliding window detectors

2. Features and adding spatial information

3. HOG + linear SVM classifier

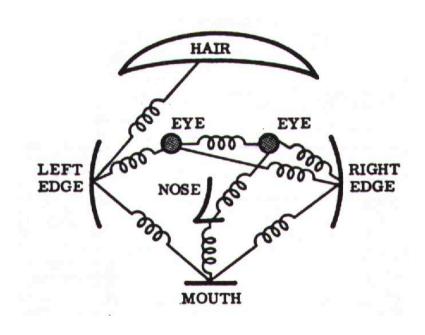
4. Two state of the art algorithms and PASCAL VOC

5. The future and challenges

Current Research Challenges

- Context
 - from scene properties: GIST, BoW, stuff
 - from other objects
 - from geometry of scene, e.g. Hoiem et al CVPR 06
- Occlusion/truncation
 - Winn & Shotton, Layout Consistent Random Field, CVPR 06
 - Vedaldi & Zisserman, NIPS 09
 - Yang et al, Layered Object Detection, CVPR 10
- 3D
- Scaling up thousands of classes
 - Torralba et al, Feature sharing
 - ImageNet
- Weak and noisy supervision

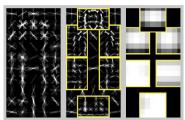
Pictorial structure model re-visited: efficient fitting

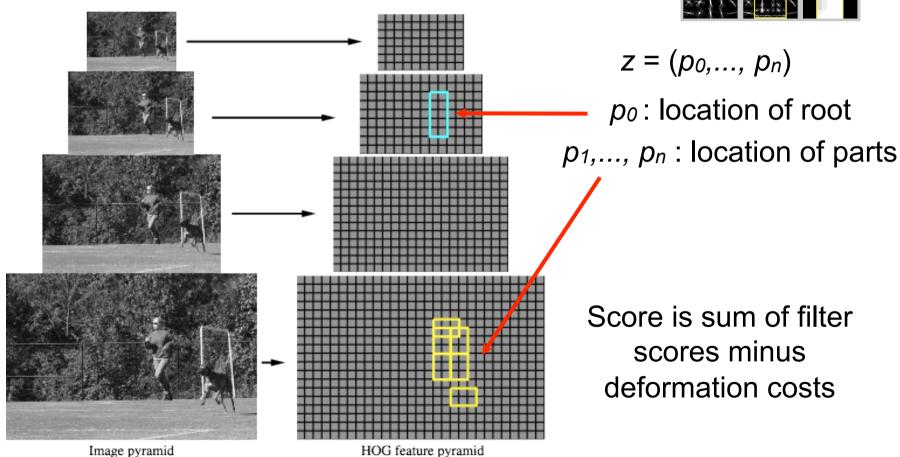


Let's have a closer look at the LSVM deformable part-based model...

Object Hypothesis

- Position of root + each part
- Each part: HOG filter (at higher resolution)





What is the cost of fitting the PS model?

- For fixed (learned) F_i and d_i
- · For simplicity, consider only single scale of the pyramid
- Parts can appear anywhere in the image (h=number of pixels)

Appearance term Spatial prior

$$\operatorname{score}(p_0,\ldots,p_n) = \sum_{i=0}^n F_i \cdot \phi(H,p_i) - \sum_{i=1}^n d_i \cdot (dx_i^2,dy_i^2)$$
 displacements deformation parameters

 p_0 : location of root

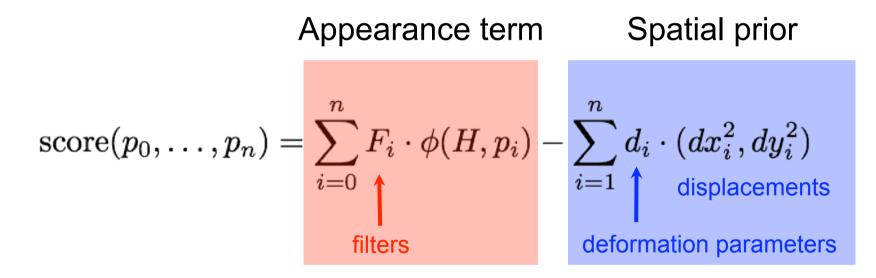
 $p_1, ..., p_n$: location of parts

 $p_i = (x_i, y_i)$ $dx_i = x_i - x_0$ $dy_i = y_i - y_0$

Fitting cost: Naïve search is O(nh²)

What is the cost of fitting the PS model?

