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Lecture 6

• Face recognition
• Face detection
• Neural nets
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Face detection and recognition

Many slides adapted from  S. Lazebnik,
K. Grauman and D. Lowe



Face detection and recognition

Detection Recognition “Sally”



Consumer application: iPhoto 2009

http://www.apple.com/ilife/iphoto/



Consumer application: iPhoto 2009
Can be trained to recognize pets!

http://www.maclife.com/article/news/iphotos_faces_recognizes_cats



Consumer application: iPhoto 2009
Things iPhoto thinks are faces



History
• Early face recognition systems: based on features and 

distances 
Bledsoe (1966), Kanade (1973)

• Appearance-based models: eigenfaces 
Sirovich & Kirby (1987), Turk & Pentland (1991)

• Real-time face detection with boosting 
Viola & Jones (2001)



Outline
• Face recognition

• Eigenfaces

• Face detection
• The Viola & Jones system



The space of all face images
• When viewed as vectors of pixel values, face images 

are extremely high-dimensional
• 100x100 image = 10,000 dimensions

• However, relatively few 10,000-dimensional vectors 
correspond to valid face images

• We want to effectively model the subspace of face 
images



The space of all face images
• We want to construct a low-dimensional linear 

subspace that best explains the variation in the set of 
face images



Principal Component Analysis
• Given: N data points x1, … ,xN in Rd

• We want to find a new set of features that are linear 
combinations of original ones:

u(xi) = uT(xi – µ)

(µ: mean of data points)

• What unit vector u in Rd captures the most variance 
of the data?



Principal Component Analysis
• Direction that maximizes the variance of the projected data:

Projection of data point

Covariance matrix of data

The direction that maximizes the variance is the eigenvector associated with 
the largest eigenvalue of Σ

N

N



Eigenfaces: Key idea
• Assume that most face images lie on 

a low-dimensional subspace determined by the first k
(k<d) directions of maximum variance

• Use PCA to determine the vectors u1,…uk that span 
that subspace:
x ≈ µ + w1u1 + w2u2 + … + wkuk

• Represent each face using its “face space”
coordinates (w1,…wk)

• Perform nearest-neighbor recognition in “face space”

M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991



Eigenfaces example
Training 
images

x1,…,xN



Eigenfaces example

Top eigenvectors:
u1,…uk

Mean: µ



Eigenfaces example
• Face x in “face space” coordinates:

=



Eigenfaces example
• Face x in “face space” coordinates:

• Reconstruction:

= +

µ +     w1u1 +  w2u2 +  w3u3 + w4u4 + …

=

x̂ =



Summary: Recognition with eigenfaces
Process labeled training images:
• Find mean µ and covariance matrix Σ
• Find k principal components (eigenvectors of Σ) 

u1,…uk
• Project each training image xi onto subspace spanned 

by principal components:
(wi1,…,wik) = (u1

T(xi – µ), … , uk
T(xi – µ))

Given novel image x:
• Project onto subspace:

(w1,…,wk) = (u1
T(x – µ), … , uk

T(x – µ))
• Optional: check reconstruction error x – x to determine 

whether image is really a face
• Classify as closest training face in k-dimensional 

subspace

^



Limitations
• Global appearance method: not robust to 

misalignment, background variation



Limitations
• PCA assumes that the data has a Gaussian 

distribution (mean µ, covariance matrix Σ)

The shape of this dataset is not well described by its principal components



Limitations
• The direction of maximum variance is not always 

good for classification



Limitations
• The direction of maximum variance is not always 

good for classification



Alternative (Belhumeur et al., 1997)
• Fisherfaces (aka linear discriminant analysis): Use 

the direction that maximizes the ratio of
between-class scatter and within-class scatter



Alternative (Belhumeur et al., 1997)
• Fisherfaces (aka linear discriminant analysis): Use 

the direction that maximizes the ratio of
between-class scatter and within-class scatter

Between-class
scatter

Within-class
scatter

Optimal 
direction

Generalized eigenvalue problem





Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear 
Projection (Belhumeur, Hespanha, Kriegman, PAMI 19(7), 1997)



Face detection and recognition

Detection Recognition “Sally”



• Basic idea: slide a window across image and 
evaluate a face model at every location

Face detection



Challenges of face detection
• Sliding window detector must evaluate tens of thousands 

of location/scale combinations
• This evaluation must be made as efficient as possible

• Faces are rare:  0–10 per image
• At least 1000 times as many non-face windows as face windows
• This means that the false positive rate must be extremely low
• Also, we should try to spend as little time as possible on the non-

face windows



The Viola/Jones Face Detector
• A “paradigmatic” method for real-time object 

detection 
• Training is slow, but detection is very fast
• Key ideas

• Integral images for fast feature evaluation
• Boosting for feature selection
• Attentional cascade for fast rejection of non-face windows

P. Viola and M. Jones. Rapid object detection using a boosted cascade 
of simple features. CVPR 2001. 



Image Features

“Rectangle filters”

