
Efficient visual search of local features

Cordelia Schmid

Matches

22 correct matches

Visual search

…

change in viewing angle

Image search system for large datasets

Image search
system

ranked image list

Large image Dataset
 (one million images or more)

query

•  Issues for very large databases
•  to reduce the query time
•  to reduce the storage requirements

Solution: fast descriptor search
•  Complexity

–  O(nd) for n features and d dimensions
–  Linear in the number of features / images

•  Speed up individual descriptor vector search
–  kd-trees (k dim. tree), approximate nearest neighbor search
–  Binary tree in which each node is a k-dimensional point
–  Every split is associated with one dimension

kd-tree decomposition
kd-tree

Large scale object/scene recognition

•  Each image described by approximately 2000 descriptors
–  2 * 109 descriptors to index for one million images!

•  Database representation in RAM:
–  Size of descriptors : 1 TB, search+memory intractable

Image search
system

ranked image list

Image dataset:
> 1 million images

query

Bag-of-features [Sivic&Zisserman’03]

Harris-Hessian-Laplace
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

querying

sparse frequency vector

centroids
(visual words)

Inverted
file

ranked image
short-list

Set of SIFT
descriptors

Query
image

Geometric
verification

Re-ranked
list

•  “visual words”:
–  1 “word” (index) per local

descriptor
–  only images ids in inverted file
=> 8 GB fits!

[Chum & al. 2007]

Indexing text with inverted files

Need to map feature descriptors to “visual words”

Inverted file: Term List of hits (occurrences in documents)

People [d1:hit hit hit], [d4:hit hit] …

Common [d1:hit hit], [d3: hit], [d4: hit hit hit] …

Sculpture [d2:hit], [d3: hit hit hit] …

Document
collection:

Visual words
• Example: each group
of patches belongs to
the same visual word

11
K. Grauman, B. Leibe

Figure from Sivic & Zisserman, ICCV 2003

K-means clustering
•  Minimizing sum of squared Euclidean distances

between points xi and their nearest cluster centers

•  Algorithm:
–  Randomly initialize K cluster centers
–  Iterate until convergence:

•  Assign each data point to the nearest center
•  Recompute each cluster center as the mean of all points

assigned to it

•  Local minimum, solution dependent on initialization

•  Initialization important, run several times, select best

Visual words

•  Map descriptors to words by quantizing the feature space
–  Quantize via k-means clustering to obtain visual words
–  Assign descriptor to closest visual word

•  Bag-of-features as approximate nearest neighbor search

 Bag-of-features matching function

 where q(x) is a quantizer, i.e., assignment to visual word and
 δa,b is the Kronecker operator (δa,b=1 iff a=b)

Inverted file index for images comprised of visual words

• 

Image credit: A. Zisserman K. Grauman, B. Leibe

Word
number

List of image
numbers

•  Score each image by the number of common visual words (tentative
correspondences)

•  Dot product between bag-of-features

•  Fast for sparse vectors !

Inverted file index for images comprised of visual words

Image credit: A. Zisserman K. Grauman, B. Leibe

•  Weighting with tf-idf score: weight visual words based on their frequency

• Tf: normalized term (word) ti frequency in a document dj

• Idf: inverse document frequency, total number of documents divided by
number of documents containing the term ti

 Tf-Idf:

Approximate nearest neighbor search evaluation
• ANN algorithms usually returns a short-list of nearest neighbors

–  this short-list is supposed to contain the NN with high probability
–  exact search may be performed to re-order this short-list

• Proposed quality evaluation of ANN search: trade-off between
–  Accuracy: NN recall = probability that the NN is in this list

 against
–  Ambiguity removal = proportion of vectors in the short-list

- the lower this proportion, the more information we have about the
vector

- the lower this proportion, the lower the complexity if we perform exact
search on the short-list

• ANN search algorithms usually have some parameters to handle this trade-off

ANN evaluation of bag-of-features
• ANN algorithms
returns a list of
potential neighbors

• Accuracy: NN recall
= probability that the
NN is in this list

• Ambiguity removal:
= proportion of vectors
in the short-list

• In BOF, this trade-off
is managed by the
number of clusters k

N
N

 re
ca

ll

 0
 0.1

 0.2
 0.3
 0.4
 0.5

 0.6
 0.7

 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1
rate of points retrieved

 k=100
 200

 500
 1000

 2000
 5000

 10000
 20000

 30000
 50000

BOW

Vocabulary size

•  The intrinsic matching scheme performed by BOF is weak
–  for a “small” visual dictionary: too many false matches
–  for a “large” visual dictionary: complexity, true matches are missed

•  No good trade-off between “small” and “large” !
–  either the Voronoi cells are too big
–  or these cells can’t absorb the descriptor noise
→ intrinsic approximate nearest neighbor search of BOF is not

sufficient

Hierarchical clustering
•  Hierarchical clustering: fast assignment in case of large vocabularies

–  Vocabulary tree [Nister & Stewenius, CVPR 2006]

•  Combined with multiple assignment

19
K. Grauman, B. Leibe

20K visual word: false matches

200K visual word: good matches missed

Hamming Embedding [Jegou et al. ECCV’08]

Representation of a descriptor x
–  Vector-quantized to q(x) as in standard BOF
+ short binary vector b(x) for an additional localization in the Voronoi cell

Two descriptors x and y match iif

where h(a,b) Hamming distance

Hamming Embedding

• Nearest neighbors for Hamming distance ≈ those for Euclidean distance
→ a metric in the embedded space reduces dimensionality curse effects

• Efficiency
–  Hamming distance = very few operations
–  Fewer random memory accesses: 3 x faster that BOF with same dictionary

size!

