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Image search system for large datasets  

Image search  
system 

ranked image list 

Large image Dataset 
 (one million images or more) 

query 

•  Issues for very large databases 
•  to reduce the query time 
•  to reduce the storage requirements 



Solution: fast descriptor search 
•  Complexity  

–  O(nd) for n features and d dimensions  
–  Linear in the number of features / images  

•  Speed up individual descriptor vector search  
–  kd-trees (k dim. tree), approximate nearest neighbor search 
–  Binary tree in which each node is a k-dimensional point 
–  Every split is associated with one dimension 

kd-tree decomposition 
kd-tree 



Large scale object/scene recognition 

•  Each image described by approximately 2000 descriptors 
–  2 * 109 descriptors to index for one million images!  

•  Database representation in RAM:  
–  Size of descriptors : 1 TB, search+memory intractable 

Image search  
system 

ranked image list 

Image dataset: 
> 1 million images 

query 



Bag-of-features [Sivic&Zisserman’03] 

Harris-Hessian-Laplace 
regions + SIFT descriptors 

Bag-of-features 
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ranked image 
short-list 

Set of SIFT 
descriptors 

Query 
image 

Geometric 
verification 

Re-ranked  
list 

•  “visual words”:  
–  1 “word” (index) per local 

descriptor  
–  only images ids in inverted file 
=> 8 GB fits! 

[Chum & al. 2007] 



Indexing text with inverted files  

Need to map feature descriptors to “visual words”  

Inverted file: Term            List of hits (occurrences in documents) 

People           [d1:hit hit hit], [d4:hit hit] … 

Common       [d1:hit hit], [d3: hit], [d4: hit hit hit] … 

Sculpture      [d2:hit], [d3: hit hit hit]  … 

Document 
collection: 







Visual words 
• Example: each group 
of patches belongs to 
the same visual word 
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Figure from  Sivic & Zisserman, ICCV 2003 



K-means clustering 
•  Minimizing sum of squared Euclidean distances 

between points xi and their nearest cluster centers 

•  Algorithm:  
–  Randomly initialize K cluster centers 
–  Iterate until convergence: 

•  Assign each data point to the nearest center 
•  Recompute each cluster center as the mean of all points 

assigned to it 

•  Local minimum, solution dependent on initialization 

•  Initialization important, run several times, select best  



Visual words  

•  Map descriptors to words by quantizing the feature space 
–  Quantize via k-means clustering to obtain visual words 
–  Assign descriptor to closest visual word 

•  Bag-of-features as approximate nearest neighbor search  

        Bag-of-features matching function 

 where q(x) is a quantizer, i.e., assignment to visual word and 
  δa,b is the Kronecker operator (δa,b=1 iff a=b) 



Inverted file index for images comprised of visual words 

•   

Image credit: A. Zisserman K. Grauman, B. Leibe 

Word 
number 

List of image 
numbers 

•  Score each image by the number of common visual words (tentative 
correspondences) 

•  Dot product between bag-of-features  

•  Fast for sparse vectors !  



Inverted file index for images comprised of visual words 

Image credit: A. Zisserman K. Grauman, B. Leibe 

•  Weighting with tf-idf score: weight visual words based on their frequency 

• Tf: normalized term (word) ti frequency in a document dj 

• Idf: inverse document frequency, total number of documents divided by 
number of documents containing the term ti 

   Tf-Idf:  



Approximate nearest neighbor search evaluation 
• ANN algorithms usually returns a short-list of nearest neighbors 

–  this short-list is supposed to contain the NN with high probability 
–  exact search may be performed to re-order this short-list 

• Proposed quality evaluation of ANN search: trade-off between 
–  Accuracy: NN recall = probability that the NN is in this list 

     against 
–  Ambiguity removal = proportion of vectors in the short-list 

- the lower this proportion, the more information we have about the 
vector  

- the lower this proportion, the lower the complexity if we perform exact 
search on the short-list 

• ANN search algorithms usually have some parameters to handle this trade-off 



ANN evaluation of bag-of-features 
• ANN algorithms 
returns a list of 
potential neighbors 

• Accuracy: NN recall 
= probability that the 
NN is in this list 

• Ambiguity removal:  
= proportion of vectors 
in the short-list 

• In BOF, this trade-off 
is managed by the 
number of clusters k 
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Vocabulary size 

•  The intrinsic matching scheme performed by BOF is weak 
–  for a “small” visual dictionary: too many false matches  
–  for a “large” visual dictionary: complexity, true matches are missed 

•  No good trade-off between “small” and “large” ! 
–  either the Voronoi cells are too big 
–  or these cells can’t absorb the descriptor noise 
→ intrinsic approximate nearest neighbor search of BOF is not 

sufficient 



Hierarchical clustering 
•  Hierarchical clustering: fast assignment in case of large vocabularies  

–  Vocabulary tree [Nister & Stewenius, CVPR 2006] 

•  Combined with multiple assignment  

19 
K. Grauman, B. Leibe 



20K visual word: false matches 



200K visual word: good matches missed 



Hamming Embedding [Jegou et al. ECCV’08] 

Representation of a descriptor x 
–  Vector-quantized to q(x) as in standard BOF 
+  short binary vector b(x) for an additional localization in the Voronoi cell 

Two descriptors x and y match iif 
        

where h(a,b)  Hamming distance 



Hamming Embedding 

• Nearest neighbors for Hamming distance ≈ those for Euclidean distance 
→ a metric in the embedded space reduces dimensionality curse effects 

• Efficiency 
–  Hamming distance = very few operations 
–  Fewer random memory accesses: 3 x faster that BOF with same dictionary 

size! 