Value =  
∑ (pixels in white area) –
∑ (pixels in black area)



Example

Source

Result



Fast computation with integral 
images
• The integral image computes 

a value at each pixel (x,y) that 
is the sum of the pixel values 
above and to the left of (x,y), 
inclusive

• This can quickly be computed 
in one pass through the image

(x,y)



Computing the integral image



Computing the integral image

Cumulative row sum: s(x, y) = s(x–1, y) + i(x, y) 
Integral image: ii(x, y) = ii(x, y−1) + s(x, y)

ii(x, y-1)

s(x-1, y)

i(x, y)

MATLAB: ii = cumsum(cumsum(double(i)), 2);



Computing sum within a rectangle

• Let A,B,C,D be the values of 
the integral image at the 
corners of a rectangle

• Then the sum of original 
image values within the 
rectangle can be computed 
as:

sum = A – B – C + D
• Only 3 additions are required 

for any size of rectangle!
• This is now used in many areas 

of computer vision

D B

C A



Example

-1 +1
+2
-1

-2
+1

Integral 
Image

(x,y)(x,y)



Feature selection
• For a 24x24 detection region, the number of possible 

rectangle features is ~180,000!



Feature selection
• For a 24x24 detection region, the number of possible 

rectangle features is ~180,000! 
• At test time, it is impractical to evaluate the entire 

feature set 
• Can we create a good classifier using just a small 

subset of all possible features?
• How to select such a subset?



Boosting
• Boosting is a classification scheme that works by 

combining weak learners into a more accurate 
ensemble classifier

• Weak learner: classifier with accuracy that need be 
only better than chance

• We can define weak learners based on rectangle 
features:

Y. Freund and R. Schapire, A short introduction to boosting, Journal of 
Japanese Society for Artificial Intelligence, 14(5):771-780, September, 
1999  
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Boosting
• Boosting is a classification scheme that works by 

combining weak classifiers into a more accurate 
ensemble classifier

• Weak classifier: classifier with accuracy that need be 
only better than chance

• We can define weak classifiers based on rectangle 
features:

Y. Freund and R. Schapire, A short introduction to boosting, Journal of 
Japanese Society for Artificial Intelligence, 14(5):771-780, September, 
1999  

⎩
⎨
⎧ >
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xh

θ

window

value of rectangle 
feature

parity threshold

Parameters
tuned to minimize
misclassification
error



Boosting outline
• Initially, give equal weight to each training example
• Iterative training procedure

• Find best weak classifier for current weighted training set
• Raise the weights of training examples misclassified by current 

weak learner

• Compute final classifier as linear combination of all 
weak classifiers (weight of each learner is related to its 
accuracy)

Y. Freund and R. Schapire, A short introduction to boosting, Journal of 
Japanese Society for Artificial Intelligence, 14(5):771-780, September, 
1999  



Boosting

Weak 
Classifier 1



Boosting

Weights
Increased



Boosting

Weak 
Classifier 2



Boosting

Weights
Increased



Boosting

Weak 
Classifier 3



Boosting

Final classifier is 
linear combination of weak 
classifiers



AdaBoost algorithm: more details

For t = 1 …,T
• Select weak classifier with minimum error 

• Set 

• Reweight examples (boosting) to give misclassified 
examples more weight

• Add weak classifier with weight 
Final

classifier: 

Start with equal weights on each data point (i)

²t =
X
i

ωi[ht(xi) 6= yi] where ωi are weights

αt =
1

2
ln
1− ²t
²t

ωt+1,i = ωt,ie
−αtyiht(xi)

H(x) = sign
TX
t=1

αtht(x)

αt



• For each round of boosting:
• Evaluate each rectangle filter on each example
• Select best threshold for each filter 
• Select best filter/threshold combination
• Reweight examples

• Computational complexity of learning: O(MNT)
• M filters, N examples, T thresholds

Boosting for face detection



First two features selected by 
boosting



Cascading classifiers
• We start with simple classifiers which reject many of 

the negative sub-windows while detecting almost all 
positive sub-windows

• Positive results from the first classifier triggers the 
evaluation of a second (more complex) classifier, and 
so on

• A negative outcome at any point leads to the 
immediate rejection of the sub-window
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Cascading classifiers
• Chain classifiers that are 

progressively more complex and 
have lower false positive rates:

vs false neg determined by
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Training the cascade
• Adjust weak learner threshold to minimize false 

negatives (as opposed to total classification error)
• Each classifier trained on false positives of previous 

stages
• A single-feature classifier achieves 100% detection rate and 

about 50% false positive rate
• A five-feature classifier achieves 100% detection rate and 

40% false positive rate (20% cumulative)
• A 20-feature classifier achieve 100% detection rate with 10% 

false positive rate (2% cumulative)

