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Lecture 6

* Face recognition
» Face detection
* Neural nets




Attention!

Troisieme exercice de programmation du
le 24 novembre

http://www.di.ens.fr/willow/teaching/recvis09/assignment3/




Face detection and recognition

Many slides adapted from S. Lazebnik,
K. Grauman and D. Lowe




Face detection and recognition

Recognition




Consumer application: iPhoto 2009

B Py 105 plaay




Consumer application: iPhoto 2009

Can be trained to recognize pefts!




Consumer application: iPhoto 2009




History

« Early face recognition systems: based on features and
distances
Bledsoe (1966), Kanade (1973)

« Appearance-based models: eigenfaces
Sirovich & Kirby (1987), Turk & Pentland (1991)

« Real-time face detection with boosting
Viola & Jones (2001)




Outline

» Face recognition
» Eigenfaces

* Face detection
« The Viola & Jones system




The space of all face images

 When viewed as vectors of pixel values, face images
are extremely high-dimensional

* 100x100 image = 10,000 dimensions

However, relatively few 10,000-dimensional vectors
correspond to valid face images

We want to effectively model the subspace of face
Images




The space of all face images

 We want to construct a low-dimensional linear
subspace that best explains the variation in the set of
face images

Pixel value 1

@ A face image
@® A (non-face) image




Principal Component Analysis

 Given: N data points x4, ... ,Xy in R

« We want to find a new set of features that are linear
combinations of original ones:

u(x;) = u'(x;—
(M: mean of data points)

« What unit vector u in RY captures the most variance
of the data”?




Principal Component Analysis

 Direction that maximizes the variance of the projected data:

Projection of data point

Covariance matrix of data

The direction that maximizes the variance is the eigenvector associated with
the largest eigenvalue of X




Eigenfaces: Key idea

« Assume that most face images lie on
a low-dimensional subspace determined by the first k
(k<d) directions of maximum variance

Use PCA to determine the vectors u,,...u, that span
that subspace:

X=HM+Wwu, +w,u, +...+wu,

Represent each face using its “face space”
coordinates (w4,...w,)

« Perform nearest-neighbor recognition in “face space”

M. Turk and A. Pentland, . CVPR 1991
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Eigenfaces example

Top eigenvectors:




Eigenfaces example

 Face x in “face space” coordinates:




Eigenfaces example

 Face x in “face space” coordinates:

Wily + Wol, + Wals + Wally + ...




Summary: Recognition with eigenfaces

Process labeled training images:

 Find mean g and covariance matrix

* Find k principal components (eigenvectors of Z)
Ug,...U,

* Project each training image x;, onto subspace spanned
by principal components:
(Wig, -, W) = (UyT(X = M), - 5 U T (X — W))

Given novel image x:

* Project onto subspace:
Wy, W) = (U T (X =), ..., u T (X=p))

» Optional: check reconstruction error x — x to determine
whether image is really a face

« Classify as closest training face in k-dimensional
subspace




Limitations

* Global appearance method: not robust to
misalignment, background variation




Limitations

« PCA assumes that the data has a Gaussian
distribution (mean p, covariance matrix 2)

The shape of this dataset is not well described by its principal components




Limitations

* The direction of maximum variance is not always
good for classification




Limitations

* The direction of maximum variance is not always
good for classification
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Alternative (Belhumeur et al., 1997)

* Fisherfaces (aka linear discriminant analysis): Use
the direction that maximizes the ratio of

between-class scatter and within-class scatter




Alternative (Belhumeur et al., 1997)

* Fisherfaces (aka linear discriminant analysis): Use
the direction that maximizes the ratio of

between-class scatter and within-class scatter

Between-class
scatter

Within-class
scatter

Optimal W ‘WTSBVV‘

R = arg max;—
direction opt &Ma |WTS[,1,.-W‘

Generalized eigenvalue problem
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129
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7.1

Linear subspace 15 0.0 1.5 0.0
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Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear
Projection (Belhumeur, Hespanha, Kriegman, PAMI 19(7), 1997)




Face detection and recognition

Recognition




Face detection

Basic idea: slide a window across image and
evaluate a face model at every location
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Challenges of face detection

