Efficient visual search of local features

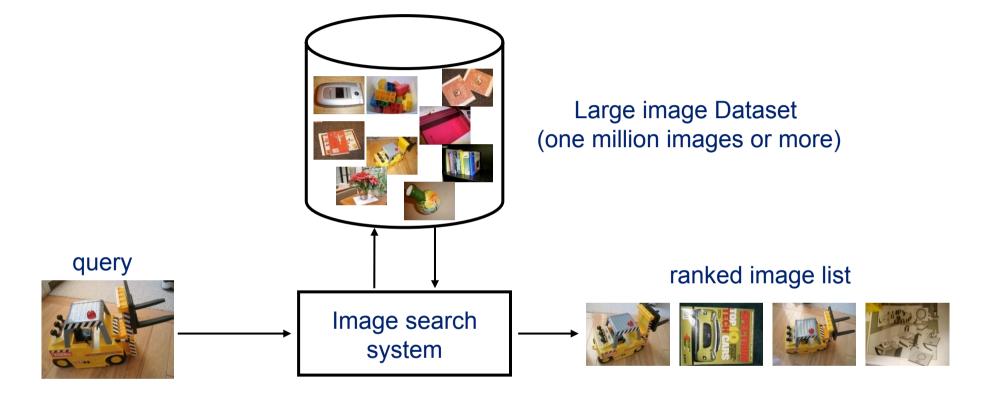
Cordelia Schmid

Matches

22 correct matches

Visual search

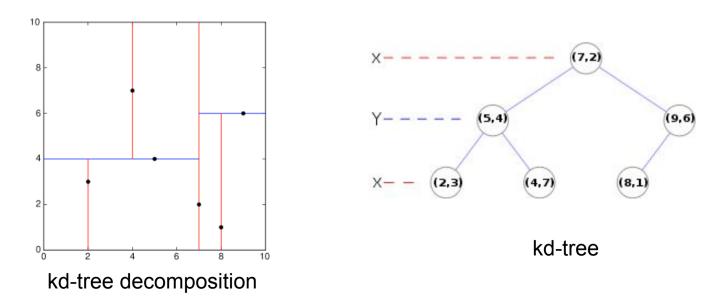
Image search system for large datasets



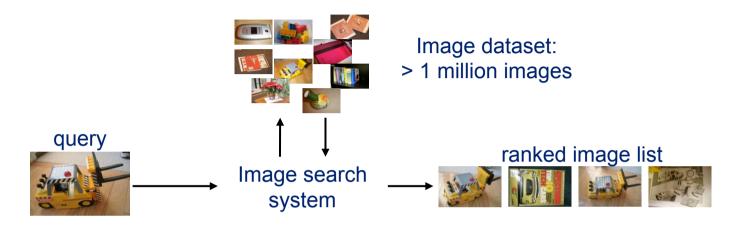
- **Issues** for very large databases
 - to reduce the query time
 - to reduce the storage requirements

Solution: fast descriptor search

- Complexity
 - O(nd) for n features and d dimensions
 - Linear in the number of features / images
- Speed up individual descriptor vector search
 - kd-trees (k dim. tree), approximate nearest neighbor search
 - Binary tree in which each node is a k-dimensional point
 - Every split is associated with one dimension

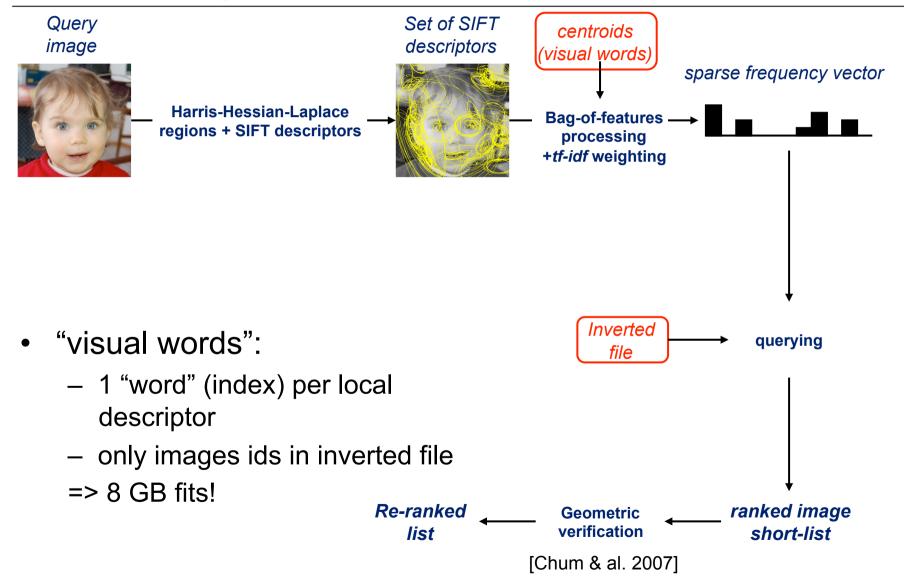


Large scale object/scene recognition

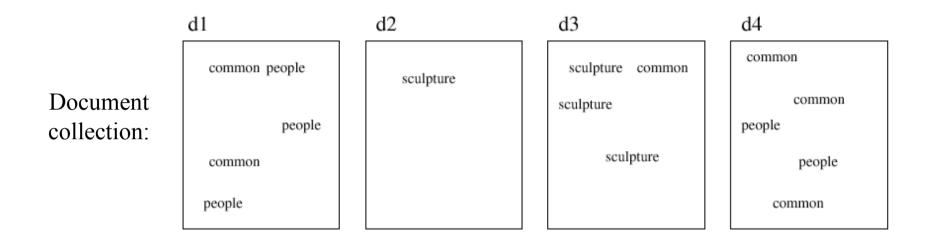


- Each image described by approximately 2000 descriptors
 - -2×10^9 descriptors to index for one million images!
- Database representation in RAM:
 - Size of descriptors : 1 TB, search+memory intractable

Bag-of-features [Sivic&Zisserman'03]