- For fixed (learned) F_i and d_i
- For simplicity, consider only single scale of the pyramid
- Parts can appear anywhere in the image (h=number of pixels)



Fitting cost: Naïve search is O(nh²)

Need to evaluate the deformation cost of each part with respect to the root.

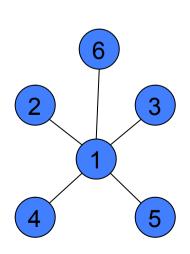
Can be done in O(nh)

Special case of a more general problem

Appearance term Spatial prior

$$\operatorname{score}(p_0,\ldots,p_n) = \sum_{i=0}^n F_i \cdot \phi(H,p_i) - \sum_{i=1}^n d_i \cdot (dx_i^2,dy_i^2)$$
 displacements deformation parameters

Maximization of the PS score can be re-written as a minimization of the following cost function on a "star" graph:



$$f(\mathbf{x}) = \sum_{v_i \in V} m_i(v_i) + \sum_{e_{ij} \in E} \phi(v_i, v_j)$$

- **Graph** (*V*, *E*)
- Vertices v_i for i = 1, ..., n
- ullet Edges e_{ij} connect v_i to other vertices v_i

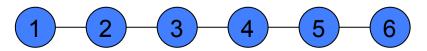
Dynamic programming on graphs

- **Graph** (*V*, *E*)
- Vertices v_i for i = 1, ..., n
- ullet Edges e_{ij} connect v_i to other vertices v_j

$$f(\mathbf{x}) = \sum_{v_i \in V} m_i(v_i) + \sum_{e_{ij} \in E} \phi(v_i, v_j)$$

Dynamic programming - review

- Discrete optimization
- Each variable x has a finite number of possible states
- Applies to problems that can be decomposed into a sequence of stages
- Each stage expressed in terms of results of fixed number of previous stages
- The cost function need not be convex
- The name "dynamic" is historical
- Also called the "Viterbi" algorithm
- Let's first consider a chain:

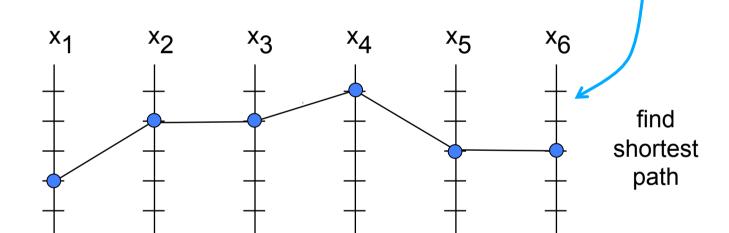


Consider a cost function $f(\mathbf{x}): {
m I\!R}^n o {
m I\!R}$ of the form

$$f(\mathbf{x}) = \sum_{i=1}^{n} m_i(x_i) + \sum_{i=2}^{n} \phi_i(x_{i-1}, x_i)$$

where x_i can take one of h values

e.g. h=5, n=6

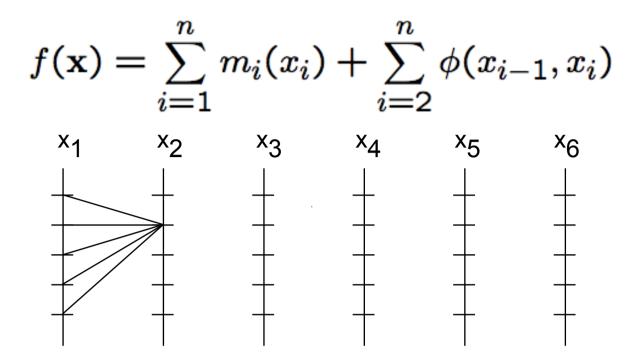


trellis

$$f(\mathbf{x}) = \begin{cases} m_1(x_1) + m_2(x_2) + m_3(x_3) + m_4(x_4) + m_5(x_5) + m_6(x_6) \\ \phi(x_1, x_2) + \phi(x_2, x_3) + \phi(x_3, x_4) + \phi(x_4, x_5) + \phi(x_5, x_6) \end{cases}$$

