Category-level localization

Cordelia Schmid

Recognition

- Classification
 - Object present/absent in image
 - Often presence of a significant amount of background clutter

- Localization / Detection
 - Localize object within the frame
 - Bounding box or pixellevel segmentation

Pixel-level object classification

Difficulties

• Intra-class variations

- Scale and viewpoint change
- Multiple aspects of categories

Approaches

• Intra-class variation

=> Modeling of the variations, mainly by learning from a large dataset, for example by SVMs

- Scale + limited viewpoints changes
 => invariant local features
- Multiple aspects of categories
 => separate detectors for each aspect, front/profile face, build an approximate 3D "category" model

Approaches

- Localization (bounding box)
 - Hough transform
 - Shape voting
 - Shape exemplars
 - Sliding window approach
- Localization (segmentation)
 - Shape based
 - Pixel-based +MRF
 - Segmented regions + classification

Hough voting

- Use Hough space voting to find objects of a class
- Implicit shape model [Leibe and Schiele '03,'05]

Learning

- Learn appearance codebook
 - Cluster over interest points on training images
- Learn spatial distributions
 - Match codebook to training images
 - Record matching positions on object
 - Centroid + scale is given

Spatial occurrence distributions

Probabilistic

Voting

Hough voting

Segmentation / Detection Backprojected Maximum

[Opelt, Pinz, Zisserman, ECCV 2006]

Masks for object localization

For each test feature:

- Select closest training features + corresponding masks (training requires images with shape outline)

- Align mask based on local co-ordinates system (transformation between training and test co-ordinate systems)

Sum masks weighted by matching distance

three features agree on object localization, the object has higher weights

[Marszalek & Schmid, CVPR 2007]

Examples of "summed" masks

Object localization

- Cast hypothesis
 - Aligning the mask based on matching features
- Evaluate each hypothesis
 - SVM for local features
- Merge hypothesis to produce localization decisions
 - Online clustering of similar hypothesis, rejection of weak ones

Illustration of hypothesis evaluation

False hypotheses due to the ambiguities of the wheels

Eliminated after the evaluation

Illustration of hypotheses merging

Weak classifier response due to occlusion

Merging of evidence based on consistent object features

Localization results

Localization result

Illustration of subsequent hypotheses

Confidence value

4.9

Exemplar based Pedestrian Detector

- Build model by clustering training examples hierarchically
- At run-time, use similarity tree to find similar examples quickly

[D.Gavrila, ICPR'98]

Localization with sliding window

Training

Positive examples

Negative examples

Description + Learn a classifier

Localization with sliding window

Testing at multiple locations and scales

Find local maxima, non-maxima suppression

Sliding Window Detectors

Detection Phase

Scan image(s) at all scales and locations

Extract features over windows

Run window classifier at all locations

Fuse multiple detections in 3-D position & scale space

Object detections with bounding boxes

Scale-space pyramid

Detection window

Haar Wavelet / SVM Human Detector

Which Descriptors are Important?

32x32 descriptors 16x16 descriptors

Mean response difference between positive & negative training examples

Essentially just a coarse-scale human silhouette template!

Some Detection Results

AdaBoost Cascade Face Detector

- A computationally efficient architecture that rapidly rejects unpromising windows
 - A chain of classifiers that each reject some fraction of the negative training samples while keeping almost all positive ones
- Each classifier is an AdaBoost ensemble of rectangular Haar-like features sampled from a large pool

Histogram of Oriented Gradient Human Detector

- Descriptors are a grid of local Histograms of Oriented Gradients (HOG)
- Linear SVM for runtime efficiency
- Tolerates different poses, clothing, lighting and background
- Assumes upright fully visible people

[Dalal & Triggs, CVPR 2005]

27

Descriptor Cues

- Most important cues are head, shoulder, leg silhouettes
- Vertical gradients inside a person are counted as negative
- Overlapping blocks just outside the contour are most important

Multi-Scale Object Localisation

Fine scale transitions helps!

Human detection

Two layer detection [Harzallah et al. 2009]

- Combination of a linear with a non-linear SVM classifier
 - Linear classifier is used to preselection
 - Non-linear one for scoring
- Use of image classification for context information
- Winner of 11/20 classes in the PASCAL Visual Object Classes Challenge 2008 (VOC 2008)

PASCAL VOC 2008 dataset

- 8465 image (4332 training and 4133 test) downloaded from Flickr, manually annotated
- 20 object classes (aeroplane, bicycle, bird, etc.)
- Between 130 and 832 images per class (except person 3828)
- On average 2-3 objects per image
- Viewpoint information : front, rear, left, right, unspecified
- Other information : truncated, occluded, difficult

PASCAL 2008 dataset

Bus

Cat

Chair

Cow

PASCAL 2008 dataset

Potted Plant

Train

Person

TV/Monitor

Evaluation

- Average Precision [TREC] averages precision over the entire range of recall
 - Curve interpolated to reduce influence of "outliers"