Indexing text with inverted files

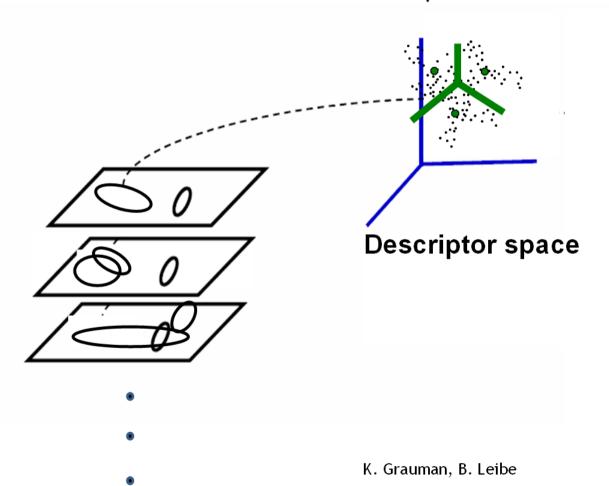


Inverted file:	Term	List of hits (occurrences in documents)
	People	[d1:hit hit hit], [d4:hit hit]
	Common	[d1:hit hit], [d3: hit], [d4: hit hit hit]
	Sculpture	[d2:hit], [d3: hit hit hit]

Need to map feature descriptors to "visual words"

Visual words: main idea

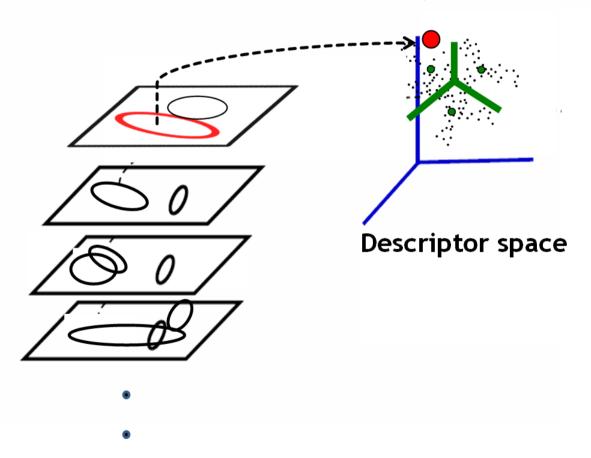
Map high-dimensional descriptors to tokens/words by quantizing the feature space



 Quantize via clustering, let cluster centers be the prototype "words"

Visual words: main idea

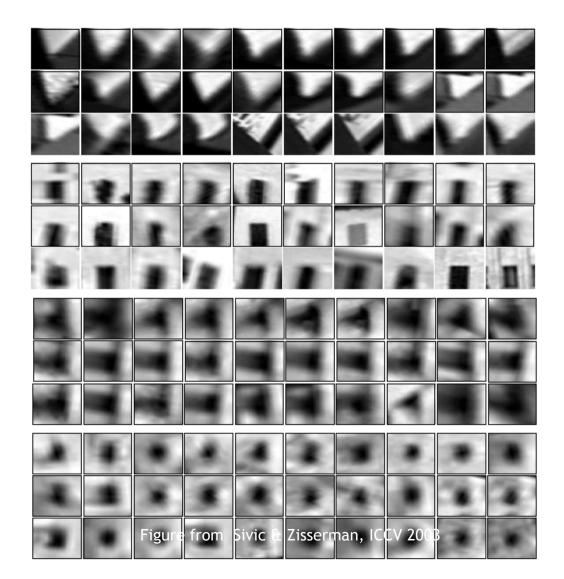
Map high-dimensional descriptors to tokens/words by quantizing the feature space



 Determine which word to assign to each new image region by finding the closest cluster center.

Visual words

•Example: each group of patches belongs to the same visual word



K-means clustering

- Minimizing sum of squared Euclidean distances between points x_i and their nearest cluster centers
- Algorithm:
 - Randomly initialize K cluster centers
 - Iterate until convergence:
 - Assign each data point to the nearest center
 - Recompute each cluster center as the mean of all points assigned to it
- Local minimum, solution dependent on initialization
- Initialization important, run several times, select best

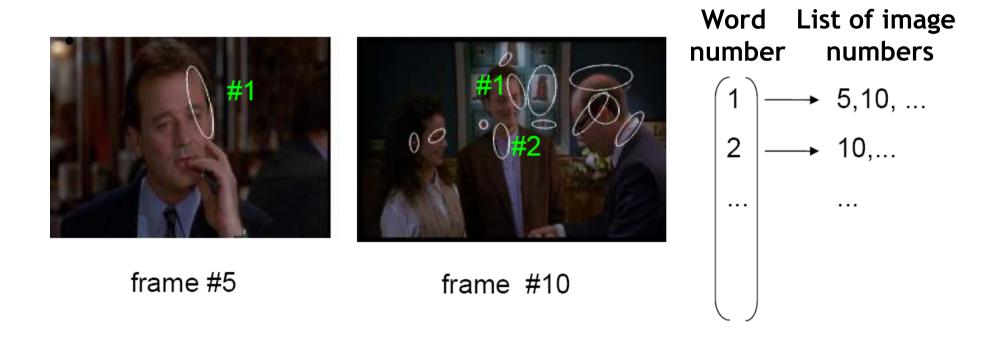
Visual words

- Map descriptors to words by quantizing the feature space
 - Quantize via k-means clustering to obtain visual words
 - Assign descriptor to closest visual word
- Bag-of-features as approximate nearest neighbor search

Bag-of-features matching function $f_q(x, y) = \delta_{q(x), q(y)}$

where q(x) is a quantizer, i.e., assignment to visual word and $\delta_{a,b}$ is the Kronecker operator ($\delta_{a,b}$ =1 iff a=b)

Inverted file index for images comprised of visual words



- Score each image by the number of common visual words (tentative correspondences)
- Dot product between bag-of-features
- Fast for sparse vectors !

• Weighting with tf-idf score: weight visual words based on their frequency

•Tf: normalized term (word) ti frequency in a document dj

$$tf_{ij} = n_{ij} / \sum_{k} n_{kj}$$

•ldf: inverse document frequency, total number of documents divided by number of documents containing the term ti

$$idf_i = \log \frac{|D|}{|\{d:t_i \in d\}}$$

Tf-Idf: $tf - idf_{ij} = tf_{ij} \cdot idf_i$

Approximate nearest neighbor search evaluation

- •ANN algorithms usually returns a short-list of nearest neighbors
 - this short-list is supposed to contain the NN with high probability
 - exact search may be performed to re-order this short-list

