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Relation to 
measurements

Restoration by Energy Minimization 

Thomas Bayes                                    
1702 - 1761

Prior or regularization
y : Given measurements  

x : Unknown to be recovered
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Restoration/representation algorithms are often related to the minimization 
of an energy function of the form

 Bayesian type of approach

 What is the prior? What is the image model?
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The Sparseland Model for Images 
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 Every column in    
D (dictionary) is    
a prototype signal 
(Atom).

 The vector 
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What Should the Dictionary D Be? 
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D should be chosen such that it sparsifies the representations 

Learn D :

Multiscale Learning

Color Image Examples 

Task / sensing adapted

Internal structure

One approach to choose D is from a 
known set of transforms (Steerable 

wavelet, Curvelet, Contourlets, 
Bandlets, …)



What is being learned?
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Each example is                    
a linear combination                   

of atoms from D

Learning D to reconstruct

DX A

Each example has a 
sparse representation with 

no more than L atoms
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The K–SVD Algorithm – General 

DInitialize         
D

Sparse Coding
Orthogonal Matching 

Pursuit (or L1)

Dictionary 
Update

Column-by-Column by  
SVD computation over 
the relevant examples

Aharon, Elad, & Bruckstein (`04)

X
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Non-uniform noise
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Show me the pictures
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Change the Metric in the OMP
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Example: Non-uniform noise
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Example: Inpainting
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Example: Demoisaic
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Example: Inpainting



Learning Sparsity 15

Multiscale Dictionaries
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Learned multiscale dictionary
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Color multiscale dictionaries 



Extending the Models
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Universal Coding and Incoherent Dictionaries

• Consistent

• Improved generalization properties

• Improved active set computation

• Improved reconstruction

• Improved coding speed
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Group Sparsity
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Sparsity + Self-similarity=Group Sparsity

• Combine the two of the most successful 

models for images
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Sparsity + Self-similarity=Group Sparsity
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Sparsity + Self-similarity=Group Sparsity
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Adobe 

Camera Raw

Proposed

Method



Learning to Sense Sparse 

Images



Motivation

• Compressed sensing (Candes &Tao, Donoho, et al.)

– Sparsity

– Random sampling

• Universality

• Stability

• Shall the sensing be adapted to the data 

type?

– Yes! (Elad, Peyre, Weiss  et al., Applebaum et al, this talk).

• Shall the sensing and dictionary be learned 

simultaneously?

Learning Sparsity 26



Some formulas….
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+ “RIP (Identity Gramm Matrix)”



Design the dictionary and sensing 

together

Learning Sparsity 28



Just Believe the Pictures
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Just Believe the Pictures
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Just Believe the Pictures
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