Hamming Embedding

• Off-line (given a quantizer)
–  draw an orthogonal projection matrix P of size db × d
→ this defines db random projection directions
–  for each Voronoi cell and projection direction, compute the median

value for a learning set

• On-line: compute the binary signature b(x) of a given
descriptor

–  project x onto the projection directions as z(x) = (z1,…zdb)
–  bi(x) = 1 if zi(x) is above the learned median value, otherwise 0

ANN evaluation of Hamming Embedding
 0.7

N
N

 re
ca

ll

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1
rate of points retrieved

k=100
200

 500
1000

 2000
 5000

10000
 20000

 30000
 50000

ht=16

18

20
22

HE+BOW
BOW

32 28
24 compared to BOW: at least

10 times less points in the
short-list for the same level

of accuracy

Hamming Embedding
provides a much better

trade-off between recall and
ambiguity removal

Matching points - 20k word vocabulary

201 matches 240 matches

Many matches with the non-corresponding image!

Matching points - 200k word vocabulary
69 matches 35 matches

Still many matches with the non-corresponding one

Matching points - 20k word vocabulary + HE

83 matches 8 matches

10x more matches with the corresponding image!

Bag-of-features [Sivic&Zisserman’03]

Harris-Hessian-Laplace
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

querying

sparse frequency vector

centroids
(visual words)

Inverted
file

ranked image
short-list

Set of SIFT
descriptors

Query
image

Geometric
verification

Re-ranked
list

•  “visual words”:
–  1 “word” (index) per local

descriptor
–  only images ids in inverted file
=> 8 GB fits!

[Chum & al. 2007]

Geometric verification

Use the position and shape of the underlying features
to improve retrieval quality

Both images have many matches – which is correct?

Geometric verification

We can measure spatial consistency between the query
and each result to improve retrieval quality

Many spatially consistent
matches – correct result

Few spatially consistent
matches – incorrect

result

Geometric verification

 Gives localization of the object

Geometric verification

•  Remove outliers, matches contain a high number of
incorrect ones

•  Estimate geometric transformation

•  Robust strategies
–  RANSAC
–  Hough transform

Geometric verification – example

1. Query

3. Spatial verification (re-rank on # of inliers)

…

2. Initial retrieval set (bag of words model)

Evaluation dataset: Oxford buildings

All Soul's

Ashmolean

Balliol

Bodleian

Thom
Tower

Cornmarket

Bridge of
Sighs

Keble

Magdalen

University
Museum

Radcliffe
Camera

  Ground truth obtained for 11 landmarks
  Evaluate performance by mean Average Precision

Measuring retrieval performance: Precision - Recall

all images

returned
images

relevant
images

•  Precision: % of returned images that
 are relevant

•  Recall: % of relevant images that are
returned

Average Precision

•  A good AP score requires both high
recall and high precision

•  Application-independent AP

Performance measured by mean Average Precision (mAP)
over 55 queries on 100K or 1.1M image datasets

INRIA holidays dataset

•  Evaluation for the INRIA holidays dataset, 1491 images
–  500 query images + 991 annotated true positives
–  Most images are holiday photos of friends and family

•  1 million & 10 million distractor images from Flickr
•  Vocabulary construction on a different Flickr set
•  Almost real-time search speed

•  Evaluation metric: mean average precision (in [0,1], bigger
= better)
–  Average over precision/recall curve

Holiday dataset – example queries

Dataset : Venice Channel

Query

Base 4 Base 3

Base 2 Base 1

Dataset : San Marco square

Query Base 1 Base 3 Base 2

Base 9 Base 8

Base 4 Base 5 Base 7 Base 6

Example distractors - Flickr

Experimental evaluation

•  Evaluation on our holidays dataset, 500 query images, 1 million distracter
images

•  Metric: mean average precision (in [0,1], bigger = better)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1000000 100000 10000 1000

m
A

P

database size

baseline
HE

+re-ranking

Results – Venice Channel

Base 1 Flickr

Flickr Base 4

Query

Demo at http://bigimbaz.inrialpes.fr

Towards larger databases?

  BOF can handle up to ~10 M d’images
►  with a limited number of descriptors per image
►  40 GB of RAM
►  search = 2 s

  Web-scale = billions of images
►  With 100 M per machine

 → search = 20 s, RAM = 400 GB
 → not tractable!

