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Lecture 7

* A bit more on neural nets
* Optimization methods
e Part-based object models
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L ocal Shift lnvariance

@ [Hubel & Wiesel 1962]:
» simple cells detect local features

» complex cells “pool” the outputs of simple cells within a
retinotopic neighborhood.

“Simple cells”

“Complex cells”

pooling
subsampling

N/

Retinotopic Feature Maps

Convolutions

Yann LeCun t New York University,




Hubel-\Wiesel Architecture

@ Building a complete artificial vision system:
» Stack multiple stages of simple cells / complex cells layers
» Higher stages compute more global, more invariant features
» Stick a classification layer on top
» [Fukushima 1971-1982]

® neocognitron

» [LeCun 1988-2007]
« convolutional net

» [Poggio 2002-2006]
® HMAX

» [Ullman 2002-2006]
& fragment hierarchy

» [Lowe 2006]
© HMAX
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&@ QUESTION: How do we
find (or learn) the
filters?

Yann LeCun

t New York University



Layer 3 Layer 5

- Layer 1 Layer 2 12@10x10 Layer 4 100@1x1
input @10x
1@32x32 6@28x28 6@14x14 12@5x5
Layer 6: 10
10
— /'-_-
— — — 5X5
- 2%2 5X5 2%2 convolutfon
i convolution -
convolution pooling/ pooling/

subsampling subsampling

& Convolutional net for handwriting recognition (400,000 synapses)

& Convolutional layers (simple cells): all units in a feature plane share the same weights

& Pooling/subsampling layers (complex cells): for invariance to small distortions.

& Supervised gradient-descent learning using back-propagation

& The entire network is trained end-to-end. All the layers are trained
simultaneously.

Yann LeCun t New York University,
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¥ Handwritten Digit Dataset MNIST: 60,000 training samples, 10,000 test samples
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CLASSIFIER

linear classifier (1-layer NN)
linear classifier (1-layer NN)
pairwise linear classifier
K-nearest-neighbors, (L2)
K-nearest-neighbors, (L2)
K-nearest-neighbors, (L2)
K-NN L3, 2 pixel jitter

K-NN, shape context matching
40 PCA + quadratic classifier
1000 RBF + linear classifier
K-NN, Tangent Distance
SVM, Gaussian Kernel

SVM deg 4 polynomial
Reduced Set SVM deg 5 poly
Virtual SVM deg-9 poly
V-SVM, 2-pixel jittered
V-SVM, 2-pixel jittered
2-layer NN, 300 HU, MSE
2-layer NN, 300 HU, MSE,
2-layer NN, 300 HU

3-layer NN, 500+ 150 HU
3-layer NN, 500+ 150 HU
3-layer NN, 500+ 300 HU, CE, reg
2-layer NN, 800 HU, CE
2-layer NN, 800 HU, CE
2-layer NN, 800 HU, MSE
2-layer NN, 800 HU, CE
Convolutional net LeNet-1
Convolutional net LeNet-4
Convolutional net LeNet-5,
Conv. net LeNet-5,

Boosted LeNet-4

Conv. net, CE

Comyv net, CE

Yann LeCun

DEFORMATION PREPROCESSING
none
deskewing
deskewing
none
deskewing
deskew, clean, blur
deskew, clean, blur
shape context feature
none
none
subsamp 16x16 pixels
none
deskewing
deskewing

Affine none
none
deskewing
none

Affine none
deskewing
none

Affine none
none
none

Affine none

Elastic none

Elastic none
subsamp 16x16 pixels
none
none

Affine none

Affine none

Affine none

Elastic none

ERROR (%)
12.00
8.40
7.60
3.09
2.40
1.80
1.22
0.63
3.30
3.60
1.10
1.40
1.10
1.00
0.80
0.68
0.56
4.70
3.60
1.60
2.95
2.45
1.53
1.60
1.10
0.90
0.70
1.70
1.10
0.95
0.80
0.70
0.60
0.40

Reference

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

Kenneth Wilder, U. Chicago
LeCun et al. 1998

Kenneth Wilder, U. Chicago
Kenneth Wilder, U. Chicago
Belongie et al. IEEE PAMI 2002
LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998
DeCoste and Scholkopf, MLJ2002
DeCoste and Scholkopf, MLJ2002
LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

