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Category recognition

* Image classification: assigning a class label to the image

Car: present

Cow: present
Bike: not present
Horse: not present




Category recognition

* Image classification: assigning a class label to the image
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Difficulties: within object variations

Variability: Camera position, Illumination,Internal parameters

:> Within-object variations



Difficulties: within-class variations




Category recognition

* Robust image description
— Appropriate descriptors for categories

 Statistical modeling and machine learning for vision
— Use and validation of appropriate techniques



Why machine learning?

« Early approaches: simple features + handcrafted models
« Can handle only few images, simples tasks

L. G. Roberts, Machine Perception of Three Dimensional Solids,
Ph.D. thesis, MIT Department of Electrical Engineering, 1963.




Why machine learning?

« Early approaches: manual programming of rules
* Tedious, limited and does not take into accout the data

m scene
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Figure 3. A system developed in 1978 by Ohta, Kanade and Sakai [33. 32] for knowledge-based interpretation of outdoor natural scenes.
The system is able to label an image (c) into semantic classes: S-sky, T-tree. R-road, B-building, U-unknown.

Y Ohta, T. Kanade, and T. Sakai, “An Analysis System for Scenes Containing objects with Substructures,” International Joint Conference on Pattern Recognition, 1978.



Why machine learning?

« Today lots of data, complex tasks

Internet mages,
personal photo albums

Movies, news, sports

 Instead of trying to encode rules directly, learn them
from examples of inputs and desired outputs



Types of learning problems

« Supervised

— Classification
— Regression

« Unsupervised
« Semi-supervised
* Active learning



Supervised learning

« Given training examples of inputs and corresponding
outputs, produce the “correct” outputs for new inputs

« TwO main scenarios:

— Classification: outputs are discrete variables (category labels).
Learn a decision boundary that separates one class from the other

— Regression: also known as “curve fitting” or “function
approximation.” Learn a continuous input-output mapping from
examples (possibly noisy)



Unsupervised Learning

* Given only unlabeled data as input, learn some sort of
structure

* The objective is often more vague or subjective than in
supervised learning. This is more an exploratory/descriptive
data analysis



Unsupervised Learning

* Clustering

— Discover groups of “similar” data points

R t




Unsupervised Learning

 Quantization

— Map a continuous input to a discrete (more compact) output

—

oo




Unsupervised Learning

 Dimensionality reduction, manifold learning

— Discover a lower-dimensional surface on which the data lives
15-




Other types of learning

« Semi-supervised learning: lots of data is available, but
only small portion is labeled (e.g. since labeling is
expensive)



Other types of learning

« Semi-supervised learning: lots of data is available, but
only small portion is labeled (e.g. since labeling is
expensive)

— Why is learning from labeled and unlabeled data better than
learning from labeled data alone?



Other types of learning

* Active learning: the learning algorithm can choose its
own training examples, or ask a “teacher” for an answer
on selected inputs

Annotators
Current P 72
»| category ssue request:
models “Get a full
segmentation on
image #31.”

Partially and weakly Labeled data
labeled data

Unlabeled data




Image classification

 Given

Positive training images containing an object class

ol -

» Classify

A test image as to whether it contains the object class or not




Bag-of-features for image classification

 Origin: texture recognition

« Texture is characterized by the repetition of basic elements or
textons

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003



Texture recognition
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Bag-of-features for image classification

 Origin: bag-of-words
» Orderless document representation: frequencies of words from a
dictionary
» Classification to determine document categories

2007-01-23: State of the Union Address

George W. Bush (2001-)

abandon accountable affordable afghanistan africa ally baghdad :i=:: challenges chamber chaos
choices civilians coalition commitment confident confront congressman corps debates deduction

deficit deliver democratic deploy dikembe diplomacy disruptions earmarks €CO nomy einstein elections eliminates
expand extremists failing families freedom fuel fu nding god haven ideology immigration impose

L J
insurgents iran ] raq islam julie lebanon love madam marine math medicare neighborhoods nuclear offensive

palestinian payroll qaeda radical regimes resolve retreat rieman sacrifices science sectarian

L]
shia stays strength students succeed sunni LaX te rro r] Sts threats uphold victory

violence violent Wal washington weapons wesley




Bag-of-features for image classification

Extract regions
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[Nowak,Jurie&Triggs,ECCV’06], [Zhang,Marszalek,Lazebnik&Schmid,|JCV’'07]



Bag-of-features for image classification
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Step 1: feature extraction

Scale-invariant image regions + SIFT (see lecture 2)
— Affine invariant regions give “too” much invariance