Complexity of minimization:

- exhaustive search O(hⁿ)
- dynamic programming O(nh²)



Key idea: the optimization can be broken down into n sub-optimizations

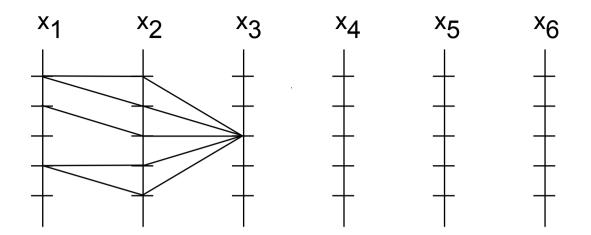
Step 1: For each value of x_2 determine the best value of x_1

Compute

$$S_2(x_2) = \min_{x_1} \{ m_2(x_2) + m_1(x_1) + \phi(x_1, x_2) \}$$

= $m_2(x_2) + \min_{x_1} \{ m_1(x_1) + \phi(x_1, x_2) \}$

• Record the value of x_1 for which $S_2(x_2)$ is a minimum To compute this minimum for all x_2 involves $O(h^2)$ operations



Step 2: For each value of x_3 determine the best value of x_2 and x_1

Compute

$$S_3(x_3) = m_3(x_3) + \min_{x_2} \{S_2(x_2) + \phi(x_2, x_3)\}$$

• Record the value of x_2 for which $S_3(x_3)$ is a minimum

Again, to compute this minimum for all x_3 involves $O(h^2)$ operations Note $S_k(x_k)$ encodes the lowest cost partial sum for all nodes up to kwhich have the value x_k at node k, i.e.

$$S_k(x_k) = \min_{x_1, x_2, \dots, x_k} \sum_{i=1}^k m_i(x_i) + \sum_{i=2}^k \phi(x_{i-1}, x_i)$$

Viterbi Algorithm

- Initialize $S_1(x_1) = m_1(x_1)$
- For k = 2 : n

$$S_k(x_k) = m_k(x_k) + \min_{x_{k-1}} \{ S_{k-1}(x_{k-1}) + \phi(x_{k-1}, x_k) \}$$

$$b_k(x_k) = \arg\min_{x_{k-1}} \{ S_{k-1}(x_{k-1}) + \phi(x_{k-1}, x_k) \}$$

Terminate

$$x_n^* = \arg\min_{x_n} S_n(x_n)$$

Backtrack

$$x_{i-1} = b_i(x_i)$$

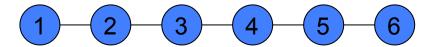
Complexity O(nh²)

Dynamic programming on graphs

- \bullet Graph (V, E)
- Vertices v_i for i = 1, ..., n
- ullet Edges e_{ij} connect v_i to other vertices v_j

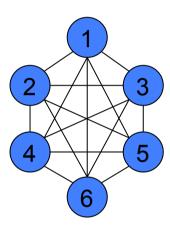
$$f(\mathbf{x}) = \sum_{v_i \in V} m_i(v_i) + \sum_{e_{ij} \in E} \phi(v_i, v_j)$$

So far have considered chains

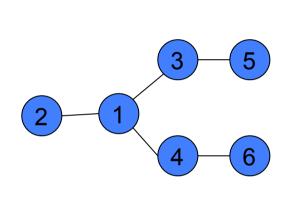


Different graph structures

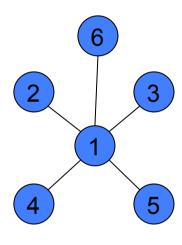
Can use dynamic programming



Fully connected



Tree structure



Star structure

 $O(h^n)$

 $O(nh^2)$

 $O(nh^2)$

n parts

h positions (e.g. every pixel for translation)