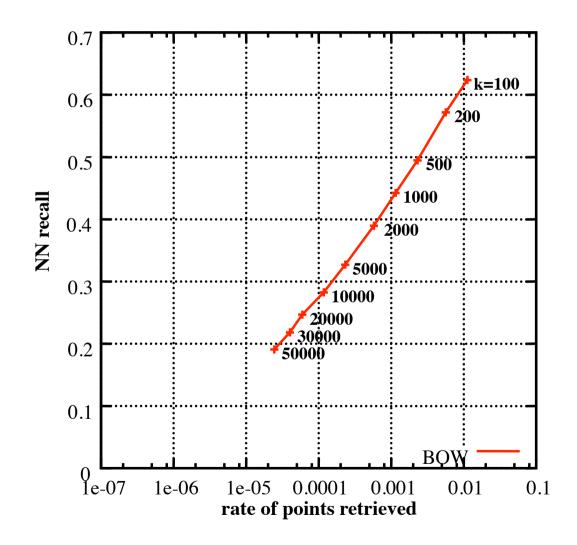
•Proposed quality evaluation of ANN search: trade-off between

– Accuracy: NN recall = probability that the NN is in this list

against

- Ambiguity removal = proportion of vectors in the short-list
 - the lower this proportion, the more information we have about the vector
 - the lower this proportion, the lower the complexity if we perform exact search on the short-list
- •ANN search algorithms usually have some parameters to handle this trade-off

ANN evaluation of bag-of-features



•ANN algorithms returns a list of potential neighbors

Accuracy: NN recall

= probability that the
NN is in this list

•Ambiguity removal: = proportion of vectors in the short-list

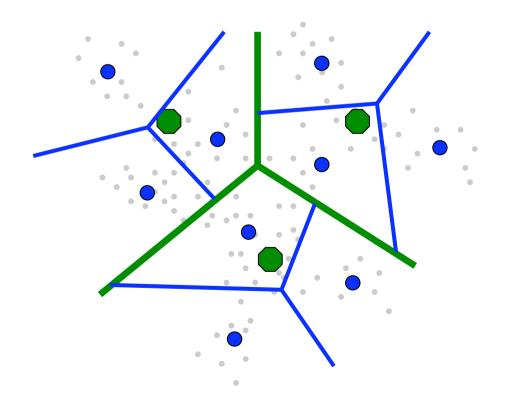
•In BOF, this trade-off is managed by the number of clusters *k*

Vocabulary size

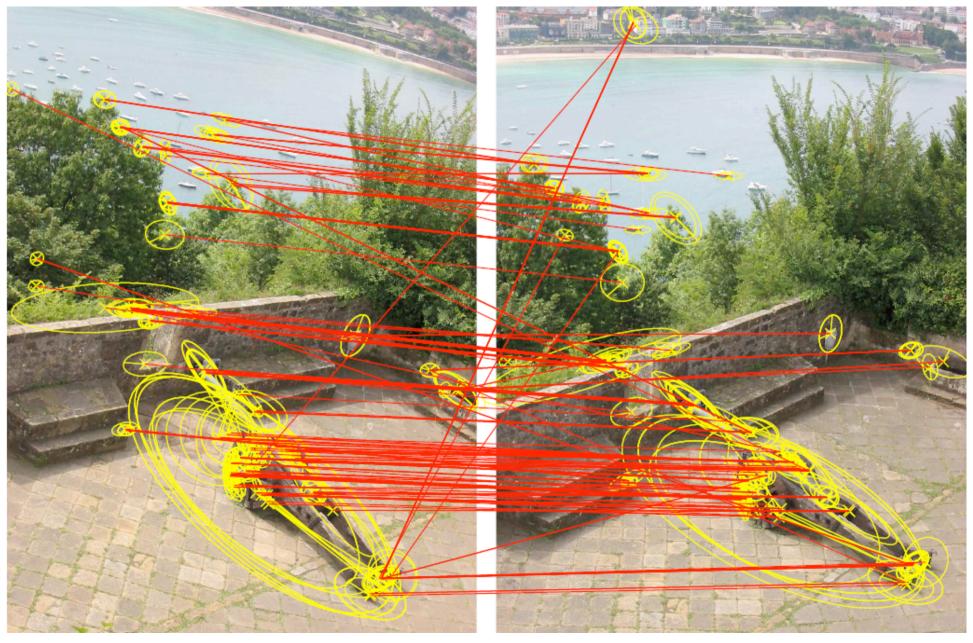
- The intrinsic matching scheme performed by BOF is weak
 - for a "small" visual dictionary: too many false matches
 - for a "large" visual dictionary: complexity, true matches are missed
- No good trade-off between "small" and "large" !
 - either the Voronoi cells are too big
 - or these cells can't absorb the descriptor noise
 - → intrinsic approximate nearest neighbor search of BOF is not sufficient

Hierarchical clustering

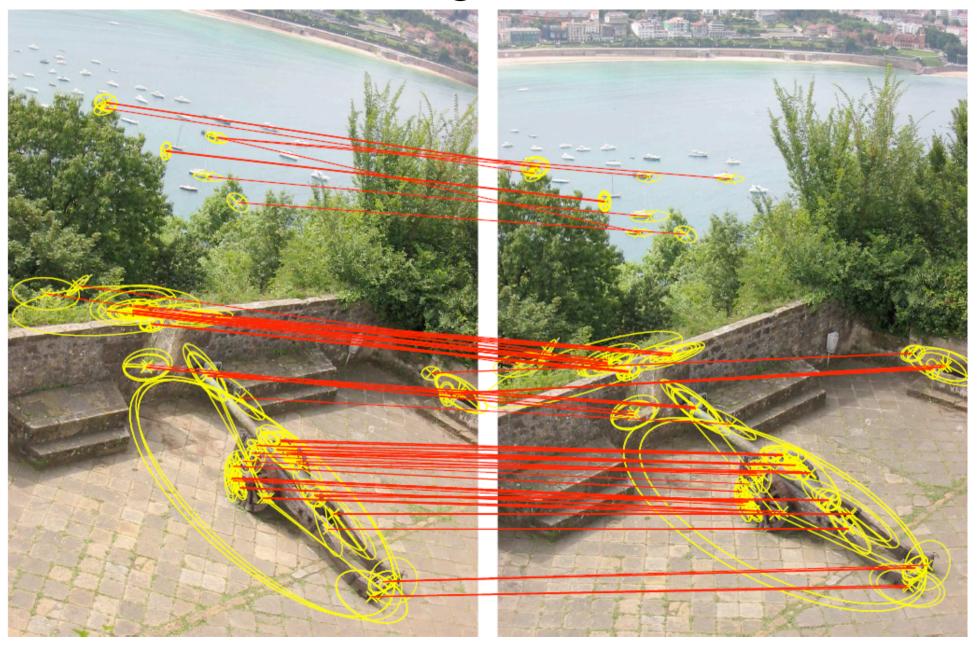
- Hierarchical clustering: fast assignment in case of large vocabularies
 - Vocabulary tree [Nister & Stewenius, CVPR 2006]
- Combined with multiple assignment



