

ICCV 2009

Bach, Mairal, Ponce, Sapiro

Restoration by Energy Minimization

Restoration/representation algorithms are often related to the minimization of an energy function of the form

$$f(\underline{x}) = \frac{1}{2} \|\underline{x} - \underline{y}\|_{2}^{2} + \frac{Pr(\underline{x})}{Prior or regularization}$$

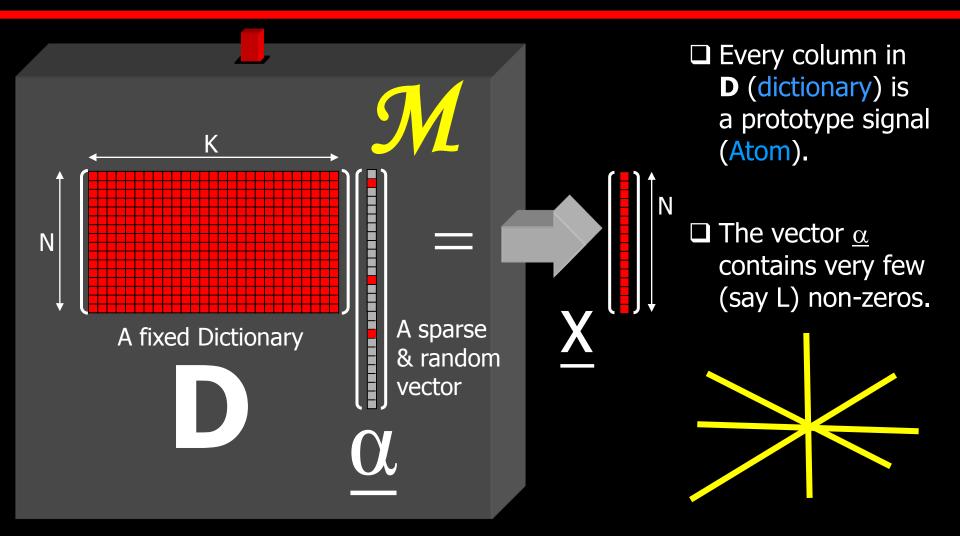
$$\begin{array}{l} x : \text{Unknown to be recovered} \end{array}$$

□ Bayesian type of approach

□ What is the prior? What is the image model?

Thomas Bayes 1702 - 1761

The Sparseland Model for Images



What Should the Dictionary D Be?

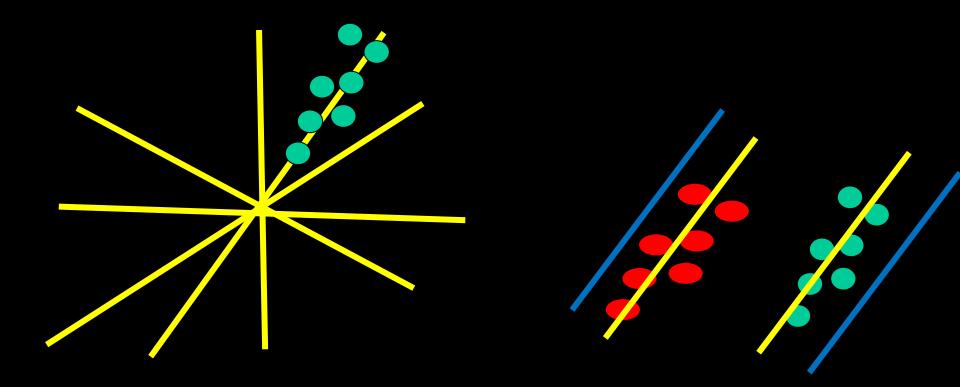
$$\underline{\hat{\alpha}} = \underset{\underline{\alpha}}{\operatorname{argmin}} \frac{1}{2} \| \mathbf{D}\underline{\alpha} - \underline{y} \|_{2}^{2} \quad \text{s.t.} \ \|\underline{\alpha}\|_{0}^{0} \leq L \quad \Longrightarrow \quad \hat{\underline{x}} = \mathbf{D}\underline{\hat{\alpha}}$$