Distance transforms for DP

Special case of DP cost function

- Distance transforms
 - O(nh²) → O(nh) for DP cost functions
 - Assume model is quadratic, i.e. $\phi(x_{k-1},x_k)=\lambda^2(x_{k-1}-x_k)^2$

Recall that we need to compute

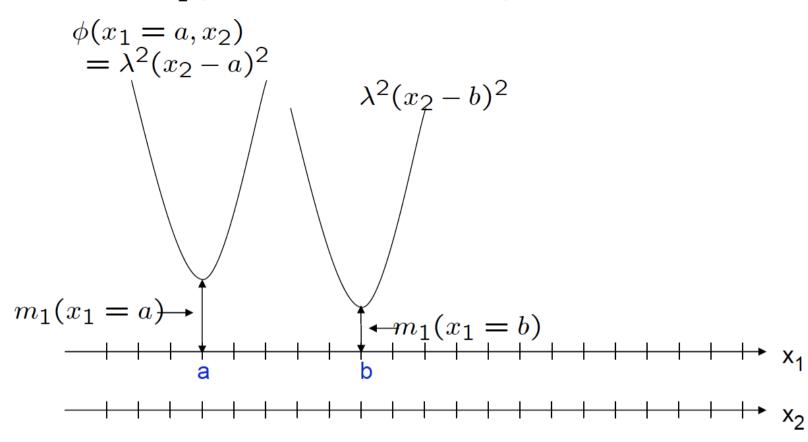
$$\min_{x_{k-1}} \{ S_{k-1}(x_{k-1}) + \phi(x_{k-1}, x_k) \}$$

e.g. for k=2, compute for each value of x_2

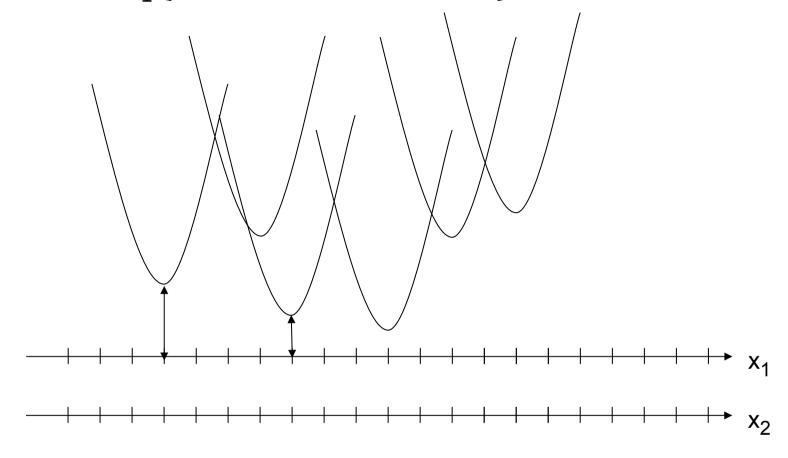
$$\min_{x_1} \{ m_1(x_1) + \phi(x_1, x_2) \}$$

Plot $\min_{x_1} \{m_1(x_1) + \phi(x_1, x_2)\}$ as function of x_2

Plot $\min_{x_1} \{m_1(x_1) + \phi(x_1, x_2)\}$ as function of x_2



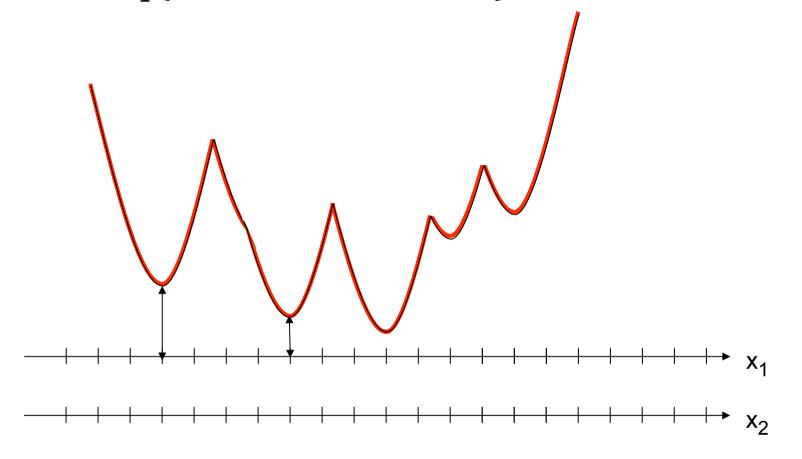
Plot $\min_{x_1} \{ m_1(x_1) + \phi(x_1, x_2) \}$ as function of x_2