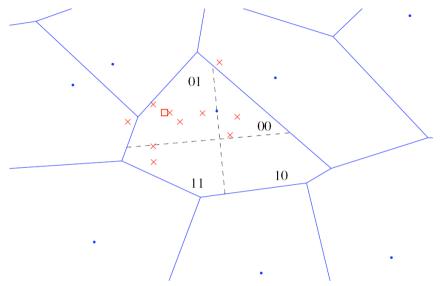
20K visual word: false matches



200K visual word: good matches missed



Hamming Embedding [Jegou et al. ECCV'08]



Representation of a descriptor *x*

- Vector-quantized to q(x) as in standard BOF
- + short binary vector b(x) for an additional localization in the Voronoi cell

Two descriptors x and y match iif

 $f_{\rm HE}(x,y) = \begin{cases} ({\rm tf}{\rm -idf}(q(x)))^2 & \text{ if } q(x) = q(y) \\ & \text{ and } h\left(b(x), b(y)\right) \le h_t \\ 0 & \text{ otherwise} \end{cases}$

where h(a,b) Hamming distance

Hamming Embedding

Nearest neighbors for Hamming distance ≈ those for Euclidean distance
 → a metric in the embedded space reduces dimensionality curse effects

- •Efficiency
 - Hamming distance = very few operations
 - Fewer random memory accesses: 3 x faster that BOF with same dictionary size!

Hamming Embedding

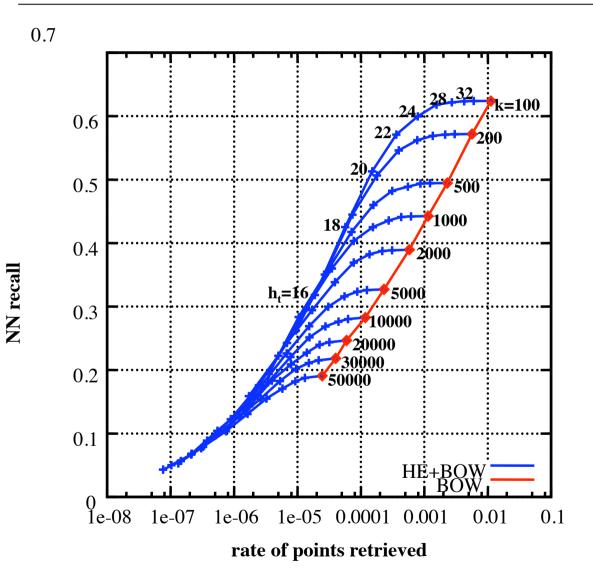
•Off-line (given a quantizer)

- draw an orthogonal projection matrix P of size $d_b \times d$
- \rightarrow this defines d_b random projection directions
- for each Voronoi cell and projection direction, compute the median value for a learning set

•**On-line**: compute the binary signature b(x) of a given descriptor

- project x onto the projection directions as $z(x) = (z_1, \dots z_{db})$
- $-b_i(x) = 1$ if $z_i(x)$ is above the learned median value, otherwise 0

ANN evaluation of Hamming Embedding



compared to BOW: at least 10 times less points in the short-list for the same level of accuracy

Hamming Embedding provides a much better trade-off between recall and ambiguity removal

Matching points - 20k word vocabulary

201 matches

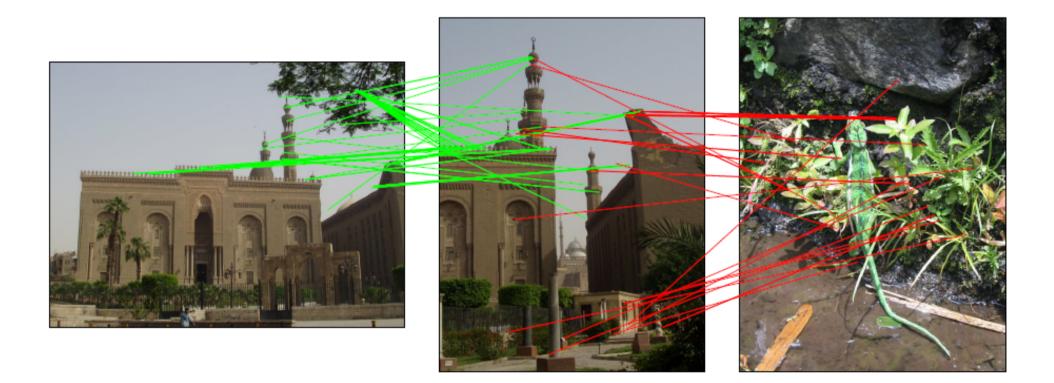
240 matches

Many matches with the non-corresponding image!

Matching points - 200k word vocabulary

69 matches

35 matches



Still many matches with the non-corresponding one

Matching points - 20k word vocabulary + HE

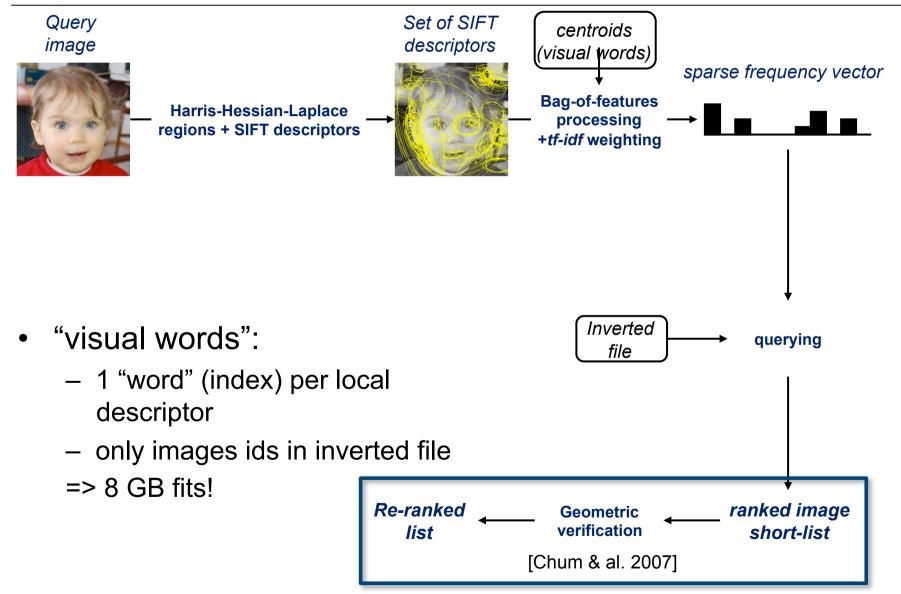
83 matches

8 matches



10x more matches with the corresponding image!