- A good score requires both high recall and high precision
- Application-independent
- Penalizes methods giving high precision but low recall

Evaluating bounding boxes

Area of Overlap (AO) Measure

 Need to define a threshold t such that AO(B_{gt}, B_p) implies a correct detection: 50%

Introduction [Harzallah et al. 2000]

 Method with sliding windows (Each window is classified as containing or not the targeted object)

• Learn a classifier by providing positive and negative examples

Generating training windows

 Adding positive training examples by shifting and scaling the original annotations [Laptev06]

- Initial negative examples randomly extracted from background
- Training an initial classifier
- Retraining 4 times by adding false positives

Examples of false positives
Image representation

- Combination of 2 image representations
- Histogram Oriented Gradient
 - Gradient based features
 - Integral Histograms

- Bag of Features
 - SIFT features extracted densely + k-means clustering
 - Pyramidal representation of the sliding windows
 - One histogram per tile

Efficient search strategy

- Reduce search complexity
 - Sliding windows: huge number of candidate windows
 - Cascades: pros/cons
- Two stage cascade:
 - Filtering classifier with a linear SVM
 - Low computational cost
 - Evaluation: capacity of rejecting negative windows
 - Scoring classifier with a non-linear SVM
 - X² kernel with a channel combination [Zhang07]
 - Significant increase of performance

Efficiency of the 2 stage localization

Localization performance: aeroplane

Localization performance: car

Localization performance

Mean Average Precision on all 20 classes, PASCAL 2007 dataset

Method	mAP
Linear, HOG	14.6
Linear, BOF	15.0
Linear, HOG+BOF	17.6
X², HOG	21.9
X ² , BOF	23.1
X ² , HOG+BOF	26.3

Localization examples: correct localizations

Bicycle

Horse

Car

Sofa

Localization examples: false positives

Bicycle

Car

Horse

Sofa

Localization examples: missed objects

Combining image classification and localization

• Image classification & localization use a different information

- For many TP only one has a high score
 - Truncated objects: hard for the detector
 - Small objects: ok for the detector but not for the classifier using global information

- Input: classification (S_i) and localization (S_w) scores

• Output: probability that object is present

• Suppose that classification and localization outputs are independent:

 $P(O|S_w, S_i) \propto P(O|S_i) \times P(O|S_w)$

• For each modality (classification/detection): notion of detectability $P(D_i)$ for classifier and $P(D_w)$ for detector

• Encodes the ability to detect presence of the objects

• Assuming that the classifier/detector outputs conditional probabilities: $P(O|S_i, D_i)$ and $P(O|S_w, D_w)$

- $P(O|S_i) = P(D_i)P(O|S_i, D_i) + P(\overline{D_i})P(O|S_i, \overline{D_i})$
- $P(O|S_w) = P(D_w)P(O|S_w, D_w) + P(\overline{D_w})P(O|S_w, \overline{D_w})$
- Final probability: $P(O|S_w, S_i) \propto P(O|S_i) \times P(O|S_w)$
- Handle both cases:
 - Object detectable by two modalities
 - Object detectable by only one modality

• $P(O|S_i, \overline{D_i})$ and $P(O|S_w, \overline{D_w})$: constant value

• S_w = classification by localization: highest localization score

• Priors $P(D_i)$ and $P(D_w)$ class dependent

Combination experimental setup

- Image classifier : INRIA_flat classifier
 - SVM classifier X² kernel using multiple feature channels [Zhang07]
 - Excellent results in PASCAL 2008 challenge

- Detector : as described previously
- Experimental validation on PASCAL VOC 2007

Experimental results : gain obtained

Classification

Method	mAP
Base Classifier	60.1
Our Combination	63.5

Localization

Method	mAP
Base Detector	26.3
Our Combination	28.9

Experimental results

Correct but low score for car localization High classification score for car score increased after combination

Experimental results

High classification score for car No localization of car → score decreased after combination

Flexible Model [Felsenszwalb et al. 2009]

- Mixture of deformable part models
- Each component has global template + deformable parts
- Fully trained from bounding boxes alone

Two component bike model

Each component has a root filter F_0 and *n* part models (F_i , v_i , d_i)

Object hypothesis

Multiscale model captures features at two-resolutions

Score of a hypothesis

$$\operatorname{score}(p_0, \dots, p_n) = \begin{bmatrix} \operatorname{``data term''} \\ \sum_{i=0}^{n} F_i \cdot \phi(H, p_i) \\ i = 1 & \text{displacements} \end{bmatrix} - \begin{bmatrix} \sum_{i=1}^{n} d_i \cdot (dx_i^2, dy_i^2) \\ i = 1 & \text{displacements} \\ \text{deformation parameters} \end{bmatrix}$$

$$\operatorname{score}(z) = \beta \cdot \Psi(H, z)$$

$$\operatorname{concatenation filters and} \\ \operatorname{deformation parameters} \\ \operatorname{concatenation of HOG} \\ \operatorname{features and part} \\ \operatorname{displacement features} \end{bmatrix}$$

Matching

- Define an overall score for each root location
 - Based on best placement of parts

$$\operatorname{score}(p_0) = \max_{p_1,\ldots,p_n} \operatorname{score}(p_0,\ldots,p_n).$$

- High scoring root locations define detections
 - "sliding window approach"

Matching results

(after non-maximum suppression)

Training

- Training data consists of images with labeled bounding boxes.
- Need to learn the model structure, filters and deformation costs.