+ Sliding window detector must evaluate tens of thousands
of location/scale combinations

» This evaluation must be made as efficient as possible

 Faces are rare: 0—10 per image
« Atleast 1000 times as many non-face windows as face windows
« This means that the false positive rate must be extremely low

* Also, we should try to spend as little time as possible on the non-
face windows




The Viola/Jones Face Detector

« A “paradigmatic” method for real-time object
detection

* Training is slow, but detection is very fast
* Key ideas
 Integral images for fast feature evaluation

« Boosting for feature selection
« Attentional cascade for fast rejection of non-face windows

P. Viola and M. Jones. Rapid object detection using a boosted cascade
of simple features. CVPR 2001.




I'mage Features

"Rectangle filters”

Value =

2 (pixels in white area) -
2 (pixels in black area)




Source




Fast computation with integral

iImages

* The integral image computes
a value at each pixel (x,y) that
Is the sum of the pixel values
above and to the left of (x,y),
Inclusive

* This can quickly be computed

In one pass through the image




Computing the integral image

k




Computing the integral image

_I\

i(x,y)

Cumulative row sum: s(x, y) = s(x=1, y) + i(X, y)
Integral image: ii(x, y) = ii(x, y—1) + s(x, y)

MATLAB: ii = cumsum(cumsum(double(i)), 2);




Computing sum within a rectangle

Let A,B,C,D be the values of
the integral image at the
corners of a rectangle

Then the sum of original
Image values within the
rectangle can be computed
as:

sum=A-B-C+D
Only 3 additions are required

for any size of rectangle!

* This is now used in many areas
of computer vision







Feature selection

* For a 24x24 detection region, the number of possible
rectangle features is ~180,000!




Feature selection

For a 24x24 detection region, the number of possible
rectangle features is ~180,000!

At test time, it is impractical to evaluate the entire
feature set

Can we create a good classifier using just a small
subset of all possible features?

How to select such a subset?




Boosting

» Boosting is a classification scheme that works by
combining weak learners into a more accurate
ensemble classifier

Weak learner: classifier with accuracy that need be
only better than chance

We can define weak learners based on rectangle

features:

value of rectangle
+~ feature

1 1f p f.(x)>p,0&
) ={ TR
7 0 otherwise

parity threshold
window

Y. Freund and R. Schapire, , Journal of
Japanese Society for Artificial Intelligence, 14(5):771-780, September,




Boosting

» Boosting is a classification scheme that works by
combining weak classifiers into a more accurate
ensemble classifier

Weak classifier: classifier with accuracy that need be
only better than chance

We can define weak classifiers based on rectangle

features:

Parameters
value of rectangle tuned to minimize
+ feature misclassification

1 if p,f (X)> p,06, Lerror

(%)= 0 otherwise
/

window

Y. Freund and R. Schapire, , Journal of
Japanese Society for Artificial Intelligence, 14(5):771-780, September,




Boosting outline

* Initially, give equal weight to each training example

* lterative training procedure
* Find best weak classifier for current weighted training set
« Raise the weights of training examples misclassified by current
weak learner
« Compute final classifier as linear combination of all
weak classifiers (weight of each learner is related to its
accuracy)

Y. Freund and R. Schapire, , Journal of
Japanese Society for Artificial Intelligence, 14(5):771-780, September,




Boosting

Weak

Classifier 1 \




Boosting

Weights
Increased




Boosting

Classifier 2




Boosting

Weights
Increased




Boosting

Weak
Classifier 3




Boosting

Final classifier is
linear combination of weak
classifiers




AdaBoost algorithm: more details

Start with equal weights on each data point (i)

Fort=1...,T
 Select weak classifier with minimum error

et = » w;lht(z;) # y;] where w; are weights
;

1 1 —¢
ar = —In
2 E¢

* Reweight examples (boosting) to give misclassified
examples more weight

Final

classifier:




Boosting for face detection

* For each round of boosting:
« Evaluate each rectangle filter on each example
» Select best threshold for each filter
« Select best filter/threshold combination
* Reweight examples

« Computational complexity of learning: O(MNT)
« M filters, N examples, T thresholds




First two features selected by
boosting

="
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Cascading classifiers

« We start with simple classifiers which reject many of
the negative sub-windows while detecting almost all
positive sub-windows

Positive results from the first classifier triggers the
evaluation of a second (more complex) classifier, and
SO on

* A negative outcome at any point leads to the
immediate rejection of the sub-window

T T T
IMAGE > Classifierlr. ——( Classifier2 }——» Classifiers —» FACE
SUB-WINDOW

I ! Vv

NON-FACE NON-FACE NON-FACE




Cascading classifiers

Chain classifiers that are .