Hinton, unpublished, 2005
Simard et al., ICDAR 2003
Simard et al., ICDAR 2003
Simard et al., ICDAR 2003
Simard et al., ICDAR 2003
LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

LeCun et al. 1998

Simard et al., ICDAR 2003
Simard et al., ICDAR 2003

t New York University,



CLASSIFIER DEFORMATION  ERROR Reference
Knowledge-free methods (a fixed permutation of the pixels would make no difference)

2-layer NN, 800 HU, CE 1.60  Simard et al., ICDAR2003

3-layer NN, 500+ 300 HU, CE, reg 1.53 Hinton, in press, 2005

SVM, Gaussian Kernel 1.40  Cortes 92 + Many others

Convolutional nets
Convolutional net LeNet-5, 0.80 Ranzato et al. NIPS 2006
Convolutional net LeNet-6, 0.70 Ranzato et al. NIPS 2006

Training set augmented with Affine Distortions

2-layer NN, 800 HU, CE Affine 1.10  Simard et al., ICDAR 2003

Virtual SVM deg-9 poly Affine 0.80  Scholkopf

Convolutional net, CE Affine 0.60  Simard et al., ICDAR 2003
Training et augmented with Elastic Distortions

2-layer NN, 800 HU, CE Elastic 0.70  Simard et al., ICDAR 2003

Convolutional net, CE Elastic 0.40  Simard et al., ICDAR 2003

Note: some groups have obtained good results with various amounts of preprocessing
such as deskewing (e.g. 0.56% using an SVM with smart kernels [deCoste and Schoelkopf])
hand-designed feature representations (e.g. 0.63% with “shape context” and nearest neighbor [Belc

Yann LeCun t New York University,
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ViNet on Sliding WindowsH

output: 3x3

iInput:120x120

W Traditional Detectors/Classifiers must be applied to every
location on a large input image, at multiple scales.

&¥ Convolutional nets can replicated over large images very
cheaply.

¥ The network is applied to multiple scales spaced by 1.5.

Yann LeCun t New York University,




& Computational cost for replicated convolutional net:
¥ 96x96 -> 4.6 million multiply-accumulate operations
& 120x120 -> 8.3 million multiply-accumulate operations
& 240%x240 -> 47.5 million multiply-accumulate
operations
& 480x480 -> 232 million multiply-accumulate operations
& Computational cost for a non-convolutional detector of
the same size, applied every 12 pixels:
& 96x96 -> 4.6 million multiply-accumulate operations
¥ 120x120 -> 42.0 million multiply-accumulate

operations
¥ 240x240 -> 788.0 million multiply-accumulate
operations
& 480x480 -> 5,083 million multiply-accumulate
operations 96x96 window
— 12 pixel shift

\84x84 overlap




ol 50 toys belonging to 5 categories: animal, human figure, airplane, truck, car

&¥ 10 instance per category: 5 instances used for training, 5 instances for testing
W Raw dataset: 972 stereo pair of each object instance. 48,600 image pairs total.

ﬂ For each instance:

¥ 18 azimuths - e % sl ‘Ef‘ A oK Q. ax N
¥ 0 to 350 degrees every

20 degrees 5 & ﬂ § > ’ﬂ' @ !{ ﬁ; X /E

¥ 9 elevations
¥ 30 to 70 degrees from

horizontal every 5 % 4‘,{‘ A v:."_ ‘fﬁj'e < =t & s;i- *ﬁ

degrees
& 6 illuminations . , . : % ,
¥ on/off combinations of 4 % W % w % \ —a W N \i
lights

& 2 cameras (stereo) 2 98 © © % & \/ VN ©

¥ 7.5 cm apart
¥ 40 cm from the object

Training instances  Test instances

Yann LeCun t New York University




yoadlllple Generation

Image capture setu Objects are painted green so that:

- all features other than shape are

removed

- objects can be segmented, transformed,
and composited onto various

ba@h%rﬁ'nlérllci%age Object mask

Shadow factor Composite image

Yann LeCun

t New York University,




tttered Datasets

Yann LeCun t New York University,




nvolutional Netwe

Layer 3

Stereo Layer 1 24@6x6 Layer>d
input s@92x92  Layer2 100  ¢onnected
2@96x96 8@23x23 (500 weights)

6X6

3x3 ~ convolution
subsampling 400 kernels)

5x5
convolution
(16 kernels)

subsampling convolution
(96 kernels)

& 90,857 free parameters, 3,901,162 connections.