Training Models

- Reduce to Latent SVM training problem
- Positive example specifies some *z* should have high score
- Bounding box defines range of root locations
 - Parts can be anywhere
 - This defines Z(x) part locations

Person model

deformation models

Person detections

high scoring true positives

high scoring false positives (not enough overlap)

Shape-based features for localization

- Classes with characteristic shape
 - Appearance, local patches are not adapted
 - shape-based descriptors are necessary

[Ferrari, Fevrier, Jurie & Schmid, PAMI'08]

Pairs of adjacent segments (PAS)

Contour segment network [Ferrari et al. ECCV'06]

- 1. Edgels extracted with Berkeley boundary detector
- 2. Edgel-chains partitioned into straight contour segments
- Segments connected at edgel-chains' endpoints and junctions

Pairs of adjacent segments (PAS)

Contour segment network

PAS = groups of two connected segments

PAS descriptor:

$$\left(\frac{r_x}{\left\|\vec{r}\right\|}, \frac{r_y}{\left\|\vec{r}\right\|}, \theta_1, \theta_2, \frac{l_1}{\left\|\vec{r}\right\|}, \frac{l_2}{\left\|\vec{r}\right\|}\right)$$

encodes geometric properties of the PAS scale and translation invariant compact, 5D

Features: pairs of adjacent segments (PAS)

Example PAS

Why PAS?

+ can cover pure portions of the object boundary

+ intermediate complexity: good repeatabilityinformativeness trade-off

+ scale-translation invariant

+ connected: natural grouping criterion (need not choose a grouping neighborhood or scale) PAS descriptors are clustered into a vocabulary

- Frequently occurring PAS have intuitive, natural shapes
- As we add images, number of PAS types converges to just ~100
- Very similar codebooks come out, regardless of source images
- \rightarrow general, simple features

Window descriptor

- 1. Subdivide window into tiles
- 2. Compute a separate bag of PAS per tile
- 3. Concatenate these semi-local bags
- + distinctive:

records *which* PAS appear *where* weight PAS by average edge strength

+ flexible:

soft-assign PAS to types, coarse tiling

+ fast:

computation with Integral Histograms

Training

- 1. Learn mean positive window dimensions $M_{_{W}} \times M_{_{h}}$
- 2. Determine number of tiles T
- 3. Collect positive example descriptors

4. Collect negative example descriptors: slide $M_{w} \times M_{h}$ window over negative training images

Training

5. Train a linear SVM from positive and negative window descriptors

A few of the highest weighed descriptor vector dimensions (= 'PAS + tile')

+ lie on object boundary (= local shape structures common to many training exemplars)
Testing

1. Slide window of aspect ratio $M_{_W}/M_{_h}$ at multiple scales

- 2. SVM classify each window + non-maxima suppression
- → detections

Experimental results – INRIA horses

Dataset: 170 positive + 170 negative images (training = 50 pos + 50 neg) wide range of scales; clutter

(missed and FP)

+ tiling brings a substantial improvement

optimum at T=30 \rightarrow used for all other experiments

+ works well: 86% det-rate at 0.3 FPPI (50 pos + 50 neg training images)

Experimental results – INRIA horses

Dataset: 170 positive + 170 negative images (training = 50 pos + 50 neg) wide range of scales; clutter

+ PAS better than any interest point detector

- all interest point (IP) comparisons with T=10, and 120 feature types (= optimum over INRIA horses, and ETHZ Shape Classes)

- IP codebooks are class-specific

Results – ETH shape classes

Dataset: 255 images, 5 classes; large scale changes, clutter training = half of positive images for a class + same number from the other classes (1/4 from each) testing = **all** other images

Results – ETH shape classes

Dataset: 255 images, 5 classes; large scale changes, clutter training = half of positive images for a class + same number from the other classes (1/4 from each) testing = **all** other images

Results – ETHZ Shape Classes

Comparison to HOG [Dalal & Triggs, CVPR'05]

Generalizing PAS to kAS

*k*AS: any path of length *k* through the contour segment network

scale+translation invariant descriptor with dimensionality 4*k*-2

k = feature complexity; higher *k* more informative, but less repeatable

overall mean det-rates (%)

	1AS	PAS	3AS	4AS	DAS do boot
0.3 FPPI	69	77	64	57	FAS UD DESI
0.4 FPPI	76	82	70	64	