— Rotation invariance for many realistic collections “too” much
iInvariance

Dense descriptors
— Improve results in the context of categories (for most categories)
— Interest points do not necessarily capture “all” features

Color-based descriptors

Shape-based descriptors



Dense features

- Multi-scale dense grid: extraction of small overlapping patches at multiple scales
-Computation of the SIFT descriptor for each grid cells
-Exp.: Horizontal/vertical step size 6 pixel, scaling factor of 1.2 per level



Bag-of-features for image classification

Extract regions

Step 1
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Step 2: Quantization
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Step 2:Quantization

Clustering



Step 2: Quantization

Visual vocabulary

Clustering




Examples for visual words
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Step 2: Quantization

* Cluster descriptors
— K-means
— Gaussian mixture model

» Assign each visual word to a cluster
— Hard or soft assignment

 Build frequency histogram



Gaussian mixture model (GMM)

* Mixture of Gaussians: weighted sum of Gaussians
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Hard or soft assignment

« K-means - hard assignment
— Assign to the closest cluster center
— Count number of descriptors assigned to a center

« Gaussian mixture model = soft assignment
— Estimate distance to all centers
— Sum over number of descriptors

* Represent image by a frequency histogram



Image representation

frequency

'* —ang
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codewords

v

« Each image is represented by a vector, typically 1000-4000 dimension,
normalization with L1 norm

» fine grained — represent model instances
e coarse grained — represent object categories



Bag-of-features for image classification

Extract regions

Step 1
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Step 3: Classification

« Learn a decision rule (classifier) assigning bag-of-
features representations of images to different classes
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Training data

Vectors are histograms, one from each training image

positive negative

Train classifier,e.g.SVM



Linear classifiers

* Find linear function (hyperplane) to separate positive and
negative examples

@
® X, positive: X, wW+b=0
® o X, negative: X,*w+b<0
@
@
e e o
O O
@
O O
O

Which hyperplane
O is best?



Linear classifiers - margin

 (eneralization is not
good in this case:

« Better if a margin
IS introduced:

x, (roundness)



Nonlinear SVMs

« Datasets that are linearly separable work out great:

« But what if the dataset is just too hard?

4 o *—0— *-0—@ oo o>

0 X

* We can map it to a higher-dimensional space:




Nonlinear SVMs

« General idea: the original input space can always be
mapped to some higher-dimensional feature space
where the training set is separable:
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Nonlinear SVMs

* The kernel trick: instead of explicitly computing the lifting
transformation ¢(x), define a kernel function K such that

K(x; X;) = o(x;) " (X))

« This gives a nonlinear decision boundary in the original
feature space:

Y .y K(x,,x) +b



Kernels for bags of features

» Histogram intersection kernel:

() =S min(hy (i), (1)

« Generalized Gaussian kernel:

|
K(h,h,) = exp(_gD(hlahz)z)

« D can be Euclidean distance, y? distance, Earth Mover’s

Distance, etc.

D(h h )= N (hl(l)_hz(l))z
v = @)+ h,(0)




Earth Mover's Distance

« Each image is represented by a signature S consisting
of a set of centers {m;} and weights {w;}

« Centers can be codewords from universal vocabulary,
clusters of features in the image, or individual features
(in which case quantization is not required)

 Earth Mover’s Distance has the form

m1i9m2j)
7

where the flows f; are given by the solution of a
transportation problem

EMDS,.S,) =) Ll



Combining features

*SVM with multi-channel chi—square kernel

K(Hi, H;) = exp ( Z H;))

ceC

Channel ¢ is a combination of detector, descriptor
D.(H,H,) is the chi-square distance between histograms
1 Qm
DC(H19H2) = 52i=1[(h1i _h2i)2/(hli + h2i)]
4. is the mean value of the distances between all training sample

Extension: learning of the weights, for example with Multiple
Kernel Learning (MKL)

J. Zhang, M. Marszalek, S. Lazebnik and C. Schmid. Local features and kernels for
classification of texture and object categories: a comprehensive study, I[JCV 2007.



Multi-class SVMs

Various direct formulations exist, but they are not widely
used in practice. It is more common to obtain multi-class
SVMs by combining two-class SVMs in various ways.

One versus all:

— Training: learn an SVM for each class versus the others

— Testing: apply each SVM to test example and assign to it the
class of the SVM that returns the highest decision value

One versus one:
— Training: learn an SVM for each pair of classes

— Testing: each learned SVM “votes” for a class to assign to the
test example



Why does SVM learning work?