Bag-of-features [Sivic&Zisserman'03]

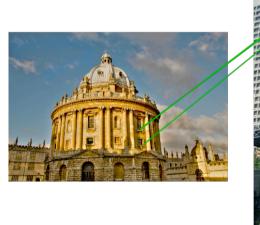


Use the **position** and **shape** of the underlying features to improve retrieval quality

Both images have many matches – which is correct?

We can measure **spatial consistency** between the query and each result to improve retrieval quality

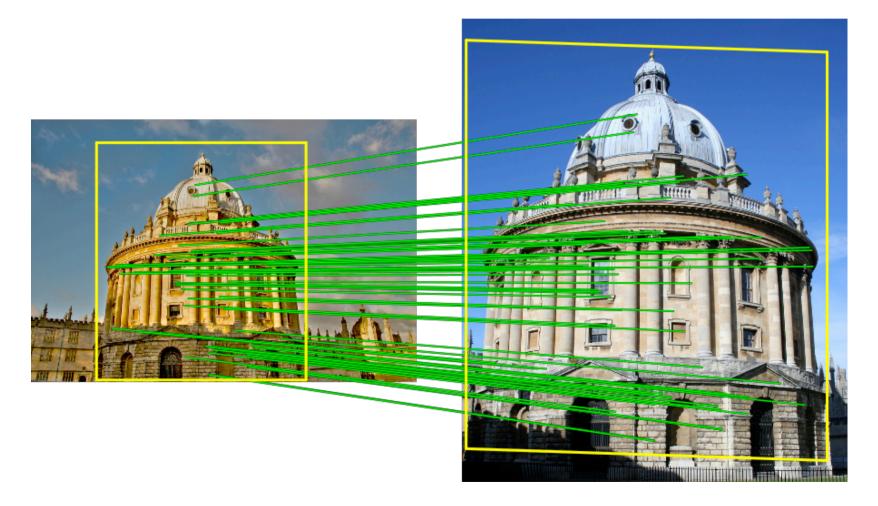




Many spatially consistent matches – **correct result**

Few spatially consistent matches – **incorrect result**

Gives localization of the object



- Remove outliers, matches contain a high number of incorrect ones
- Estimate geometric transformation
- Robust strategies
 - RANSAC
 - Hough transform

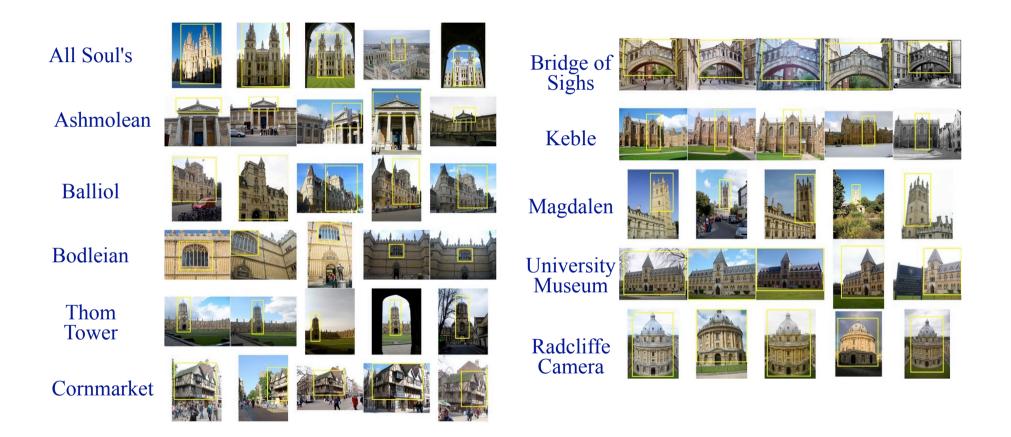
Geometric verification – example

1. Query

2. Initial retrieval set (bag of words model)

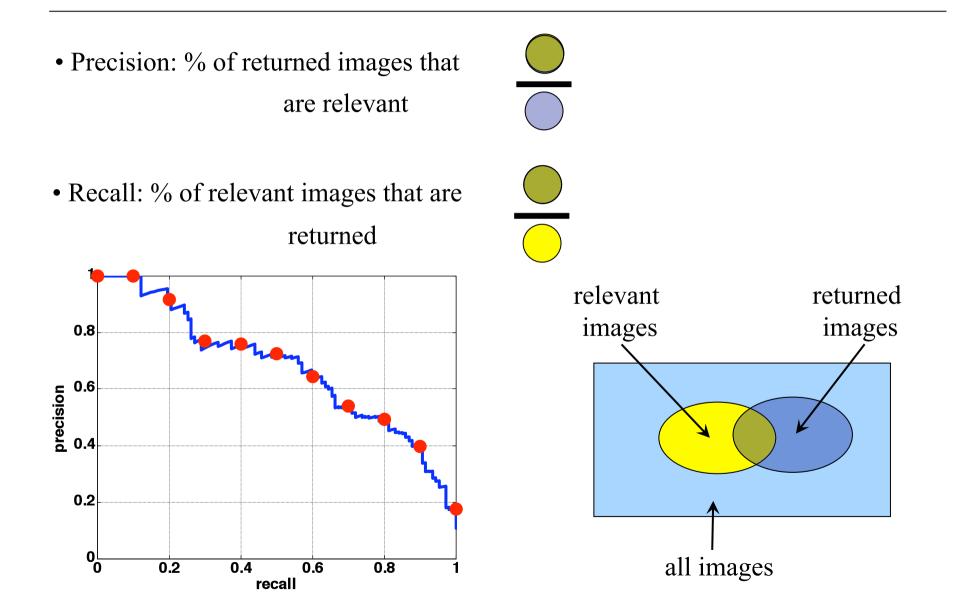
3. Spatial verification (re-rank on # of inliers)