D should be chosen such that it sparsifies the representations

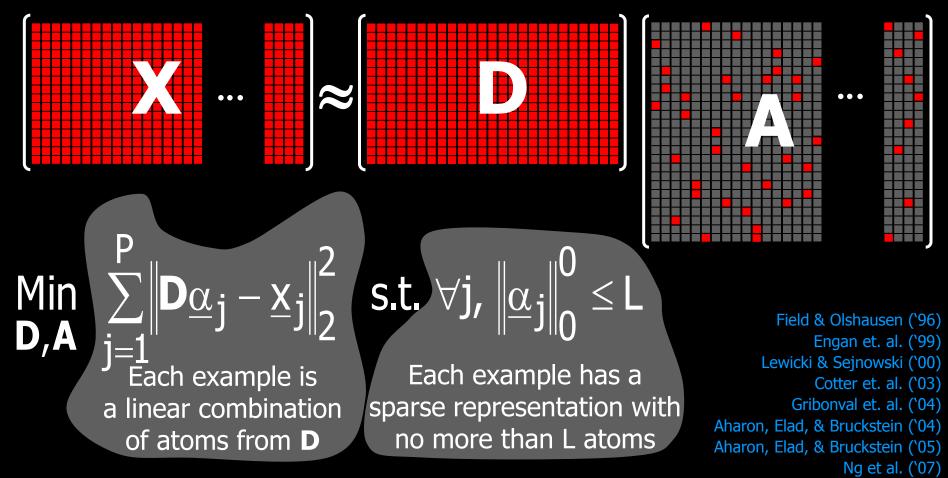
One approach to choose **D** is from a known set of transforms (Steerable wavelet, Curvelet, Contourlets, Bandlets, ...)

Learn D : Multiscale Learning Color Image Examples Task / sensing adapted Internal structure

What is being learned?



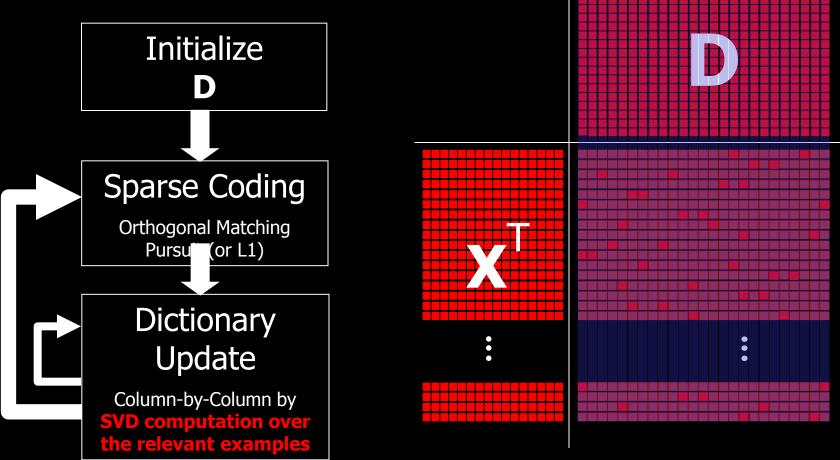
Learning D to reconstruct



Mairal, Sapiro, Elad ('08)

The K–SVD Algorithm – General

Aharon, Elad, & Bruckstein (`04)

