Reconnaissance d'objets et vision artificielle http://www.di.ens.fr/willow/teaching/recvis09 Lecture 6

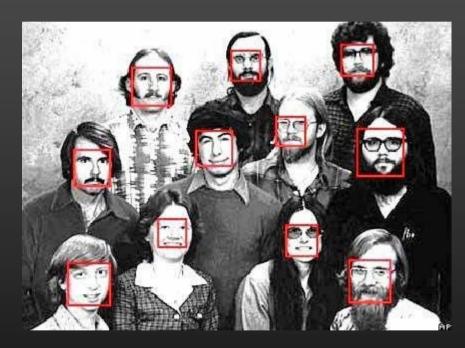
- Face recognition
 Face detection
- Neural nets

Attention!

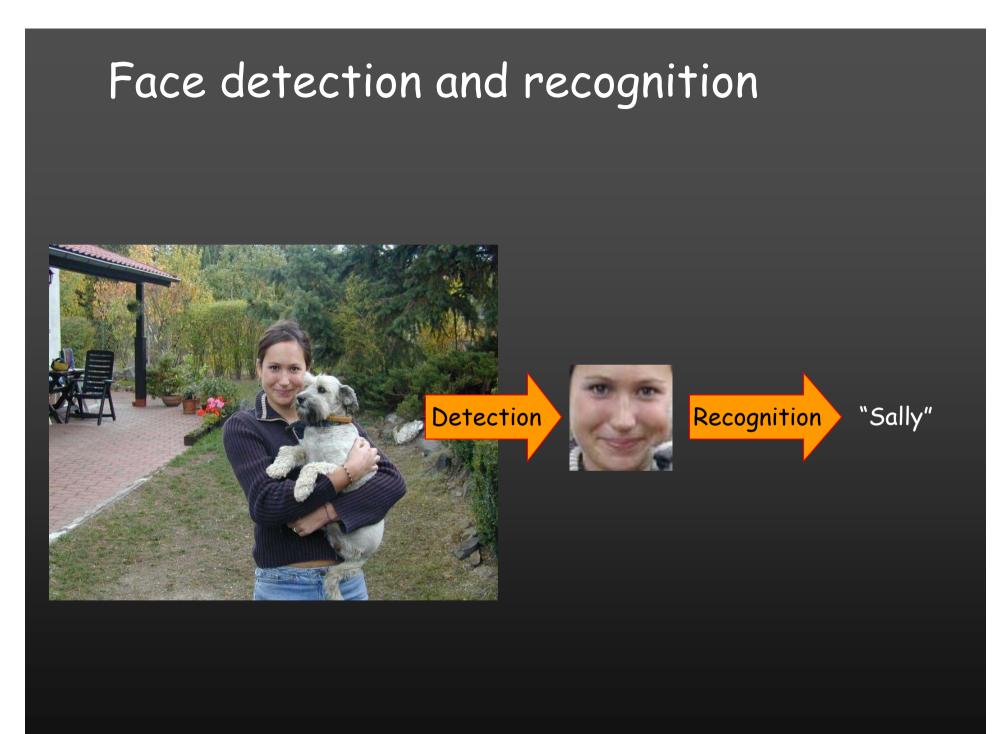
Troisième exercice de programmation du le 24 novembre

