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Sparse Structured Linear Model

We focus on linear models

x ≈ Dα.

x ∈ R
m, vector of m observations.

D ∈ R
m×p, dictionary or data matrix.

α ∈ R
p, loading vector.

Assumptions:

α is sparse, i.e., it has a small support

|Γ| ≪ p, Γ = {j ∈ {1, . . . , p}; αj 6= 0}.

The support, or nonzero pattern, Γ is structured:

Γ reflects spatial/geometrical/temporal. . . information about the
data.
e.g., 2-D grid structure for features associated to the pixels of an
image.
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Sparsity-Inducing Norms (1/2)

min
α∈Rp

data fitting term
︷︸︸︷

f (α) + λ ψ(α)
︸ ︷︷ ︸

sparsity-inducing norm

Standard approach to enforce sparsity in learning procedures:

Regularizing by a sparsity-inducing norm ψ.

The effect of ψ is to set some αj ’s to zero, depending on the
regularization parameter λ ≥ 0.

The most popular choice for ψ:

The ℓ1 norm, ‖α‖1 =
∑p

j=1 |αj |.

For the square loss, Lasso [Tibshirani, 1996].

However, the ℓ1 norm encodes poor information, just cardinality!
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Sparsity-Inducing Norms (2/2)

Another popular choice for ψ:

The ℓ1-ℓ2 norm,

∑

G∈G

‖αG‖2 =
∑

G∈G

( ∑

j∈G

α
2
j

)1/2
, with G a partition of {1, . . . , p}.

The ℓ1-ℓ2 norm sets to zero groups of non-overlapping variables

(as opposed to single variables for the ℓ1 norm).

For the square loss, group Lasso [Yuan and Lin, 2006, Bach, 2008a].

However, the ℓ1-ℓ2 norm encodes fixed/static prior information,
requires to know in advance how to group the variables !

Questions:

What happen if the set of groups G is not a partition anymore?

What is the relationship between G and the sparsifying effect of ψ?
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Structured Sparsity

[Jenatton et al., 2009]

Assumption:
⋃

G∈GG = {1, . . . , p}.

When penalizing by the ℓ1-ℓ2 norm,
∑

G∈G

‖αG‖2 =
∑

G∈G

( ∑

j∈G

α
2
j

)1/2

The ℓ1 norm induces sparsity at the group level:

Some αG ’s are set to zero.

Inside the groups, the ℓ2 norm does not promote sparsity.

Intuitively, the zero pattern of w is given by

{j ∈ {1, . . . , p}; αj = 0} =
⋃

G∈G′

G for some G′ ⊆ G.

This intuition is actually true and can be formalized (see [Jenatton
et al., 2009]).
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Examples of set of groups G (1/3)

Selection of contiguous patterns on a sequence, p = 6.

G is the set of blue groups.

Any union of blue groups set to zero leads to the selection of a
contiguous pattern.
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Examples of set of groups G (2/3)

Selection of rectangles on a 2-D grids, p = 25.

G is the set of blue/green groups (with their not displayed
complements).

Any union of blue/green groups set to zero leads to the selection of
a rectangle.
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Examples of set of groups G (3/3)

Selection of diamond-shaped patterns on a 2-D grids, p = 25.

It is possible to extent such settings to 3-D space, or more complex
topologies.
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Relationship bewteen G and Zero Patterns (1/2)

[Jenatton et al., 2009]

To sum up, given G, the variables set to zero by ψ belong to

{ ⋃

G∈G′

G ; G′ ⊆ G
}
, i.e., are a union of elements of G.

In particular, the set of nonzero patterns allowed by ψ is closed under

intersection.
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Relationship bewteen G and Zero Patterns (2/2)

[Jenatton et al., 2009]

G → Zero patterns:

We have seen how we can go from G to the zero patterns induced
by ψ (i.e., by generating the union-closure of G).

Zero patterns → G:

Conversely, it is possible to go from a desired set of zero patterns to
the minimal set of groups G generating these zero patterns.

The latter property is central to our structured sparsity: we can

design norms, in form of allowed zero patterns.
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Overview of other work on structured sparsity

Specific hierarchical structure [Zhao et al., 2008, Bach, 2008b].

Union-closed (as opposed to intersection-closed) family of nonzero
patterns [Baraniuk et al., 2008, Jacob et al., 2009].

Nonconvex penalties based on information-theoretic criteria with
greedy optimization [Huang et al., 2009].