¥ The architecture alternates convolutional layers (feature detectors) and subsampling
layers (local feature pooling for invariance to small distortions).

& The entire network is trained end-to-end (all the layers are trained
simultaneously).

& A gradient-based algorithm is used to minimize a supervised loss function.

Yann LeCun t New York University




ahimal

in feature locations.

¥ Hubel/Wiesel'62,
Fukushima'71l, LeCun'89,
Riesenhuber & Poggio'02,
Ullman'02,....
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& averaging/subsampling layer 5
builds robustness to variations g8
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& Linear Classifier on raw stereo images: 30.2% error.

& K-Nearest-Neighbors on raw stereo images: 18.4%
error.

@@ K-Nearest-Neighbors on PCA-95: 16.6% error.

& Pairwise SVM on 96x96 stereo images: 11.6% error

& Pairwise SVM on 95 Principal Components: 13.3%
error.

& Convolutional Net on 96x96 stereo images: 5.8%
error.
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Training instanc@sest instances

Yann LeCun t New York University,




¥ Jittered-Cluttered Dataset:

& 291,600 tereo pairs for training, 58,320 for testing

Wl Objects are jittered: position, scale, in-plane rotation, contrast,
brightness, backgrounds, distractor objects,...

¥ Input dimension: 98x98x2 (approx 18,000)

Yann LeCun t New York University,




ittered-Cluttered Dataset

W 291,600 training samples, 58,320 test samples

& SVM with Gaussian kernel 43.3%
error

W Convolutional Net with binocular input: 7.8% error

& Convolutional Net + SVM on top: 5.9% error

& Convolutional Net with monocular input: 20.8%
error

& Smaller mono net (DEMO): 26.0% error

¥ Dataset available from http://www.cs.nyu.edu/~yann

Yann LeCun t New York University




<-NN 0 SVIV

W@ K-NN and SVM with Gaussian kernels are based on matching global
templates

& Both are “shallow” architectures

& Thereis now way to learn invariant recognition tasks with such naive
architectures (unless we use an impractically large number of templates).

Output
¥ The number of necessary templates

grows exponentially with the number of
dimensions of variations.

¥ Global templates are in trouble when the
variations include: category, instance

shape, configuration (for articulated Features (similarities)
object), position, azimuth, elevation,

Linear
Combinations

scale, illumination, texture, albedo, in-
plane rotation, background luminance,
background texture, background clutter,

Global Template Matchers
(each training sample is a
template




ynocular Mode)

Yann LeCun t New York University,



ocular Mode

Yann LeCun t New York University,



gnocular Mode)

Yann LeCun t New York University




ocular Mode

Euulm= 1.0, Threshold= -1.0, filter on

Yann LeCun t New York University,




ocular Mode

Foom= 1.0, Threshold= -1.2, filter on

Yann LeCun t New York University,




pdnocular Mode)

Foom= 0.7, Threshold= -1.8, filter on

Yann LeCun t New York University,



Thrs= 0.3, T on , 0s=40, nwin=23616 Thrs= 0.3, f on , 0s=40, nwin=23616
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& Convolutional nets can be trained to perform a wide variety of visual

tasks.
» Global supervised gradient descent can produce parsimonious

architectures

& BUT: they require lots of labeled training samples
» 60,000 samples for handwriting
» 120,000 samples for face detection
» 25,000 to 350,000 for object recognition

@ Since low-level features tend to be non task specific, we should be able to
learn them unsupervised.

@ Hinton has shown that layer-by-layer unsupervised “pre-training” can be
used to initialize “deep’ architectures
» [Hinton & Shalakhutdinov, Science 2006]

@ Can we use this idea to reduce the number of necessary labeled examples.