® Learns foreground and background visual words

-
fi >~ foreground words — high weight
J -

:;: - background words — low weight



lllustration

Localization according to visual word probability

O foreground word more probable

background word more probable



lllustration

A linear SVM trained from positive and negative window descriptors

A few of the highest weighed descriptor vector dimensions (= 'PAS + tile')

s = = =
S
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/
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+ lie on object boundary (= local shape structures common to many training exemplars)



Bag-of-features for image classification

« Excellent results in the presence of background clutter

bikes books building cars



Examples for misclassified images

Cars- misclassified intoA buildings, phones, phones



Bag of visual words summary

* Advantages:
— largely unaffected by position and orientation of object in image
— fixed length vector irrespective of number of detections

— very successful in classifying images according to the objects they
contain

« Disadvantages:
— no explicit use of configuration of visual word positions
— poor at localizing objects within an image



Evaluation of image classification

« PASCAL VOC [05-10] datasets

« PASCAL VOC 2007

— Training and test dataset available

— Used to report state-of-the-art results

— Collected January 2007 from Flickr

— 500 000 images downloaded and random subset selected
— 20 classes

— Class labels per image + bounding boxes

— 5011 training images, 4952 test images

« Evaluation measure: average precision



PASCAL 2007 dataset

Aeroplane Bicycle Boat Bottle

ocesod scen
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PASCAL 2007 dataset

Motorbike
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Evaluation

" Average Precision [TREC] averages precision over
the entire range of recall

Curve interpolated to reduce influence of “outliers”

5 5 5 A good score requires
i - ___ Interpolated------— both high recall and high

o
[

. precision
30.6- --------------- . . .
(N Application-independent
g 0.4f . -
. " Penalizes methods giving
0.2 high precision but low
recall




Results for PASCAL 2007

* Winner of PASCAL 2007 [Marszalek et al.] : mAP 59.4

— Combination of several different channels (dense + interest points,
SIFT + color descriptors, spatial grids)

— Non-linear SVM with Gaussian kernel

* Multiple kernel learning [Yang et al. 2009] : mAP 62.2

— Combination of several features
— Group-based MKL approach

« Combining object localization and classification [Harzallah
et al.’09] : mAP 63.5

— Use detection results to improve classification



Comparison interest point - dense

Image classification results on PASCAL'07 train/val set

AP
(SHarris + Lap) x SIFT 0.452
MSDense x SIFT 0.489
(SHarris + Lap + MSDense) x SIFT 0.515

Method: bag-of-features + SVM classifier



Comparison interest point - dense

Image classification results on PASCAL'07 train/val set

AP
(SHarris + Lap) x SIFT 0.452
MSDense x SIFT 0.489
(SHarris + Lap + MSDense) x SIFT 0.515

Dense is on average a bit better!

IP and dense are complementary, combination
Improves results.



Comparison interest point - dense

Image classification results on PASCAL'07 train/val set
for individual categories

(SHarris + Lap) x SIFT

MSDense x SIFT

Bicycle 0.534 0.443
PottedPlant 0.234 0.167
Bird 0.342 0.497
Boat 0.482 0.622

Results are category dependent!




Evaluation BoF — spatial

Image classification results on PASCAL'07 train/val set

(SH, Lap, MSD) x (SIFT,SIFTC) AP
spatial layout

1 0.53

2X2 0.52

3x1 0.52

1,2x2,3x1 0.54

Spatial layout not dominant for PASCAL'07 dataset

Combination improves average results, i.e., it is appropriate for
some classes



Evaluation BoF - spatial

Image classification results on PASCAL'Q7 train/val set
for individual categories

1 3x1
Sheep 0.339 0.256
Bird 0.539 0.484
DiningTable 0.455 0.502
Train 0.724 0.745

Results are category dependent!
=» Combination helps somewhat




Spatial pyramid matching

« Add spatial information to the bag-of-features

« Perform matching in 2D image space

[Lazebnik, Schmid & Ponce, CVPR 20006]



Related work

Similar approaches:
Subblock description [Szummer & Picard, 1997]
SIFT [Lowe, 1999]
GIST [Torralba et al., 2003]

SIFT Gist

# ,|§ K|~

T ] | VAR
= ARNREE 1

e
Szummer & Picard (1997) Lowe (1999, 2004) Torralba et al. (2003)



Spatial pyramid representation

level 0

Locally orderless
representation at
several levels of
spatial resolution



Spatial pyramid representation

level 0
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Spatial pyramid representation
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Pyramid match kernel

* Weighted sum of histogram intersections at multiple
resolutions (linear in the number of features instead of

cubic)

A

N\
N\

\/\ %
4\1/

optimal partial
matching between sets
of features




Spatial pyramid matching

« Combination of spatial levels with pyramid match kernel

[Grauman & Darell'05]
 Intersect histograms, more weight to finer grids

level 0 level 1 level 2
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Scene dataset [Labzenik et al.’06]

Inside city

Coast ~ Forest Mountain Open country  Highway Tall building  Street
= : . Fﬁ-ﬁﬁaﬂ = N .