For each x₂

- Finding min over x_1 is equivalent finding minimum over set of offset parabolas
- Lower envelope computed in O(h) rather than O(h²) via distance transform

Plot $\min_{x_1} \{ m_1(x_1) + \phi(x_1, x_2) \}$ as function of x_2



For each x₂

- Finding min over x_1 is equivalent finding minimum over set of offset parabolas
- Lower envelope computed in O(h) rather than O(h²) via distance transform

Generalized distance transform

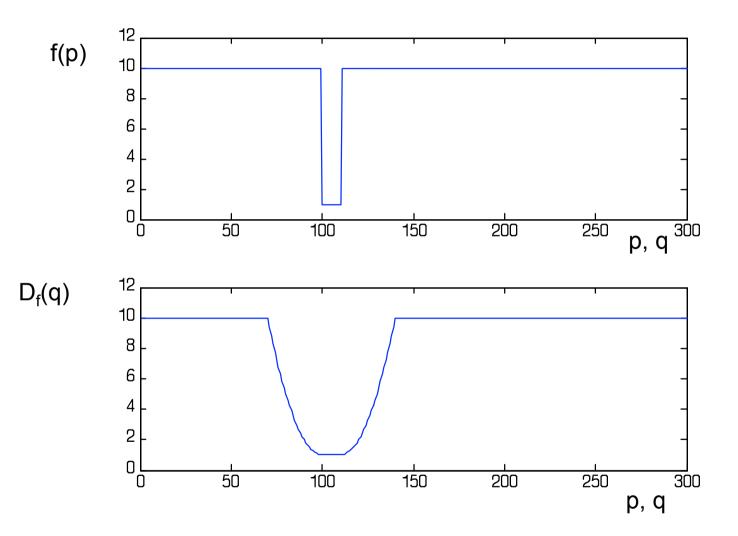
Given a function $f: \mathcal{G} \to \mathbb{R}$,

$$\mathcal{D}_f(q) = \min_{p \in \mathcal{G}} \left(||q - p||^2 + f(p) \right)$$

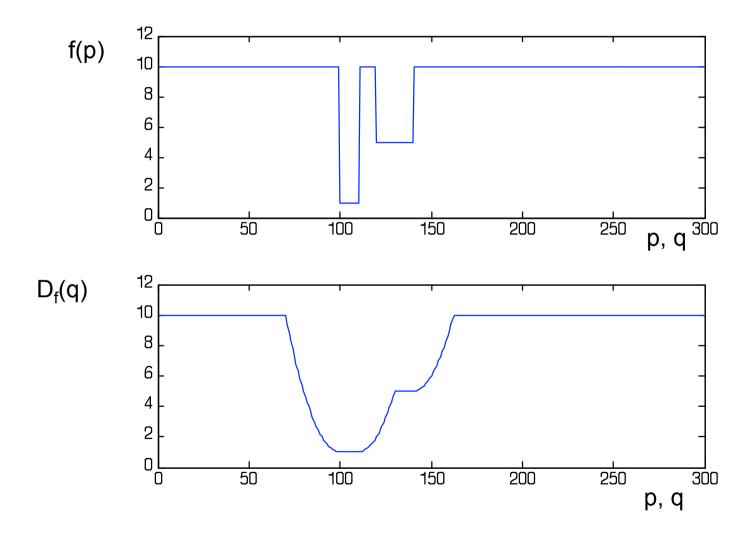
- for each location q, find nearby location p with f(p) small.
- equals DT of points P if f is an indicator function.

$$f(p) = \begin{cases} 0 & \text{if } p \in P \\ \infty & \text{otherwise} \end{cases}.$$