Yann LeCun t New York University,
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Learning with Large Datasets

Léon Bottou

NEC Laboratories America

or

How can bad optimization be good

in large-scale settings
See http://leon.bottou.org/slides/largescale/Istut.pdf




Simple Analysis

e Statistical Learning Literature:
“It is good to optimize an objective function than ensures a fast

estimation rate when the number of examples increases.”

e Optimization Literature:

“To efficiently solve large problems, it is preferable to choose
an optimization algorithm with strong asymptotic properties, e.g.
superlinear.”

e [ herefore:

““To address large-scale learning problems, use a superlinear algorithm to
optimize an objective function with fast estimation rate.

Problem solved.”

The purpose of this presentation is...




Too Simple an Analysis

e Statistical Learning Literature:
“It iIs good to optimize an objective function than ensures a fast
estimation rate when the number of examples increases.”

e Optimization Literature:

“To efficiently solve large problems, it is preferable to choose
an optimization algorithm with strong asymptotic properties, e.g.
superlinear.”

e Therefore: (error)
“To address large-scale learning problems, use a superlinear algorithm to
optimize an objective function with fast estimation rate.

Problem solved.”

... to show that this is completely wrong!




Objectives and Essential Remarks

e Baseline large-scale learning algorithm

Randomly discarding data is the simplest
way to handle large datasets.

— What are the statistical benefits of processing more data?
— What is the computational cost of processing more data?

e We need a theory that joins Statistics and Computation!

— 1967: Vapnik's theory does not discuss computation.

— 1981: Valiant's learnability excludes exponential time algorithms,
but (i) polynomial time can be too slow, (ii) few actual results.

— We propose a simple analysis of approximate optimization. . .




Learning Algorithms: Standard Framework

e Assumption: examples are drawn independently from an unknown
probability distribution P(x,y) that represents the rules of Nature.

e Expected Risk: E(f) = [{(f(x),y)dP(x,y).

e Empirical Risk: En(f) = L3 0(f(zi).u).

e We would like f* that minimizes E(f) among all functions.

e In general f* ¢ F.

e The best we can have is fr € F that minimizes E(f) inside F.
e But P(r,y) is unknown by definition.

e Instead we compute f, € F that minimizes E,(f).
Vapnik-Chervonenkis theory tells us when this can work.




Learning with Approximate Optimization

Computing f,, = argmin E,,(f) is often costly.
feF

Since we already make lots of approximations,

why should we compute f,, exactly?

Let’'s assume our optimizer returns f,

such that Eﬂ.{f}l} < En(fn) +p.

For instance, one could stop an iterative
optimization algorithm long before its convergence.




Decomposition of the Error (i)

E(fﬂ,} — E(f") = E{f’j}) — E(f7") Approximation error

+ E(fn) — E(fr) Estimation error
_|_

E(fn) — E(fn) Optimization error

Problem:
Choose F, n, and p to make this as small as possible,

maximal number of examples n

subject to budget constraints { maximal computing time T




Decomposition of the

Error (ii)

Approximation error bound:
— decreases when F gets larger.

Estimation error bound:
— decreases when n gets larger.
— increases when F gets larger.

Optimization error bound:
— increases with p.

Computing time T
— decreases with p
— increases with n
— increases with F

(Approximation theory)

(Vapnik-Chervonenkis theory)

(Vapnik-Chervonenkis theory plus tricks)

(Algorithm dependent)




Small-scale vs. Large-scale Learning

We can give rigorous definitions.

e Definition 1:
We have a small-scale learning problem when the active
budget constraint is the number of examples n.

e Definition 2:
We have a large-scale learning problem when the active
budget constraint is the computing time T..




Small-scale Learning

T he active budget constraint is the number of examples.

e [0 reduce the estimation error, take n as large as the budget allows.
e To reduce the optimization error to zero, take p =0,

e WWe need to adjust the size of F.

Approximation error

Size of F

See Structural Risk Minimization (Vapnik 74) and later works.