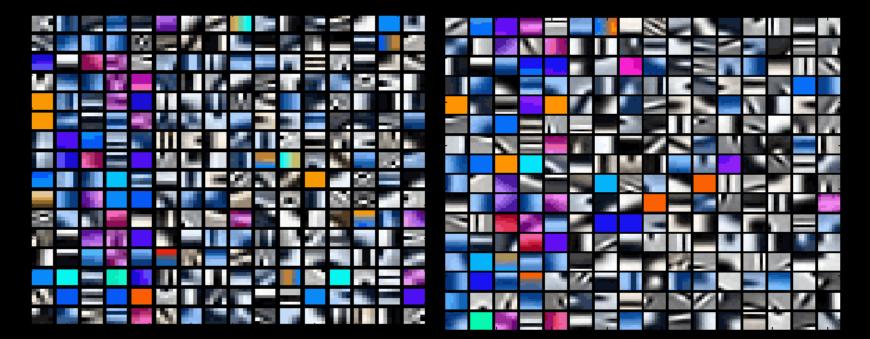


Non-uniform noise

$$\begin{aligned} \{\widehat{\alpha_{ij}}, \widehat{\mathbf{D}}, \widehat{\mathbf{x}}\} &= \arg \min_{\mathbf{D}, \alpha_{ij}, \mathbf{x}} \lambda ||\beta \otimes (\mathbf{x} - \mathbf{y})||_2^2 \\ &+ \sum_{i,j} \mu_{ij} ||\alpha_{ij}||_0 \\ &+ \sum_{ij} ||(\mathbf{R}_{ij}\beta) \otimes (\mathbf{D}\alpha_{ij} - \mathbf{R}_{ij}\mathbf{x})||_2^2 \end{aligned}$$

Show me the pictures

Change the Metric in the OMP

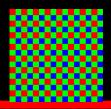


Example: Non-uniform noise



Example: Inpainting

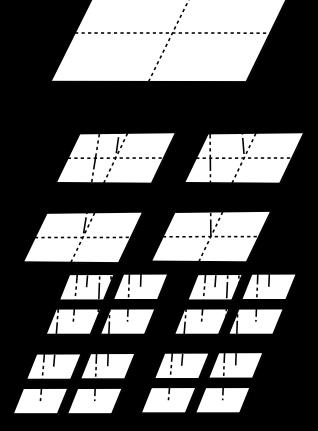
Example: Demoisaic

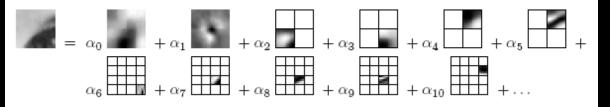


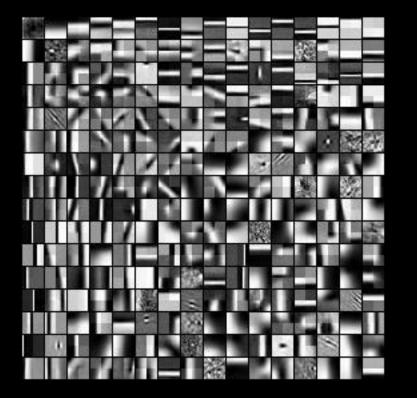
Example: Inpainting

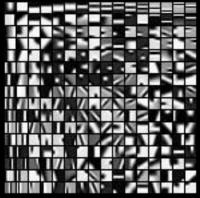
Multiscale Dictionaries

Learned multiscale dictionary







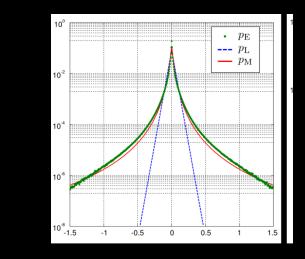


Color multiscale dictionaries

Extending the Models

Universal Coding and Incoherent Dictionaries

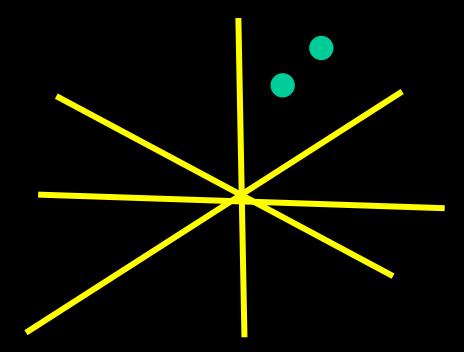
$$f(\mathbf{X}, \mathbf{D}, \mathbf{A}) = \|\mathbf{X} - \mathbf{D}\mathbf{A}\|_{F}^{2} + \lambda \sum_{j=1}^{N} \sum_{i=1}^{K} \log\left(|\alpha_{ij}| + \beta\right) + \zeta \|\mathbf{D}^{T}\mathbf{D} - \mathbf{I}_{K}\|_{F}^{2} + \eta \sum_{k=1}^{K} (\|\mathbf{D}_{k}\|_{2}^{2} - 1)^{2}.$$