Recent approaches for very large scale indexing

Hessian-Affine
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

Vector
compression

sparse frequency vector

centroids
(visual words)

ranked image
short-list

Set of SIFT
descriptors

Query
image

Geometric
verification

Re-ranked
list

Vector
search

Related work on very large scale image search

  Min-hash and geometrical min-hash [Chum et al. ‘07-’09]

  GIST descriptors with Spectral Hashing [Torralba et al. ‘08]

  Compressing the BoF representation (miniBof) [Jegou et al. ‘09]

  Aggregating local desc into a compact image representation [Jegou et al. ‘10]

  Efficient object category recognition using classemes [Torresani et al.’10]

Compact image representation

  Aim: improving the tradeoff between
►  search speed
►  memory usage
►  search quality

  Approach: joint optimization of three stages
►  local descriptor aggregation
►  dimension reduction
►  indexing algorithm

Image representation
VLAD

PCA +
PQ codes

(Non) – exhaustive
search

 [H. Jegou et al., Aggregating local desc into a compact image representation, CVPR’10]

Aggregation of local descriptors

  Problem: represent an image by a single fixed-size vector:

 set of n local descriptors → 1 vector

  Most popular idea: BoF representation [Sivic & Zisserman 03]
►  sparse vector
►  highly dimensional

→ high dimensionality reduction introduces loss

  Alternative: Fisher Kernels [Perronnin et al 07]
►  non sparse vector
►  excellent results with a small vector dimensionality
→ our method (VLAD) in the spirit of this representation

VLAD : vector of locally aggregated descriptors

  Simplification of Fisher kernels

  Learning: a vector quantifier (k-means)
►  output: k centroids (visual words): c1,…,ci,…ck

►  centroid ci has dimension d

  For a given image
►  assign each descriptor to closest center ci
►  accumulate (sum) descriptors per cell

 vi := vi + (x - ci)

  VLAD (dimension D = k x d)

  The vector is L2-normalized

ci

x

VLADs for corresponding images

 SIFT-like representation per centroid (+ components: blue, - components: red)

  good coincidence of energy & orientations

 v1 v2 v3 ...

VLAD performance and dimensionality reduction

  We compare VLAD descriptors with BoF: INRIA Holidays Dataset (mAP,%)
  Dimension is reduced to from D to D’ dimensions with PCA

  Observations:
►  VLAD better than BoF for a given descriptor size

→ comparable to Fisher kernels for these operating points
►  Choose a small D if output dimension D’ is small

Aggregator k D D’=D
(no reduction)

D’=128 D’=64

BoF 1,000 1,000 41.4 44.4 43.4

BoF 20,000 20,000 44.6 45.2 44.5

BoF 200,000 200,000 54.9 43.2 41.6

VLAD 16 2,048 49.6 49.5 49.4

VLAD 64 8,192 52.6 51.0 47.7

VLAD 256 32,768 57.5 50.8 47.6

  Vector split into m subvectors:

  Subvectors are quantized separately by quantizers
where each is learned by k-means with a limited number of centroids

  Example: y = 128-dim vector split in 8 subvectors of dimension 16
►  each subvector is quantized with 256 centroids -> 8 bit
►  very large codebook 256^8 ~ 1.8x10^19

Product quantization for nearest neighbor search

8 bits

16 components

⇒ 8 subvectors x 8 bits = 64-bit quantization index

y1 y2 y3 y4 y5 y6 y7 y8

q1 q2 q3 q4 q5 q6 q7 q8

q1(y1) q2(y2) q3(y3) q4(y4) q5(y5) q6(y6) q7(y7) q8(y8)

256
centroids

Joint optimization of VLAD and dimension reduction-indexing

  For VLAD
►  The larger k, the better the raw search performance
►  But large k produce large vectors, that are harder to index

  Optimization of the vocabulary size
►  Fixed output size (in bytes)
►  D’ computed from k via the joint optimization of reduction/indexing
►  Only k has to be set

 end-to-end parameter optimization

Results on the Holidays dataset with various quantization parameters

Results on standard datasets

  Datasets
►  University of Kentucky benchmark score: nb relevant images, max: 4
►  INRIA Holidays dataset score: mAP (%)

Method bytes UKB Holidays
BoF, k=20,000 10K 2.92 44.6

BoF, k=200,000 12K 3.06 54.9

miniBOF 20 2.07 25.5

miniBOF 160 2.72 40.3

VLAD k=16, ADC 16 x 8 16 2.88 46.0

VLAD k=64, ADC 32 x10 40 3.10 49.5

miniBOF: “Packing Bag-of-Features”, ICCV’09

D’ =64 for k=16 and D’ =96 for k=64
ADC (subvectors) x (bits to encode each subvector)

Large scale experiments (10 million images)

  Exhaustive search of VLADs, D’=64
►  4.77s

  With the product quantizer
►  Exhaustive search with ADC: 0.29s
►  Non-exhaustive search with IVFADC: 0.014s

 IVFADC -- Combination with an inverted file

Large scale experiments (10 million images)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1000 10k 100k 1M 10M

re
ca

ll@
10

0

Database size: Holidays+images from Flickr

BOF D=200k
VLAD k=64

VLAD k=64, D'=96
VLAD k=64, ADC 16 bytes

VLAD+Spectral Hashing, 16 bytes

4.768s

ADC: 0.286s
IVFADC: 0.014s

Timings

SH ≈ 0.267s