Hamming Embedding 

• Off-line (given a quantizer) 
–  draw an orthogonal projection matrix P of size db × d 
→ this defines db random projection directions 
–  for each Voronoi cell and projection direction, compute the median 

value for a learning set 

• On-line: compute the binary signature b(x) of a given 
descriptor 

–  project x onto the projection directions as z(x) = (z1,…zdb)  
–  bi(x) = 1 if zi(x) is above the learned median value, otherwise 0 



ANN evaluation of Hamming Embedding 
 0.7 
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Matching points - 20k word vocabulary 

201 matches 240 matches 

Many matches with the non-corresponding image! 



Matching points - 200k word vocabulary 
69 matches 35 matches 

Still many matches with the non-corresponding one 



Matching points - 20k word vocabulary + HE 

83 matches 8 matches 

10x more matches with the corresponding image! 



Bag-of-features [Sivic&Zisserman’03] 

Harris-Hessian-Laplace 
regions + SIFT descriptors 
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•  “visual words”:  
–  1 “word” (index) per local 

descriptor  
–  only images ids in inverted file 
=> 8 GB fits! 

[Chum & al. 2007] 



Geometric verification 

Use the position and shape of the underlying features 
to improve retrieval quality 

Both images have many matches – which is correct? 



Geometric verification 

We can measure spatial consistency between the query 
and each result to improve retrieval quality 

Many spatially consistent 
matches – correct result 

Few spatially consistent 
matches – incorrect 

result 



Geometric verification 

 Gives localization of the object 



Geometric verification 

•  Remove outliers, matches contain a high number of 
incorrect ones   

•  Estimate geometric transformation 

•  Robust strategies 
–  RANSAC  
–  Hough transform 



Geometric verification – example  

1. Query 

3. Spatial verification (re-rank on # of inliers) 

…

2. Initial retrieval set (bag of words model) 



Evaluation dataset: Oxford buildings 

All Soul's 

Ashmolean 

Balliol 

Bodleian 

Thom 
Tower 

Cornmarket 

Bridge of 
Sighs 

Keble 

Magdalen 

University 
Museum 

Radcliffe 
Camera 

    Ground truth obtained for 11 landmarks 
    Evaluate performance by mean Average Precision 



Measuring retrieval performance:  Precision - Recall 

all images 

returned 
images 

relevant 
images 

•  Precision: % of returned images that  
    are relevant 

•  Recall: % of relevant images that are  
returned 



Average Precision 

•  A good AP score requires both high 
recall and high precision 

•  Application-independent AP 

Performance measured by mean Average Precision (mAP) 
over 55 queries on 100K or 1.1M image datasets 





INRIA holidays dataset 

•  Evaluation for the INRIA holidays dataset, 1491 images 
–  500 query images + 991 annotated true positives 
–  Most images are holiday photos of friends and family  

•  1 million & 10 million distractor images from Flickr 
•  Vocabulary construction on a different Flickr set  
•  Almost real-time search speed 

•  Evaluation metric: mean average precision (in [0,1], bigger 
= better) 
–  Average over precision/recall curve  



Holiday dataset – example queries  



Dataset : Venice Channel 

Query 

Base 4 Base 3 

Base 2 Base 1 



Dataset : San Marco square 

Query Base 1 Base 3 Base 2 

Base 9 Base 8 

Base 4 Base 5 Base 7 Base 6 



Example distractors - Flickr 



Experimental evaluation 

•  Evaluation on our holidays dataset, 500 query images, 1 million distracter 
images 

•  Metric: mean average precision (in [0,1], bigger = better) 
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Results – Venice Channel 

Base 1 Flickr 

Flickr Base 4 

Query 

Demo at http://bigimbaz.inrialpes.fr  



Towards larger databases? 

  BOF can handle up to ~10 M d’images 
►  with a limited number of descriptors per image 
►  40 GB of RAM   
►  search = 2 s 

  Web-scale = billions of images 
►  With 100 M per machine  

  → search = 20 s, RAM = 400 GB 
  → not tractable! 