1D Examples



1D Examples



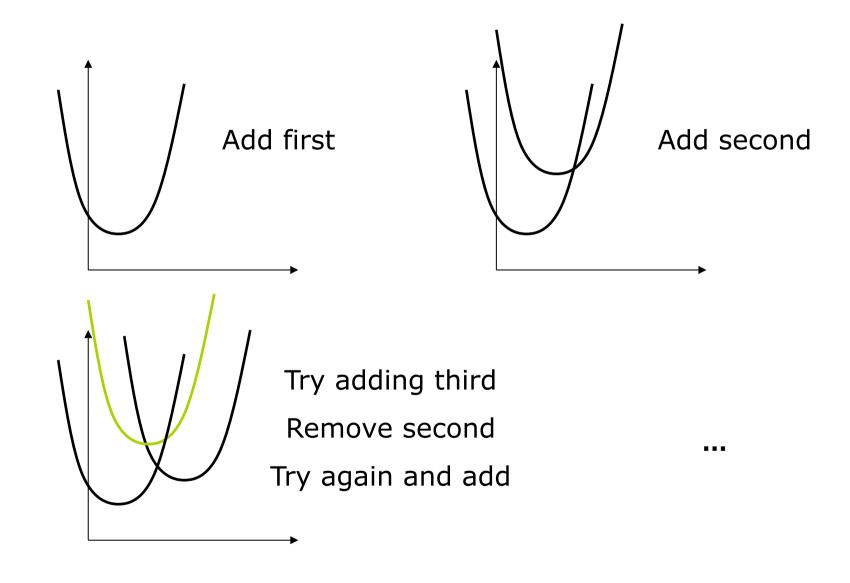
There is a simple geometric algorithm that computes $\mathcal{D}_f(p)$ in O(h) time for the 1D case.

- similar to Graham's scan convex hull algorithm.
- about 20 lines of C code.

The 2D case is "separable", it can be solved by sequential 1D transformations along rows and columns of the grid.

See **Distance Transforms of Sampled Functions**, Felzen-szwalb and Huttenlocher.

"Lower Envelope" Algorithm



Algorithm for Lower Envelope

- Quadratics ordered left to right
- At step j consider adding j-th quadratic to LE of first j-1 quadratics
 - Maintain two ordered lists
 - Quadratics currently visible on LE
 - Intersections currently visible on LE
 - Compute intersection of j-th quadratic and rightmost quadratic visible on LE
 - If to right of rightmost visible intersection, add quadratic and intersection to lists
 - If not, this quadratic hides at least rightmost quadratic, remove it and try again

Code available online: http://people.cs.uchicago.edu/~pff/dt/

Running Time of LE Algorithm

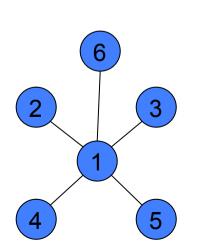
- Considers adding each of h quadratics just once
 - Intersection and comparison constant time
 - Adding to lists constant time
 - Removing from lists constant time
 - But then need to try again
- Simple amortized analysis
 - Total number of removals O(h)
 - Each quadratic once removed never considered for removal again
- Thus overall running time O(h)

Coming back to fitting pictorial structures

Appearance term Spatial prior

$$\operatorname{score}(p_0,\ldots,p_n) = \sum_{i=0}^n F_i \cdot \phi(H,p_i) - \sum_{i=1}^n d_i \cdot (dx_i^2,dy_i^2)$$
 displacements deformation parameters

Maximization of the PS score can be re-written as a minimization of the following cost function on a "star" graph:



$$f(\mathbf{x}) = \sum_{v_i \in V} m_i(v_i) + \sum_{e_{ij} \in E} \phi(v_i, v_j)$$

As the spatial prior is a quadratic function of part positions, (x_i, y_i) , finding the optimal configuration of parts can be done in O(nh) time, instead of naïve O(nh²).