Evaluation dataset: Oxford buildings

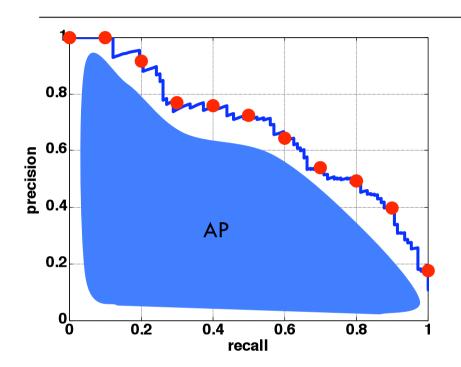


- Ground truth obtained for 11 landmarks
- Evaluate performance by mean Average Precision

Measuring retrieval performance: Precision - Recall

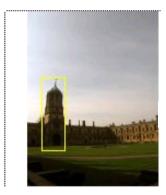


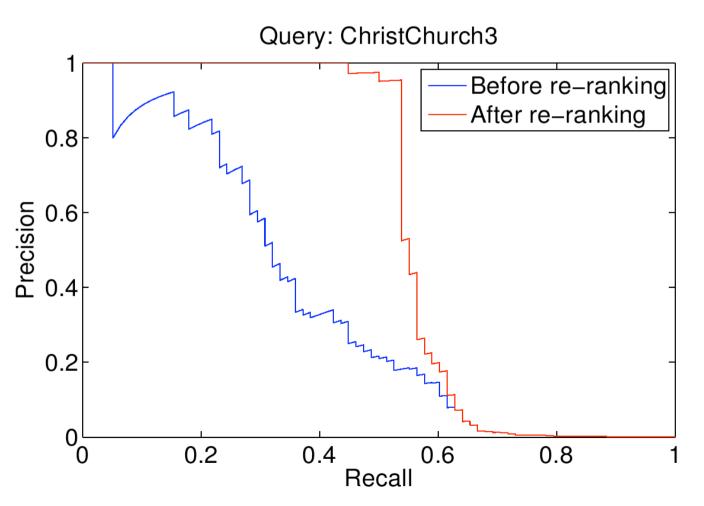
Average Precision



- A good AP score requires both high recall and high precision
- Application-independent

Performance measured by mean Average Precision (mAP) over 55 queries on 100K or 1.1M image datasets

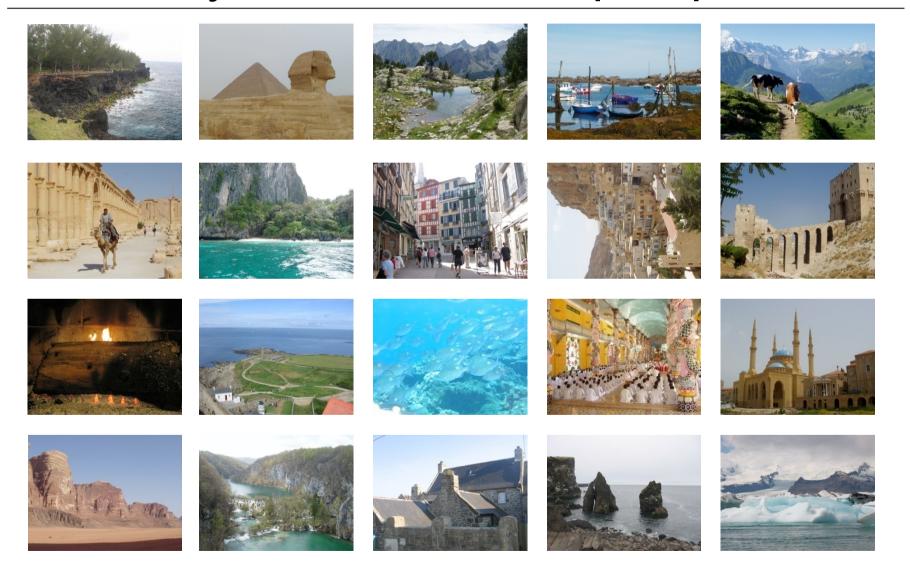




INRIA holidays dataset

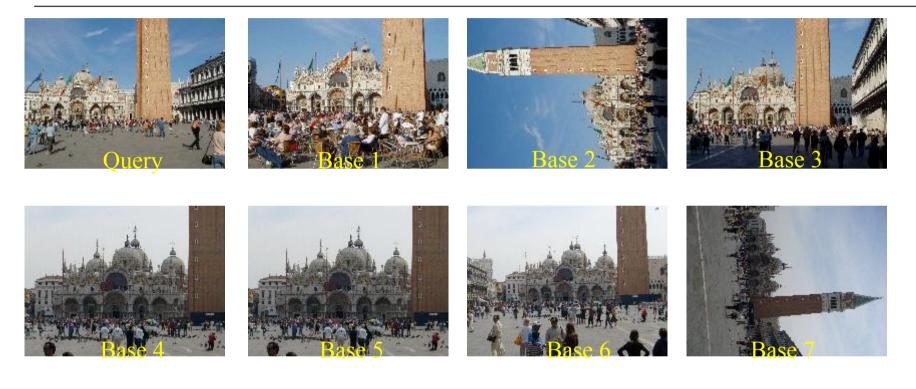
- Evaluation for the INRIA holidays dataset, 1491 images
 - 500 query images + 991 annotated true positives
 - Most images are holiday photos of friends and family
- 1 million & 10 million distractor images from Flickr
- Vocabulary construction on a different Flickr set
- Almost real-time search speed
- Evaluation metric: mean average precision (in [0,1], bigger = better)
 - Average over precision/recall curve