Recent approaches for very large scale indexing   

Hessian-Affine 
regions + SIFT descriptors 

Bag-of-features 
processing 

+tf-idf weighting 

Vector  
compression 

sparse frequency vector 

centroids 
(visual words) 

ranked image 
short-list 

Set of SIFT 
descriptors 

Query 
image 

Geometric 
verification 

Re-ranked  
list 

Vector  
search 



Related work on very large scale image search 

  Min-hash and geometrical min-hash [Chum et al. ‘07-’09] 

  GIST descriptors with Spectral Hashing [Torralba et al. ‘08] 

  Compressing the BoF representation (miniBof) [Jegou et al. ‘09]  

  Aggregating local desc into a compact image representation [Jegou et al. ‘10] 

  Efficient object category recognition using classemes [Torresani et al.’10] 



Compact image representation 

  Aim: improving the tradeoff between 
►  search speed 
►  memory usage 
►  search quality 

  Approach: joint optimization of three stages 
►  local descriptor aggregation 
►  dimension reduction 
►  indexing algorithm 

Image representation 
VLAD  

PCA +  
PQ codes 

(Non) – exhaustive  
search 

 [H. Jegou et al., Aggregating local desc into a compact image representation, CVPR’10]  



Aggregation of local descriptors 

  Problem: represent an image by a single fixed-size vector: 

         set of n local descriptors → 1 vector 

  Most popular idea: BoF representation [Sivic & Zisserman 03] 
►  sparse vector 
►  highly dimensional 

→ high dimensionality reduction introduces loss 

  Alternative: Fisher Kernels [Perronnin et al 07] 
►  non sparse vector 
►  excellent results with a small vector dimensionality 
→ our method (VLAD) in the spirit of this representation 



VLAD : vector of locally aggregated descriptors 

  Simplification of Fisher kernels 

  Learning: a vector quantifier (k-means) 
►  output: k centroids (visual words): c1,…,ci,…ck 

►  centroid ci has dimension d 

  For a given image  
►  assign each descriptor to closest center ci 
►  accumulate (sum) descriptors per cell 

  vi := vi + (x - ci) 

  VLAD (dimension D = k x d) 

  The vector is L2-normalized 

ci 

x 



VLADs for corresponding images 

 SIFT-like representation per centroid (+ components: blue, - components: red) 

  good coincidence of energy & orientations 

  v1           v2          v3 ... 



VLAD performance and dimensionality reduction 

  We compare VLAD descriptors with BoF: INRIA Holidays Dataset (mAP,%) 
  Dimension is reduced to from D to D’ dimensions with PCA 

  Observations: 
►  VLAD better than BoF for a given descriptor size 

→ comparable to Fisher kernels for these operating points 
►  Choose a small D if output dimension D’ is small 

Aggregator k D D’=D 
(no reduction) 

D’=128 D’=64 

BoF 1,000 1,000 41.4 44.4 43.4 

BoF 20,000 20,000 44.6 45.2 44.5 

BoF 200,000 200,000 54.9 43.2 41.6 

VLAD 16 2,048 49.6 49.5 49.4 

VLAD 64 8,192 52.6 51.0 47.7 

VLAD 256 32,768 57.5 50.8 47.6 



  Vector split into m subvectors: 

  Subvectors are quantized separately by quantizers 
where each     is learned by k-means with a limited number of centroids 

  Example: y = 128-dim vector split in 8 subvectors of dimension 16 
►  each subvector is quantized with 256 centroids  -> 8 bit  
►  very large codebook 256^8 ~ 1.8x10^19 

Product quantization for nearest neighbor search 

8 bits 

16 components 

⇒ 8 subvectors x 8 bits = 64-bit quantization index 

y1 y2 y3 y4 y5 y6 y7 y8 

q1 q2 q3 q4 q5 q6 q7 q8 

q1(y1) q2(y2) q3(y3) q4(y4) q5(y5) q6(y6) q7(y7) q8(y8) 

256 
centroids 



Joint optimization of VLAD and dimension reduction-indexing  

  For VLAD 
►  The larger k, the better the raw search performance 
►  But large k produce large vectors, that are harder to index 

  Optimization of the vocabulary size 
►  Fixed output size (in bytes) 
►  D’ computed from k via the joint optimization of reduction/indexing 
►  Only k has to be set 

 end-to-end parameter optimization 



Results on the Holidays dataset with various quantization parameters  



Results on standard datasets 

  Datasets 
►  University of Kentucky benchmark  score: nb relevant images, max: 4  
►  INRIA Holidays dataset                  score: mAP (%) 

Method bytes UKB Holidays 
BoF, k=20,000 10K 2.92 44.6 

BoF, k=200,000 12K 3.06 54.9 

miniBOF 20 2.07 25.5 

miniBOF 160 2.72 40.3 

VLAD k=16, ADC 16 x 8 16 2.88 46.0 

VLAD k=64, ADC 32 x10 40 3.10 49.5 

miniBOF: “Packing Bag-of-Features”, ICCV’09 

D’ =64 for k=16 and D’ =96 for k=64 
ADC  (subvectors) x (bits to encode each subvector) 



Large scale experiments (10 million images) 

  Exhaustive search of VLADs, D’=64 
►  4.77s 

  With the product quantizer 
►  Exhaustive search with ADC:  0.29s   
►  Non-exhaustive search with IVFADC:  0.014s   

                 IVFADC  -- Combination with an inverted file  



Large scale experiments (10 million images) 
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