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What this part is about

Learning dictionaries with a discriminative cost
function. . .

. . . and a few applications to computer vision
applications.

Compressed sensing with learned dictionaries and
why you should not use random sensing matrices.
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Learning dictionaries with a discriminative cost function

Idea:

Let us consider 2 sets S−,S+ of signals representing 2 different classes.
Each set should admit a specific dictionary best adapted to its
reconstruction.

Classification procedure for a signal x ∈ Rn:

min(R?(x,D−),R?(x,D+))

where
R?(x,D) = min

α∈Rp
||x−Dα||22 s.t. ||α||0 ≤ L.

“Reconstructive” training{
minD−

∑
i∈S−

R?(xi ,D−)

minD+

∑
i∈S+

R?(xi ,D+)

[Grosse et al., 2007], [Huang and Aviyente, 2006] (see also [Wright
et al., 2009])
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Learning dictionaries with a discriminative cost function

“Discriminative” training

[Mairal, Bach, Ponce, Sapiro, and Zisserman, 2008a]

min
D−,D+

∑
i

C
(
λzi

(
R?(xi ,D−)− R?(xi ,D+)

))
,

where zi ∈ {−1,+1} is the label of xi .

Logistic regression function
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Learning dictionaries with a discriminative cost function

Mixed approach

min
D−,D+

∑
i

C
(
λzi

(
R?(xi ,D−)− R?(xi ,D+)

))
+ µR?(xi ,Dzi ),

where zi ∈ {−1,+1} is the label of xi .

Keys of the optimization framework

Alternation of sparse coding and dictionary updates (not online yet).

Continuation path with decreasing values of µ.

OMP to address the NP-hard sparse coding problem. . .

. . . or LARS when using `1.

Use softmax instead of logistic regression for N > 2 classes.
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Learning dictionaries with a discriminative cost function
Examples of dictionaries

Top: reconstructive, Bottom: discriminative, Left: Background,
Right: Bicycle
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Learning dictionaries with a discriminative cost function
Texture segmentation
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Learning dictionaries with a discriminative cost function
Texture segmentation
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Learning dictionaries with a discriminative cost function
Pixelwise classification
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Learning dictionaries with a discriminative cost function
Multiscale scheme
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Learning dictionaries with a discriminative cost function
weakly-supervised pixel classification

Francis Bach, Julien Mairal, Jean Ponce and Guillermo Sapiro Optimization for Sparse Coding 11/21



Application to edge detection and classification
[Mairal, Leordeanu, Bach, Hebert, and Ponce, 2008b]

Good edges Bad edges
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Application to edge detection and classification
Berkeley segmentation benchmark

Raw edge detection on the right
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Application to edge detection and classification
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Application to edge detection and classification
Berkeley segmentation benchmark
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Application to edge detection and classification
Contour-based classifier: [Leordeanu, Hebert, and Sukthankar, 2007]

Is there a bike, a motorbike, a car or a person on this
image?
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Application to edge detection and classification
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Application to edge detection and classification
Performance gain due to the prefiltering

Ours + [Leordeanu ’07] [Leordeanu ’07] [Winn ’05]

96.8% 89.4% 76.9%

Recognition rates for the same experiment as [Winn et al., 2005] on
VOC 2005.

Category Ours+[Leordeanu ’07] [Leordeanu ’07]
Aeroplane 71.9% 61.9%

Boat 67.1% 56.4%
Cat 82.6% 53.4%
Cow 68.7% 59.2%
Horse 76.0% 67%

Motorbike 80.6% 73.6%
Sheep 72.9% 58.4%

Tvmonitor 87.7% 83.8%

Average 75.9% 64.2 %

Recognition performance at equal error rate for 8 classes on a subset of
images from Pascal 07.
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A partial conclusion on discriminative learned dictionaries

The learning of sparse representations should be discriminative for
recognition tasks.

Discriminative sparse representations are well adapted to edge
analysis.

Local prefiltering of edges dramatically helps contours-based
classifiers.

promising, but still a lot of work to do. . .
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