Holiday dataset – example queries

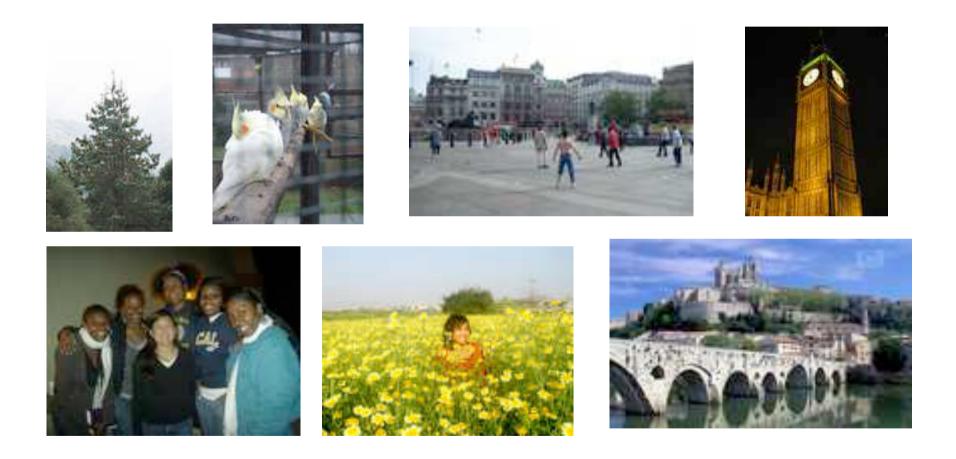


Dataset : Venice Channel

Dataset : San Marco square

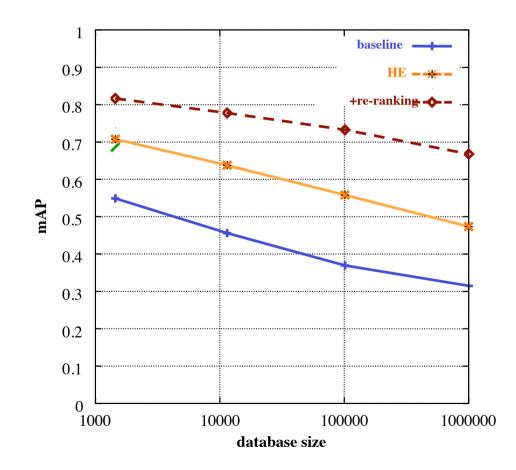


Example distractors - Flickr



Experimental evaluation

- Evaluation on our holidays dataset, 500 query images, 1 million distracter images
- Metric: mean average precision (in [0,1], bigger = better)



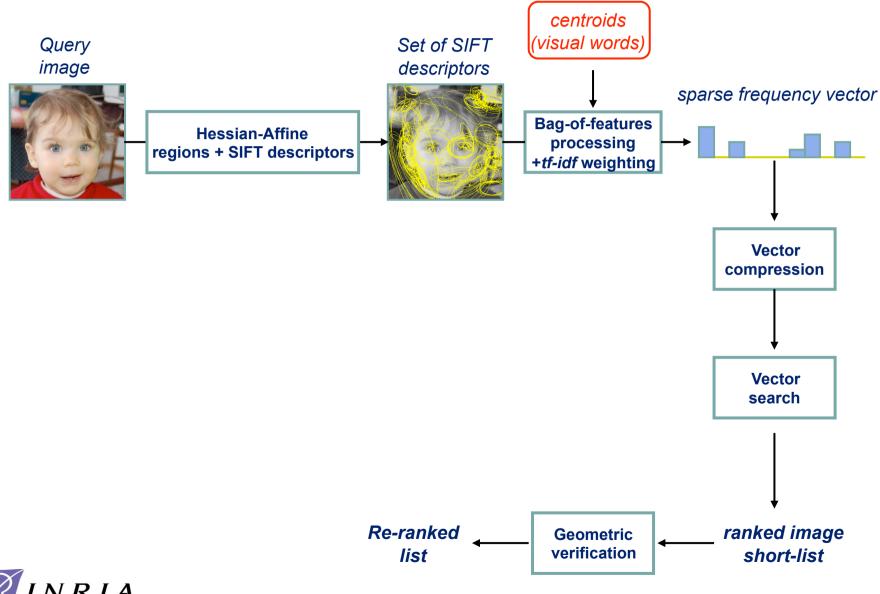
Results – Venice Channel

Demo at http://bigimbaz.inrialpes.fr

Towards larger databases?

- BOF can handle up to ~ 10 M d'images
 - with a limited number of descriptors per image
 - ▶ 40 GB of RAM
 - search = 2 s
- Web-scale = billions of images
 - ▶ With 100 M per machine
 - \rightarrow search = 20 s, RAM = 400 GB
 - \rightarrow not tractable!

Recent approaches for very large scale indexing

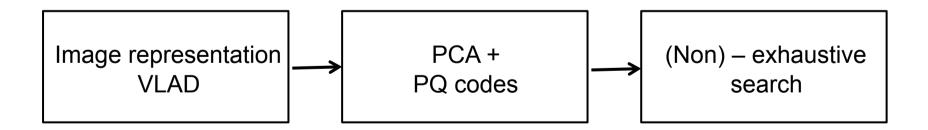


Related work on very large scale image search

- Min-hash and geometrical min-hash [Chum et al. '07-'09]
- GIST descriptors with Spectral Hashing [Torralba et al. '08]
- Compressing the BoF representation (miniBof) [Jegou et al. '09]
- Aggregating local desc into a compact image representation [Jegou et al. '10]
- Efficient object category recognition using classemes [Torresani et al.'10]

Compact image representation

- Aim: improving the tradeoff between
 - search speed
 - memory usage
 - search quality
- Approach: joint optimization of three stages
 - local descriptor aggregation
 - dimension reduction
 - indexing algorithm



[H. Jegou et al., Aggregating local desc into a compact image representation, CVPR'10]

Aggregation of local descriptors

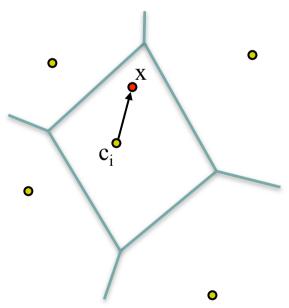
• Problem: represent an image by a single fixed-size vector:

set of *n* local descriptors \rightarrow 1 vector

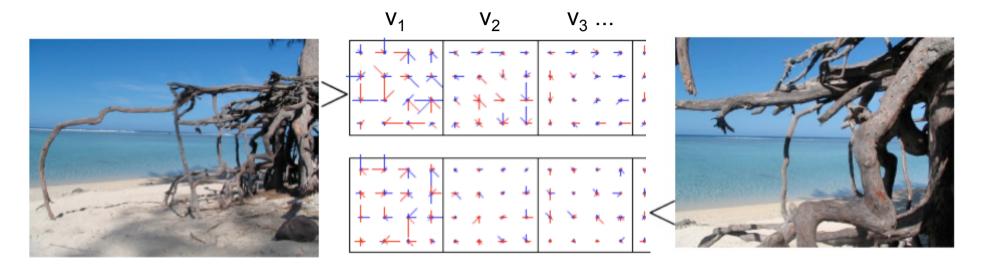
- Most popular idea: BoF representation [Sivic & Zisserman 03]
 - sparse vector
 - highly dimensional
- \rightarrow high dimensionality reduction introduces loss
- Alternative: Fisher Kernels [Perronnin et al 07]
 - non sparse vector
 - excellent results with a small vector dimensionality
 - \rightarrow our method (VLAD) in the spirit of this representation