Structure expressed through a Bayesian prior, e.g., [He and Carin,
2009].
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Topographic Dictionaries
“Topographic” dictionaries [Hyvarinen and Hoyer, 2001, Kavukcuoglu
et al., 2009] are a specific case of dictionaries learned with a structured
sparsity regularization for α.

Figure: Image obtained from [Kavukcuoglu et al., 2009]
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Dictionary Learning vs Sparse Structured PCA

Dictionary Learning with structured sparsity for α:

min
α∈R

p×n

D∈R
m×p

n∑

i=1

1

2
‖xi − Dαi‖

2
2 + λψ(αi) s.t. ∀j , ‖dj‖2 ≤ 1.

Let us transpose: Sparse Structured PCA (sparse and structured
dictionary elements):

min
α∈R

p×n

D∈R
m×p

n∑

i=1

1

2
‖xi − Dαi‖

2
2 + λ

p
∑

j=1

ψ(dj) s.t. ∀i , ‖αi‖2 ≤ 1.
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Sparse Structured PCA

We are interested in learning sparse and structured dictionary
elements:

min
α∈R

p×n

D∈R
m×p

n∑

i=1

1

2
‖xi − Dαi‖

2
2 + λ

p
∑

j=1

ψ(dj ) s.t. ∀i , ‖αi‖2 ≤ 1.

The columns of α are kept bounded to avoid degenerated solutions.

The structure of the dictionary elements is determined by the
choice of G (and ψ).
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Some results (1/2)

Application on the AR Face Database [Martinez and Kak, 2001].

r = 36 dictionary elements.

Left, NMF - Right, our approach.

We enforce the selection of convex nonzero patterns.
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Some results (2/2)

Study the dynamics of protein complexes [Laine et al., 2009].
Find small convex regions in the complex that summerize the
dynamics of the whole complex.
G represents the 3-D structure of the problem.
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Conclusion

We have shown how sparsity-inducing norms can encode structure.

The structure prior is expressed in terms of allowed patterns by
the regularization norm ψ.

Future directions:

Can be used in many learning tasks, as soon as structure
information about the sparse decomposition is known.

e.g., multi-taks learning or multiple-kernel learning.

Francis Bach, Julien Mairal, Jean Ponce and Guillermo Sapiro New sparse models 17/19



References I

F. Bach. Consistency of the group Lasso and multiple kernel learning. Journal of

Machine Learning Research, 9:1179–1225, 2008a.

F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In
Advances in Neural Information Processing Systems, 2008b.

R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde. Model-based compressive
sensing. Technical report, 2008. Submitted to IEEE Transactions on Information
Theory.

L. He and L. Carin. Exploiting structure in wavelet-based Bayesian compressive
sensing. IEEE Transactions on Signal Processing, 57:3488–3497, 2009.

J. Huang, T. Zhang, and D. Metaxas. Learning with structured sparsity. In
Proceedings of the 26th International Conference on Machine Learning, 2009.

A. Hyvarinen and P. Hoyer. A two-layer sparse coding model learns simple and
complex cell receptive fields and topography from natural images. Vision Research,
41(18):2413–2423, 2001.

L. Jacob, G. Obozinski, and J.-P. Vert. Group Lasso with overlaps and graph Lasso.
In Proceedings of the 26th International Conference on Machine learning, 2009.

R. Jenatton, J.Y. Audibert, and F. Bach. Structured variable selection with
sparsity-inducing norms. Technical report, arXiv:0904.3523, 2009.

Francis Bach, Julien Mairal, Jean Ponce and Guillermo Sapiro New sparse models 18/19



References II

K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun. Learning invariant features
through topographic filter maps. In Proceedings of CVPR, 2009.

E. Laine, A. Blondel, and T. E. Malliavin. Dynamics and energetics: A consensus
analysis of the impact of calcium on ef-cam protein complex. Biophysical Journal,
96(4):1249–1263, 2009.

A. M. Martinez and A. C. Kak. PCA versus LDA. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 23(2):228–233, 2001.

R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal

Statistical Society. Series B, pages 267–288, 1996.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society Series B, 68(1):49–67, 2006.

P. Zhao, G. Rocha, and B. Yu. Grouped and hierarchical model selection through
composite absolute penalties. Annals of Statistics, 2008. To appear.

Francis Bach, Julien Mairal, Jean Ponce and Guillermo Sapiro New sparse models 19/19