- Consistent
- Improved generalization properties
- Improved active set computation
- Improved reconstruction
- Improved coding speed

ℓ_0	n_{ε}	SC	$\mathcal{H}(n_{\varepsilon})$	OLS PSNR
3	0	ℓ_1 MOL	35.6 71.1	37.4 42.6
5	1	ℓ_1 MOL	10.6 43.2	36.9 42.2
8	2	ℓ_1 MOL	7.6 30.8	37.6 42.3

Group Sparsity



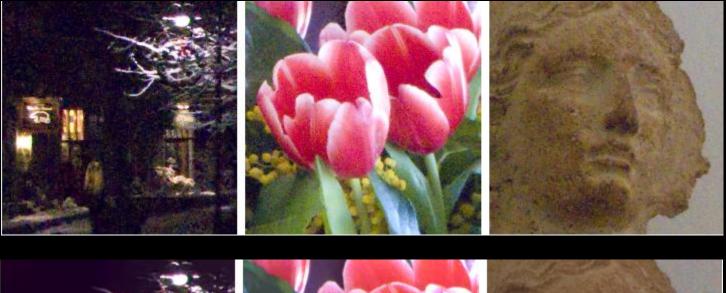
Sparsity + Self-similarity=Group Sparsity

- Combine the two of the most successful models for images

Sparsity + Self-similarity=Group Sparsity

Sparsity + Self-similarity=Group Sparsity

Adobe Camera Raw



Proposed Method

Learning to Sense Sparse Images

Motivation

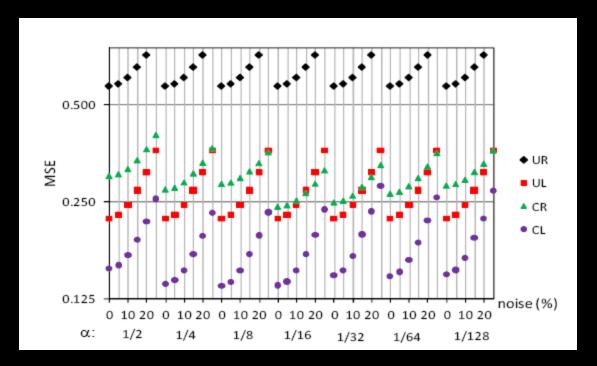
- Compressed sensing (Candes & Tao, Donoho, et al.)
 - Sparsity 🙂
 - Random sampling
 - Universality
 - Stability
- Shall the sensing be adapted to the data type?
 - Yes! (Elad, Peyre, Weiss et al., Applebaum et al, this talk).
- Shall the sensing and dictionary be learned simultaneously?

Some formulas....

$$\min_{\boldsymbol{\Psi}, \boldsymbol{\Phi}, \boldsymbol{\Theta}} \left\{ \alpha \| \mathbf{X} - \boldsymbol{\Psi} \boldsymbol{\Theta} \|_{F}^{2} + \| \mathbf{Y} - \boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{\Theta} \|_{F}^{2} \right\} \quad s. t. \ \forall i, \| \boldsymbol{\theta}_{i} \|_{\ell_{0}} \leq S$$

+ "RIP (Identity Gramm Matrix)"

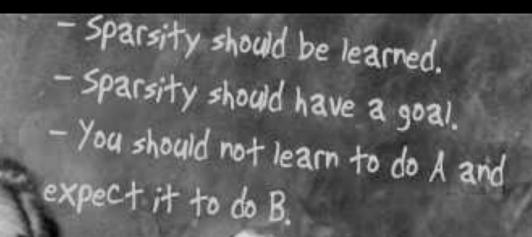
Design the dictionary and sensing together



Just Believe the Pictures

Just Believe the Pictures

Just Believe the Pictures



www.hetemeel.com