1 Feature 5 Features

F

50%
20 Features

20% 2%
FACE

NON-FACE

F

NON-FACE

F

NON-FACE

IMAGE
SUB-WINDOW



The implemented system
• Training Data

• 5000 faces
– All frontal, rescaled to 

24x24 pixels
• 300 million non-faces

– 9500 non-face images
• Faces are normalized

– Scale, translation

• Many variations
• Across individuals
• Illumination
• Pose

(Most slides from Paul Viola)



System performance
• Training time: “weeks” on 466 MHz Sun workstation
• 38 layers, total of 6061 features
• Average of 10 features evaluated per window on test 

set
• “On a 700 Mhz Pentium III processor, the face 

detector can process a 384 by 288 pixel image in 
about .067 seconds”
• 15 Hz
• 15 times faster than previous detector of comparable 

accuracy (Rowley et al., 1998)



Output of Face Detector on Test 
Images



Other detection tasks 

Facial Feature Localization

Male vs. 
female

Profile Detection 



Profile Detection



Profile Features 



Summary: Viola/Jones detector
• Rectangle features
• Integral images for fast computation
• Boosting for feature selection
• Attentional cascade for fast rejection of negative 

windows



Linear classifiers
• Find linear function (hyperplane) to separate positive and 

negative examples

0:negative
0:positive

<+⋅
≥+⋅

b
b

ii

ii

wxx
wxx

Which hyperplane
is best?



Support vector machines
• Find hyperplane that maximizes the margin between 

the positive and negative examples

1:1)(negative
1:1)( positive
−≤+⋅−=

≥+⋅=
by
by

iii

iii

wxx
wxx

MarginSupport vectors

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data 
Mining and Knowledge Discovery, 1998 

Distance between point 
and hyperplane: ||||

||
w
wx bi +⋅

For support, vectors, 1±=+⋅ bi wx

Therefore, the margin is  2 / ||w||



Linear classifiers
The perceptron
(Rosenblatt’57)

What the perceptron can
learn, it will learn using a
simple weight update
rule.



Slide by Duda, Hart, Stork



Slide by D.A. Forsyth

Multi-layer
neural
network



Slides by D.A. Forsyth



Slide by Duda, Hart, Stork

Any function can be learned by a 3-layer
network with enough hidden units



Slide by Duda, Hart, Stork



Slide by Duda, Hart, Stork



E = ∑i L (yi ,f (xi, w))

Gradient-based supervised learning

• Parametric prediction function: f (x, w) → y

• Learning: Minimize

• Recognition: y = f(x, w)

How can we minimize E? ..Gradient descent..



• Gradient descent: 
• compute ∇E=(∂E/∂w1, … , ∂E/∂wn)
• wk+1 ← wk -²∇E

• Stochastic gradient descent:
• compute ∇Ei
• wk+1 ← wk - ²∇Ei
where Ei is the energy associated
with some random training sample i

• The stochastic version works much better
in practice.

Gradient-based supervised learning II



• Consider a feed-forward system composed
of successive modules:
xi = fi (wi, xi-1)

E = L (y , x), with x = xn = fn (wn, xn-1)

∂E/∂wn = ∂E/∂x ∂fn/∂wn

∂E/∂xn-1 = ∂E/∂x ∂fn/∂xn-1

• Backward recursion: backpropagation

Gradient-based supervised learning III



The vertical face-finding part of Rowley, Baluja and Kanade’s system
Figure from “Rotation invariant neural-network based face detection,”
H.A. Rowley, S. Baluja and T. Kanade, Proc. Computer Vision and Pattern 
Recognition, 1998, copyright 1998, IEEE Slide by D.A. Forsyth



Architecture of the complete system: they use another neural
net to estimate orientation of the face, then rectify it.  They 
search over scales to find bigger/smaller faces.

Figure from “Rotation invariant neural-network based face detection,” H.A. 
Rowley, S. Baluja and T. Kanade, Proc. Computer Vision and Pattern Recognition, 
1998, copyright 1998, IEEE

Slide by D.A. Forsyth



Figure from “Rotation 
invariant neural-network 
based face detection,”
H.A. Rowley, S. Baluja and 
T. Kanade, Proc. Computer 
Vision and Pattern 
Recognition, 1998, 
copyright 1998, IEEE

Slide by D.A. Forsyth



Convolutional neural networks
Template matching using NN classifiers seems to 

work
Natural features are filter outputs

• probably, spots and bars, as in texture
• but why not learn the filter kernels, too?

Slide by D.A. Forsyth



Figure from “Gradient-Based Learning Applied to Document 
Recognition”, Y. Lecun et al Proc. IEEE, 1998 copyright 1998, 
IEEE

A convolutional neural network, LeNet; the layers filter, subsample, filter,
subsample, and finally classify based on outputs of this process.

Slide by D.A. Forsyth



Figure from “Gradient-Based Learning Applied to Document 
Recognition”, Y. Lecun et al Proc. IEEE, 1998 copyright 1998, 
IEEE

Slide by D.A. Forsyth







Slide by L. Bottou



Slide by L. Bottou



Slide by L. Bottou