: eceiver operating
progressively more gqmplex and i oty
have lower false positive rates:

% False Pos
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SUB-WINDOW
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Training the cascade

* Adjust weak learner threshold to minimize false
negatives (as opposed to total classification error)

Each classifier trained on false positives of previous
stages

* A single-feature classifier achieves 100% detection rate and
about 50% false positive rate

* A five-feature classifier achieves 100% detection rate and
40% false positive rate (20% cumulative)

A 20-feature classifier achieve 100% detection rate with 10%
false positive rate (2% cumulative)

50% 20% 2%
IMAGE —>( 1 Feature ) — 5Features | —— 20 Features)| ——> [ ACE
SUB-WINDOW

ip lF iF

NON-FACE NON-FACE NON-FACE




The implemented system

* Training Data
« 5000 faces

— All frontal, rescaled to
24x24 pixels

« 300 million non-faces
— 9500 non-face images

« Faces are normalized
— Scale, translation

* Many variations

» Across individuals

* [llumination

 Pose

(Most slides from Paul Viola)




System performance

« Training time: "weeks” on 466 MHz Sun workstation
« 38 layers, total of 6061 features

« Average of 10 features evaluated per window on test
set

“On a 700 Mhz Pentium Ill processor, the face
detector can process a 384 by 288 pixel image in

about .067 seconds”
e 15Hz

* 15 times faster than previous detector of comparable
accuracy (Rowley et al., 1998)




Output of Face Detector on Test
Images

TD, o pain makes you beautiful
L
L




Other detection tasks

=

'P;;'J:- . =0 . ¥ a.- = M +3042
e DR z 8 e T = F -1.385
female AY ' d  ay -




Profile Detection
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Profile Features




Summary: Viola/Jones detector

Rectangle features
Integral images for fast computation
Boosting for feature selection

Attentional cascade for fast rejection of negative
windows




Linear classifiers

* Find linear function (hyperplane) to separate positive and
negative examples

X; positive:  X.-w+b>0
X; negative: X,-w+b<0

Which hyperplane
is best?




Support vector machines

* Find hyperplane that maximizes the margin between
the positive and negative examples

X positive (y, =1): X;-W+b>1
X. negative(y. =-1): X.-w+b<-1

For support, vectors, RORUER ]

Distance between point
and hyperplane:

Therefore, the marginis 2/|w|

Support vectors Margin

C. Burges,
Mining and Knowledge Discovery, 1998




Linear classifiers

The perceptron
(Rosenblatt'57)

What the perceptron can
learn, it will learn using a
simple weight update
rule.

output unit

bias unit W,

input units
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Slide by Duda, Hart, Stork
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Figure 22.14. On the left, a series of squashing functions obtained using ¢(x;v) =

T for different values of v indicated on the figure. On the right, a series of squashing
functions obtained using ¢{x; 1, A) = A tanh (z/v) for different values of v indicated on the
figure. Generally, for = close to the center of the range, the squashing function is linear;

for x small or large, it is strongly non-linear.

Slides by D.A. Forsyth
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Any function can be learned by a 3-layer
network with enough hidden units

Slide by Duda, Hart, Stork



two laver

three laver

Slide by Duda, Hart, Stork
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Gradient-based supervised learning

* Parametric prediction function: f (x, w) —y

* Learning: Minimize

E=>L(y.f(x,w))

* Recognition: y = f(x, w)

How can we minimize E? ..Gradient descent..




Gradient-based supervised learning IT

* Gradient descent:
» compute VE=(0E/ow,, ... , OE/ow,)
¢ Wk+1 % Wk ’GVE

« Stochastic gradient descent:
* compute VE,
* W .4 < W, - eVE,
where E; is the energy associated
with some random fraining sample i

* The stochastic version works much better
In practice.