Large-scale Learning

The active budget constraint is the computing time.

e More complicated tradeoffs.
The computing time depends on the three variables: F, n, and p.

e Example.
If we choose p small, we decrease the optimization error. But we
must also decrease F and/or n with adverse effects on the estimation
and approximation errors.

e [ he exact tradeoff depends on the optimization algorithm.

e \We can compare optimization algorithms rigorously.




Executive Summary

log (p)

Good optimization algorithm (superlinear).
p decreases faster than exp(-T)

Mediocre optimization algorithm (linear).
p decreases like exp(-T)

Extraordinary poor
optimization algorithm

/ p decreases like 1/T




Asymptotics: Estimation

Uniform convergence bounds (with capacity d + 1)

n

d nl]“ '
Estimation error < C‘J([— lt)gE:| ) with = <a <1 .

There are in fact three tvpes of bounds to consider:

— Classical V-C bounds (pessimistic): O mf?ij

, , , i 1
— Relative V-C bounds in the realizable case: O —lug'—r)
n (

1 “
— Localized bounds (variance, Tsybakov): O [L lugr—;} j

! (

Fast estimation rates are a big theoretical topic these days.



Asymptotics: Estimation+Optimization

statistical estimation rate

Uniform convergence arguments give X/

d nl®
Estimation error + Optimization error < L)({ ln,«;g} + p) .

This is true for all three cases of uniform convergence bounds.

® Scaling laws for p when F is fixed
The approximation error is constant.

— No need to choose p smaller than C.?([dl ?Tr)
tu]).

7o)
— Not advisable to choose p larger than O({




Optimization

. . . Approximation—+Estimation

When F is chosen via a A-regularized cost

— Uniform convergence theory provides bounds for simple cases
(Massart-2000; Zhang 2005; Steinwart et al., 2004-2007; ...)

— Computing time depends on both A and p.
— Scaling laws for A and p depend on the optimization algorithm.

When F is realistically complicated

Large datasets matter
— because one can use more features,

— because one can use richer models.
Bounds for such cases are rarely realistic enough.

LucKily there are interesting things to say for F fixed.




Case Study

Simple parametric setup
— F is fixed.
— Functions fy(z) linearly parametrized by w & RY.

Comparing four iterative optimization algorithms for E,(f)

. Gradient descent.
. Second order gradient descent (Newton).

1

2

3. Stochastic gradient descent.

4. Stochastic second order gradient descent.




Gradient Descent (GD)

Gradient J

Iterate _
dE-n ( .fwr )

e

[ ] ?_L?t_|_1 — W — 1

Best speed achieved with fixed learning rate n = 11111—%

(e.g., Dennis & Schnabel, 1983)

Cost per Iterations Time to reach T@me to reach
iteration to reach p accuracy p E(fn) — E(fr) <c¢

GD O(nd) O (ﬁ: log %) @ (ﬂ.dr: log %) O (”f—ﬂ log* l)

— In the last column, n and p are chosen to reach ¢ as fast as possible.
— Solve for € to find the best error rate achievable in a given time.
— Remark: abuses of the @) notation




Second Order Gradient Descent (2GD)

Gradient J

Iterate '
H_l aE-n(fwf )

adw

® Wil — wp —

We assume H ! is known in advance.
Superlinear optimization speed (e.g., Dennis & Schnabel, 1983)

Cost per Iterations Time to reach T@me to reach
iteration to reach p accuracy p E(fn) — E(fr) <€

2

2GD O(d(d+n)) O (1::::,%- log r_l»‘) @ (d(d + n) log log %) U( log 1

— Optimization speed is much faster.
— Learning speed only saves the condition number k.




Stochastic Gradient Descent (SGD)

[terate
e Draw random example (x¢, y¢).

n Of(f’mr (‘rt)a yt) Partial Gradient J{x,y,w)
® Wt «— Wt — — :
t dw

Total Gradient <J{x,y,w)=

Best decreasing gain schedule with n = 11—
111111

(see Murata, 1998; Bottou & LeCun, 2004)

Cost per Iterations Time to reach T_ime to reach
iteration to reach p accuracy p E(fn) — E(fr) <c¢

SGD  0(d) Ly “G) o(u) @( dvk )

i

With 1 < k < k2

— Optimization speed is catastrophic.
— Learning speed does not depend on the statistical estimation rate «a.
— Learning speed depends on condition number xk but scales very well.