AL

4385 images
15 categories




Scene classification

ﬁﬂ! PI!R" uﬂﬂ

kitchen livi mg room

,"‘l:}__e ~ .uu ‘J , _1. T ’ -

store mduatml

I i ﬁlﬂ Eﬂu
tall building* 1nsnde city* stre‘et
Qﬁ o P =
highway* coast” open country*
mountain® e rst‘ - suburb o |
L Single-level Pyramid
0(1x1) 72.240.6
1(2x2) 77.940.6 79.0 £0.5
2(4x4) 79.4£0.3 81.140.3
3(8x8) 77.240.4 80.7 0.3




Retrieval examples

living room  livingroom  living room living room  livingroom  living room

inside city I I mountain

(f) inside city tall bldg



Category classification — CalTech101

L Single-level Pyramid

0(1x1) | 41.2¢1.2

1(2x2) | 55.9%0.9 57.0 0.8

2(4x4) | 63.640.9 64.6 +0.8

3(8x8) | 60.3+0.9 64.6 0.7

Bag-of-features approach by Zhang et al.’07: 54 %



CalTech101

Easiest and hardest classes

minaret (97.6%) wmdsor chair (94 6%) joshua tree (87. 9%)

T e — |
. e e =
s
R -~ B
’:»‘ .;5"" %
a Y e
¥ = SR e IR

cougar body (27. 6%) ~ beaver (2. 5%) crocodile (25 O%)

« Sources of difficulty:
— Lack of texture

— Camouflage
— Thin, articulated limbs
— Highly deformable shape



Discussion

* Summary

— Spatial pyramid representation: appearance of local
image patches + coarse global position information

— Substantial improvement over bag of features
— Depends on the similarity of image layout

« Extensions
— Flexible, object-centered grid



Motivation

« Evaluating the influence of background features [J. zhang et al.,
IJCV'07]
— Train and test on different combinations of foreground and
background by separating features based on bounding boxes

PASCAL testset 1, people

& Training: original training set
‘g 0.8 _..I.l .................... ; ......... .......................... -
AR PR EN— Testing: different combinations
SR - AF/AFCONST === foreground + background features
: . AF/AF-RAND -
0.6 & : :
0 0.1 0.2 0.3 0.4

False Positive Rate

Best results when testing with foreground features only



Approach

« Better to train on a “*harder” dataset with background clutter
and test on an easier one without background clutter

« Spatial weighting for bag-of-features [Marszalek & Schmid, CVPR'06]
— weight features by the likelihood of belonging to the object
— determine likelihood based on shape masks




Masks for spatial weighting

For each test feature:

- Select closest training features + corresponding masks
(training requires segmented images or bounding boxes)

- Align mask based on local co-ordinates system
(transformation between training and test co-ordinate systems)

Sum masks weighted by matching distance
=

three features agree on object localization,
the object has higher weights

%

¢

Weight histogram features with the strength of the final mask



Example masks for spatial weighting




Classification for PASCAL dataset

Zhang et al. Spatial weighting | Gain
bikes 74.8 76.8 +2.0
cars 75.8 76.8 +1.0

motorbikes 78.8 79.3 +0.5
people 76.9 77.9 +1.0

Equal error rates for PASCAL test set 2



Discussion

 Including spatial information improves results

» Importance of flexible modeling of spatial information
— coarse global position information

— object based models



Recent extensions

« Linear Spatial Pyramid Matching Using Sparse Coding for
Image Classification. J. Yang et al., CVPR’09.

— Local coordinate coding, linear SVM, excellent results in last year’s
PASCAL challenge

« Learning Mid-level features for recognition, Y. Boureau et al.,
CVPR’10.

— Use of sparse coding techniques and max pooling



Recent extensions

« Efficient Additive Kernels via Explicit Feature Maps, A.
Vedaldi and Zisserman, CVPR’10.

— approximation by linear kernels

* Improving the Fisher Kernel for Large-Scale Image
Classification, Perronnin et al., ECCV’10
— More discriminative descriptor, power normalization, linear SVM