Part Detection

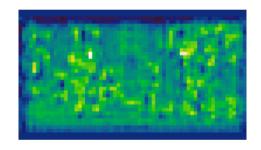
head filter

input image

Response of filter in I-th pyramid level

$$R_l(x,y) = F \cdot \phi(H,(x,y,l))$$

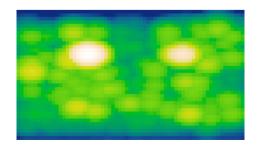
cross-correlation



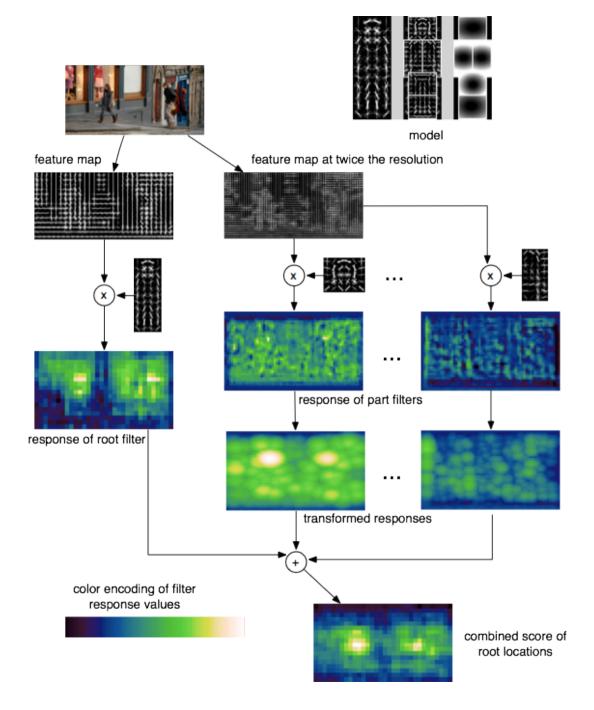
Transformed response

$$D_l(x,y) = \max_{dx,dy} \left(R_l(x+dx,y+dy) - d_i \cdot (dx^2,dy^2) \right)$$

Distance transform computed in linear time (spreading, local max, etc)

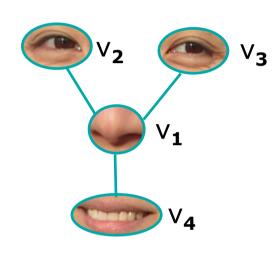


System



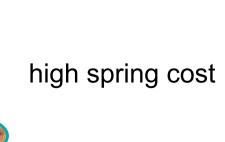
Other applications of PS models: facial feature detection in images

Model



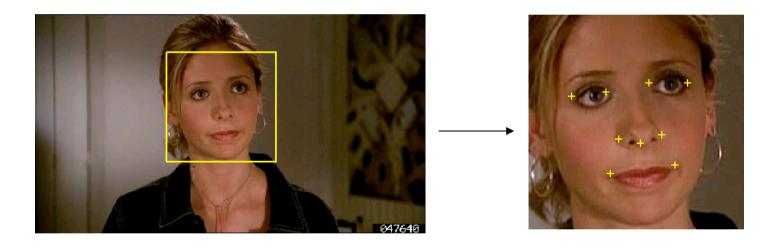
The goal: Localize facial features in faces output by face detector

- Parts $V = \{v_1, ..., v_n\}$
- Connected by springs in a star configuration to nose (can be a tree)
- Quadratic cost for springs



Example part localizations in video

Example of a model with 9 parts

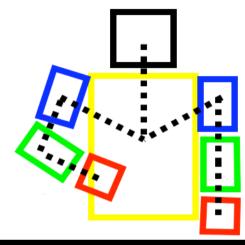


Support parts-based face descriptors

Provide initialization for global face descriptors

Code available online: http://www.robots.ox.ac.uk/~vgg/research/nface/index.html

Example II: Hand tracking for sign language interpretation



Pose estimation for sign language recognition

Signer 1 (5 min of an one hour sequence)

Distinctive frames are marked by a "D" in the upper right corner

Buehler et al. BMVC'2008

Summary

- Pictorial structure models with tree configuration of parts can be fitted in **O(nh²)**. {n=number of parts, h=number of pixels}
- For quadratic pair-wise terms this can be reduced to O(nh).
- This can lead to significant speed-ups if h is large (e.g. number of pixels).

Other applications:

- Facial feature finding
- Fitting articulated models