VLAD : vector of locally aggregated descriptors

- Simplification of Fisher kernels
- Learning: a vector quantifier (*k*-means)
 - output: *k* centroids (visual words): $c_1, \ldots, c_i, \ldots, c_k$
 - centroid c_i has dimension d
- For a given image
 - assign each descriptor to closest center c_i
 - accumulate (sum) descriptors per cell
 v_i := v_i + (x c_i)
- VLAD (dimension $D = k \ge d$)
- The vector is L2-normalized



VLADs for corresponding images



SIFT-like representation per centroid (+ components: blue, - components: red)

• good coincidence of energy & orientations

VLAD performance and dimensionality reduction

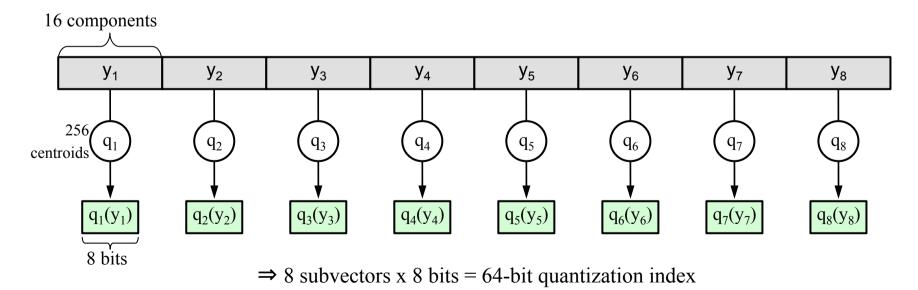
- We compare VLAD descriptors with BoF: INRIA Holidays Dataset (mAP,%)
- Dimension is reduced to from D to D' dimensions with PCA

Aggregator	k	D	D'=D (no reduction)	D'=128	D'=64
BoF	1,000	1,000	41.4	44.4	43.4
BoF	20,000	20,000	44.6	45.2	44.5
BoF	200,000	200,000	54.9	43.2	41.6
VLAD	16	2,048	49.6	49.5	49.4
VLAD	64	8,192	52.6	51.0	47.7
VLAD	256	32,768	57.5	50.8	47.6

- Observations:
 - ► VLAD better than BoF for a given descriptor size → comparable to Fisher kernels for these operating points
 - Choose a small D if output dimension D' is small

Product quantization for nearest neighbor search

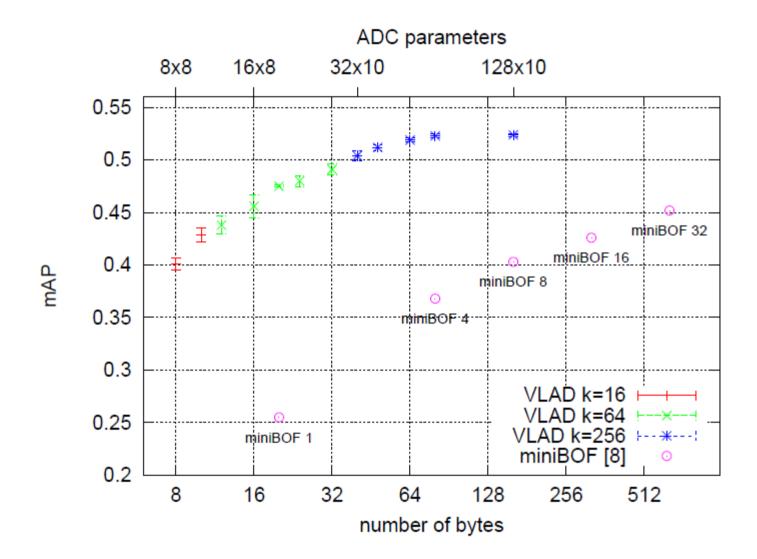
- Vector split into *m* subvectors: $y \rightarrow [y_1| \dots |y_m]$
- Subvectors are quantized separately by quantizers $q(y) = [q_1(y_1)| \dots |q_m(y_m)]$ where each q_i is learned by *k*-means with a limited number of centroids
- Example: y = 128-dim vector split in 8 subvectors of dimension 16
 - each subvector is quantized with 256 centroids -> 8 bit
 - very large codebook 256^8 ~ 1.8x10^19



Joint optimization of VLAD and dimension reduction-indexing

- For VLAD
 - ► The larger *k*, the better the raw search performance
 - ▶ But large *k* produce large vectors, that are harder to index
- Optimization of the vocabulary size
 - Fixed output size (in bytes)
 - D' computed from k via the joint optimization of reduction/indexing
 - Only k has to be set
 - → end-to-end parameter optimization

Results on the Holidays dataset with various quantization parameters



Results on standard datasets

- Datasets
 - University of Kentucky benchmark
 - INRIA Holidays dataset

score: nb relevant images, max: 4 score: mAP (%)

Method	bytes	UKB	Holidays
BoF, k=20,000	10K	2.92	44.6
BoF, k=200,000	12K	3.06	54.9
miniBOF	20	2.07	25.5
miniBOF	160	2.72	40.3
VLAD k=16, ADC 16 x 8	16	2.88	46.0
VLAD k=64, ADC 32 x10	40	3.10	49.5

D'=64 for *k*=16 and *D*'=96 for *k*=64

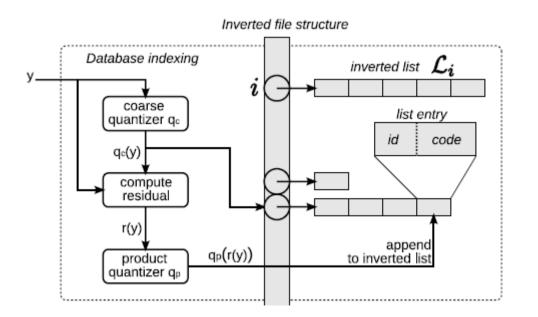
ADC (subvectors) x (bits to encode each subvector)

miniBOF: "Packing Bag-of-Features", ICCV'09

Large scale experiments (10 million images)

- Exhaustive search of VLADs, D'=64
 - ► 4.77s
- With the product quantizer
 - ► Exhaustive search with ADC: 0.29s
 - ► Non-exhaustive search with IVFADC: 0.014s

IVFADC -- Combination with an inverted file



Large scale experiments (10 million images)