Second order Stochastic Descent (2SGD)

Iterate
e Draw random example (x4, yg).

1 D Fun ().
® Wiyl — W — —H_l ¢ (flb;( 1‘.), yt_)
t dw

Taotal Gradient =J{xy w)=
k

|| Partial Gradient J{x.y.w)

. N
Replace scalar gain 1—3 by matrix ?H 1

Cost per Iterations Time to reach T@me to reach
iteration to reach p accuracy p E(fpn) — E(fy) <=

2SGD  O(#)  Z+o(}) o(Lx) o(£x)

L

— Each iteration is d times more expensive.
— The number of iterations is reduced by x? (or less.)
— Second order only changes the constant factors.




Summary

Algorithm  Cost of one Iterations Time to reach Time to reach

iteration to reach p accuracy p E < c(€app + €)
GD O(nd) O (h log ﬁ) O (??..d.h'. log %) @( & r Jog g)
2GD O(d? +nd) © (lt:ng log %) @((d.? + nd) log log %) o( g L1oglog l)
SGD O(d) Zag o(l) O(JL;; ) (f)(dyhz)

2]
s ow) () e(w) o()




Benchmarking SGD in Simple Problems

e [ he theory suggests that SGD is very competitive.
— Many people associate SGD with trouble.

e SGD historically associated with back-propagation.

— Multilayer networks are very hard problems (nonlinear, nonconvex)
— What is difficult, SGD or MLP7?

e Try PLAIN SGD on simple learning problems.
— Support Vector Machines
— Conditional Random Fields

Download from http://leon.bottou.org/projects/sgd.
T hese simple programs are very short.

See also (Shalev-Schwartz et al., 2007; Vishwanathan et al., 2006)




Text Categorization with SVMs

e Dataset

— Reuters RCV1 document corpus.
— 781,265 training examples, 23,149 testing examples.
— 47,152 TF-IDF features.

e Task

— Recognizing documents of category CCAT.

1 A
— Minimize E,, = — Zu? + wx; +b,y;) ).
n T?.Z ( 9 ‘ J y Yi

;

0wzt + b, yp)

Ow

Same setup as (Shalev-Schwartz et al., 2007) but plain SGD.




Text Categorization with SVMs

e Results: Linear SVM
Ny, y) =max{0,1 —yy} A= 0.0001

Training Time Primal cost Test Error
SVMLight 23,642 secs 0.2275 6.02%
SVMPerf 66 secs 0.2278 6.03%
SGD 1.4 secs 0.2275 6.02%

e Results: Log-Loss Classifier
Uy, y) =log(l + exp(—yy)) A= 0.00001

Training Time Primal cost Test Error
LibLinear (¢ =0.01) 30 secs 0.18907 5.68%
LibLinear (¢ =0.001) 44 secs 0.18890 5.70%
SGD 2.3 secs 0.18893 5.66%




SGD for Real Life Applications

1.1 discriminant cost

| A Check Reader

-

negative log uklennnnaF:j;;------"' [F:.f.,g] oartelined Examples are pairs (image,amount).

' _ I

war ol possivie Problem with strong structure:

E
caorrect interpretation nﬂq]‘ 4] 23 interpretations

cmt.u?_ : }*m — Field segmentation

N~ . — Character segmentation
ey R — Character recognition
— Syntactical interpretation.

ANSWET Hemunugr

Segmentation Graph

Define differentiable modules.

Field Graph

Pretrain modules with hand-labelled data.

Ciheok Gragh Define global cost function (e.g., CRF).

Train with SGD for a few weeks.

Industrially deployed in 1996. Ran billions of checks over 10 years.
Credits: Bengio, Bottou, Burges, Haffher, LeCun, Nohl, Simard, et al.