Gradient-based supervised learning ITI

» Consider a feed-forward system composed
of successive modules:
X; = fi (Wi, Xi.1)

E=L(y,x),withx=x,=f, (W, X;.1)

oE/ow,, = 6E/ox of /ow,

0E/ox., = OE/ox of /X, ,

 Backward recursion: backpropagation
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Pre processing Netection Metwork Architeciure

The vertical face-finding part of Rowley, Baluja and Kanade's system
Figure from "Rotation invariant neural-network based face detection,”

H.A. Rowley, S. Baluja and T. Kanade, Proc. Computer Vision and Pattern
Recognition, 1998, copyright 1998, TEEE



Architecture of the complete system: they use another neural
net to estimate orientation of the face, then rectify it. They
search over scales to find bigger/smaller faces.

Figure from "Rotation invariant neural-network based face detection,” H.A.
Rowley, S. Baluja and T. Kanade, Proc. Computer Vision and Pattern Recognition,
1998, copyright 1998, TEEE

Slide by D.A. Forsyth




Figure from "Rotation
invariant neural-network
based face detection,”
H.A. Rowley, S. Baluja and
T. Kanade, Proc. Computer
Vision and Pattern
Recognition, 1998,

copyright 1998, IEEE




Convolutional neural networks

Template matching using NN classifiers seems to
work

Natural features are filter outputs
- probably, spots and bars, as in texture
» but why not learn the filter kernels, too0?




1 foat C3: f. maps 16@10x10
1 feature maps S4: f. maps 16@5x5
INPUT 6@28x28 § ~

I3 7§ mans = ~E- lqyar -
D2LKIL 521 maps ~ [_..‘5_ layer F6: layer OUTPUT
120 10

|
| Full cc}mlection ‘ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

A convolutional neural network, LeNet; the layers filter, subsample, filter,
subsample, and finally classify based on outputs of this process.

Figure from "Gradient-Based Learning Applied to Document
Recognition”, Y. Lecun et al Proc. TEEE, 1998 copyright 1998,
TEEE
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Figure from "Gradient-Based Learning Applied to Document
Recognition”, Y. Lecun et al Proc. TEEE, 1998 copyright 1998,
TEEE
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Benchmarking SGD in Simple Problems

¢ | he theory suggests that SGD is very competitive.
— Many people associate SGD with trouble.

e SGD historically associated with back-propaagation.

— Multilayer networks are very hard problems (nonlinear, nonconvex)
— What is difficult, SGD or MLP?

- e Try PLAIN SGD on simple learning problems.
P f : — Support Vector Machines

— Conditional Random Fields

Download from http://leon.bottou.org/projects/sgd.
These simple programs are very short.

See also (Shalev-Schwartz et al., 2007; Vishwanathan et al., 2006)

Slide by L. Bottou



Text Categorization with SVMs

e Dataset

— Reuters RCWV1 document corpus.
— 781,265 training examples, 23,149 testing examples.
— 47,152 TF-IDF features,

e Task

— Recognizing documents of cateqgory CCAT.

A9 , ,
Eh{'_ + flwx; + b,y ) |

(wxe + b, yt)
— Update w «—w — o Viwt, xp.yt) = w — my (AH'—I— - E; ’H')
otk

1
— Minimize E,, = —
~>

a
L

Same setup as (Shalev-Schwartz et al., 2007) but plain 5GD.

Slide by L. Bottou



Text Categorization with SVMs

e Results: Linear SVM
(g, y) =max{0,1 —yy} A =0.0001

Training Time Primal cost Test Error

SVMLight 23,642 secs 0.2275 6.02%
SVMPerf 66 secs 0.2278 6.03%
SGD 1.4 secs 0.2275 6.02%

e Results: Log-Loss Classifier
Ly, y) =log(l + exp(—yy)) A = 0.00001

Tramning Time Primal cost Test Error

LibLinear (= =10.01) 30 secs 0.18907 5.68%
LibLinear (¢ =0.001) 44 secs 0.18890 5.70%
SGD 2.3 secs 0.18893 5.66%

Slide by L. Bottou