Generative part-based

Fischler & Elschlager’73

Many slides adapted from Svetlana Lazebnik, Fei-Fei Li, Rob Fergus, and Antonio Torralba




Bayesian approach

* Model: P, (1] c)
* Learn the model by maximizing the likelihood of
the training data

max, 2" log Py (f | c)
* Recognize using Bayes rule
Py(c|t)=P,(1]c)P(c)/P(f)




R. Fergus, P. Perona and A. Zisserman,
, CVPR 2003




Probabilistic model

P(image | object) = P(appearance, shape | object)
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Probabilistic model

P(image | object) = P(appearance, shape | object)
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Part 3




Probabilistic model

P(image | object) = P(appearance, shape | object)
= max, P(appearance|h,object) p(shape|h,object) p(h|object)

h: assignment of features to parts




Probabilistic model

P(image | object) = P(appearance, shape | object)

= max, |P(appearance | h,object)p(shape| h,object) p(h | object)

Distribution
over patch
descriptors

High-dimensional appearance space




Probabilistic model

P(image | object) = P(appearance, shape | object)

= max, P(appearance|h,object)p(shape|h,object)fp(h|object)

Distribution
over joint
part positions

2D image space




Patch
appearance

SRR model

Ha®l'Emrreo

Recognition
results




Results: Motorbikes and
airplanes

Motortike shaps mocel
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Note: The Fergus part-based model is very rigid

(Schmid & Mohr, 1996) :
(Lowe, 1999) (Fergus, Perona & Zisserman, 2003)




Model Learning as Multi-Image Segmentation
(Lazebnik, Scmid, Ponce, BMVC’04)

Practical approach: two-image matching followed by validation

initial pair VC(IIdClTIOh set

caﬂa’/a’afe part




Model = loose assembly of parts
Part = rigid assembly of features
(Lazebnik, Ponce, Schmid, ICCV’'O5)

(Fergus et al., 2003)
















(Gaston, Grimson, & Lozano-Perez, 1982; Ayache & Fauge
Faugeras & Hebert, 1983; Huttenlocher, 1987




L
(a) Alain Delon
L

(b)Y Wood duck



Discriminative approach

Model: P, ( ¢ | f)

Learn the model by maximizing the likelihood of
the training data

max, 2" log Py (¢, | f)

Recognize by maximizing posterior probability of
class

max_ P, (c| 1)




Complete Object Recognition Sys’rem (ICCV'OD)

Training pairs

Matching
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UIUC Bird Database

* 50 training images per class:

-20 initial images (50 largest candidate parts retained);
-30 validation (20 highest-scoring parts retained).

» 50 test images per class.

- 100 total.

Toucan Wood duck

Overall classification rate: 92.33%
Bag of features (Zhang et al., 2005): 83%




rigid assembly of parts
rigid assembly of features

A first attempt at handling: + changes in viewpoint

(Kushal, Schmid, Ponce, 2006) * nonrigid shape
* noncharacteristic texture




Model = |ocally rigid assembly of parts
Part = locally rigid assembly of features

base images validation images

A first attempt at handling: -+ changes in viewpoint

(Kushal, Schmid, Ponce, 2006) * nonrigid shape
* noncharacteristic texture




rigid assembly of parts
rigid assembly of features

A first attempt at handling: + changes in viewpoint

(Kushal, Schmid, Ponce, 2006) * nonrigid shape
* noncharacteristic texture




rigid assembly of parts
r‘lgld assembly of TeaTures

Qualitative experiments on Pascal VOC'07 (Kushal, Schmid, Ponce, 2008)




rigid assembly of parts
rigid assembly of features

Algorithm
Our Method
Chum et al. [3]

| Felzenszwalb et al. [0]
INRIA Plus [3]
IRISA 7]

Quantitative experiments on Pascal VOC'07 (Kushal, Schmid, Ponce, 2008)




Color histograms (S&B'91)
Local jets (Florack93)
Spin images (J&H'99)
Sift (Lowe'99)

Shape contexts (B&M'95)

Texton histograms (L&M'97)
Gist (O&T0OH)

Spatial pyramids

Hog (D&T06)

Phog (B&Z'07)
Convolutional nets (LC'70)
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Felzwenszalb, McAllester, Ramanan (2007)

[Wins on 6 of the Pascal'O7 classes, see Chum
& Zisserman (2007) for the other big winner.]