http://www.di.ens.fr/willow/teaching/recvis09/assignment3/

Face detection and recognition



Many slides adapted from S. Lazebnik, K. Grauman and D. Lowe



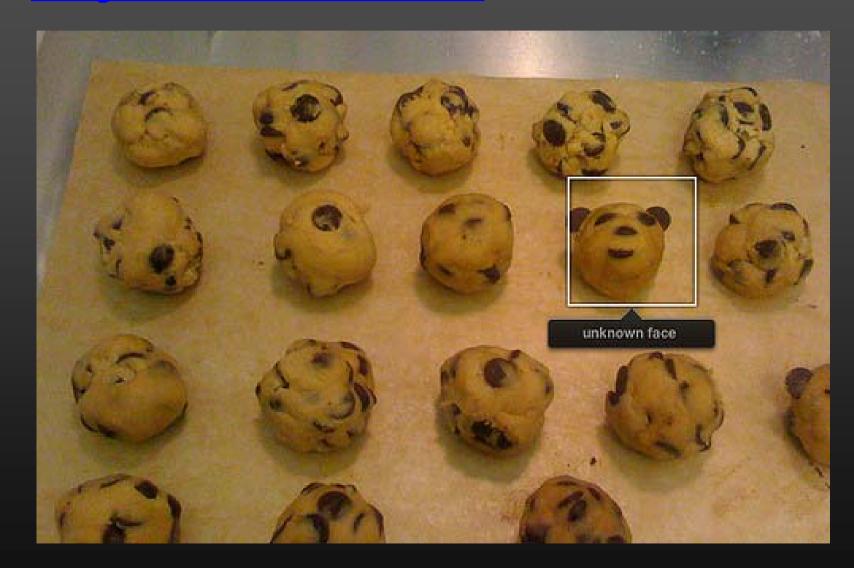
Consumer application: iPhoto 2009

<u>http://www.apple.com/ilife/iphoto/</u>

Consumer application: iPhoto 2009 Can be trained to recognize pets!

<u>http://www.maclife.com/article/news/iphotos_faces_recognizes_cats</u>

Consumer application: iPhoto 2009 Things iPhoto thinks are faces



History

- Early face recognition systems: based on features and distances
 Bledsoe (1966), Kanade (1973)
- Appearance-based models: eigenfaces
 Sirovich & Kirby (1987), Turk & Pentland (1991)
- Real-time face detection with boosting Viola & Jones (2001)

Outline

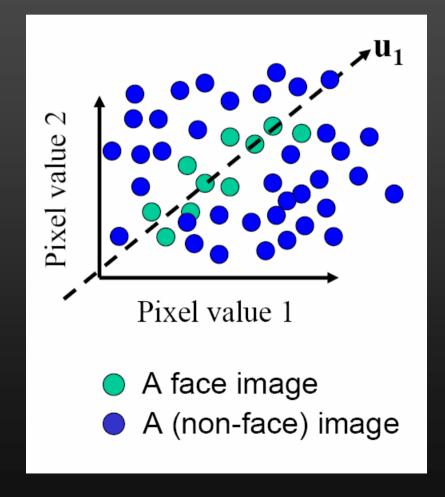
- Face recognition
 - Eigenfaces
- Face detection
 - The Viola & Jones system

The space of all face images

- When viewed as vectors of pixel values, face images are extremely high-dimensional
 - 100x100 image = 10,000 dimensions
- However, relatively few 10,000-dimensional vectors correspond to valid face images
- We want to effectively model the subspace of face images

The space of all face images

 We want to construct a low-dimensional linear subspace that best explains the variation in the set of face images



Principal Component Analysis

- Given: N data points $\mathbf{x}_1, \dots, \mathbf{x}_N$ in \mathbb{R}^d
- We want to find a new set of features that are linear combinations of original ones:

$$u(\mathbf{x}_i) = \mathbf{u}^T(\mathbf{x}_i - \boldsymbol{\mu})$$

(µ: mean of data points)

• What unit vector **u** in R^d captures the most variance of the data?

Principal Component Analysis

• Direction that maximizes the variance of the projected data:

$$\begin{aligned} var(u) &= \frac{1}{N} \sum_{i=1}^{\infty} \mathbf{u}^{\mathrm{T}} (\mathbf{x}_{i} - \mu) (\mathbf{u}^{\mathrm{T}} (\mathbf{x}_{i} - \mu))^{\mathrm{T}} \\ & \xrightarrow{\text{Projection of data point}} \\ &= \mathbf{u}^{\mathrm{T}} \Big[\sum_{i=1}^{\infty} (\mathbf{x}_{i} - \mu) (\mathbf{x}_{i} - \mu)^{\mathrm{T}} \Big] \mathbf{u} \\ & \xrightarrow{\text{Covariance matrix of data}} \\ &= \mathbf{u}^{\mathrm{T}} \Sigma \mathbf{u} \end{aligned}$$

The direction that maximizes the variance is the eigenvector associated with the largest eigenvalue of $\boldsymbol{\Sigma}$

Eigenfaces: Key idea

- Assume that most face images lie on a low-dimensional subspace determined by the first k (k<d) directions of maximum variance
- Use PCA to determine the vectors u₁,...u_k that span that subspace:

 $\mathbf{x} \approx \mathbf{\mu} + \overline{\mathbf{w}_1 \mathbf{u}_1 + \mathbf{w}_2 \mathbf{u}_2 + \dots + \mathbf{w}_k \mathbf{u}_k}$

- Represent each face using its "face space" coordinates (w₁,...w_k)
- Perform nearest-neighbor recognition in "face space"

Training images $\mathbf{x}_1, \dots, \mathbf{x}_N$

Top eigenvectors: $u_1, ... u_k$

Mean: µ

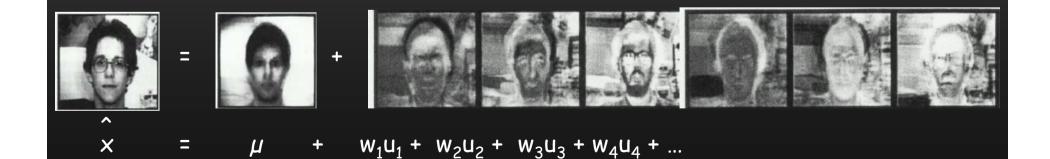
• Face **x** in "face space" coordinates:

$$\mathbf{x} \to [\mathbf{u}_1^{\mathrm{T}}(\mathbf{x} - \mu), \dots, \mathbf{u}_k^{\mathrm{T}}(\mathbf{x} - \mu)]$$
$$= w_1, \dots, w_k$$

• Face **x** in "face space" coordinates:

$$\mathbf{x} \to [\mathbf{u}_1^{\mathrm{T}}(\mathbf{x} - \mu), \dots, \mathbf{u}_k^{\mathrm{T}}(\mathbf{x} - \mu)]$$
$$= w_1, \dots, w_k$$

• Reconstruction:



Summary: Recognition with eigenfaces

Process labeled training images:

- Find mean μ and covariance matrix Σ
- Find k principal components (eigenvectors of $\boldsymbol{\Sigma}$) $\boldsymbol{u}_1, \dots \boldsymbol{u}_k$
- Project each training image x_i onto subspace spanned by principal components:

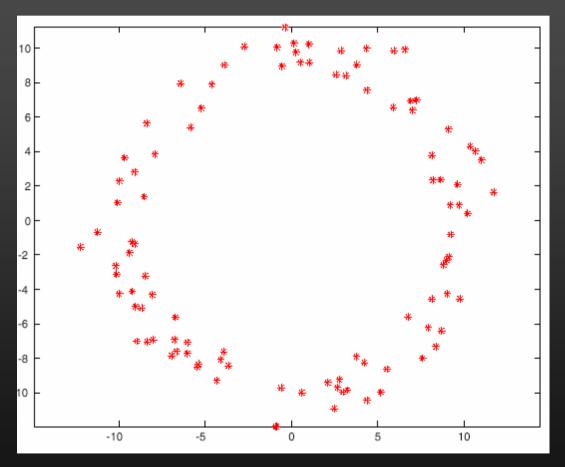
 $(\mathbf{w}_{i1},\ldots,\mathbf{w}_{ik}) = (\mathbf{u}_1^{\mathsf{T}}(\mathbf{x}_i - \boldsymbol{\mu}), \ldots, \mathbf{u}_k^{\mathsf{T}}(\mathbf{x}_i - \boldsymbol{\mu}))$

Given novel image **x**:

- Project onto subspace: $(w_1,...,w_k) = (\mathbf{u}_1^T(\mathbf{x} - \mathbf{\mu}), ..., \mathbf{u}_k^T(\mathbf{x} - \mathbf{\mu}))$
- Optional: check reconstruction error x x to determine whether image is really a face
- Classify as closest training face in k-dimensional subspace

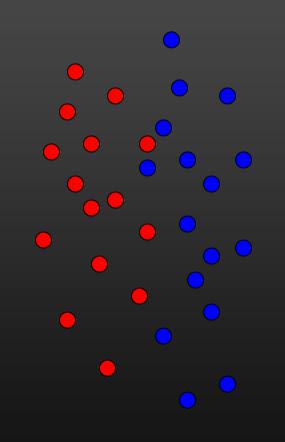
• Global appearance method: not robust to misalignment, background variation

• PCA assumes that the data has a Gaussian distribution (mean μ , covariance matrix Σ)

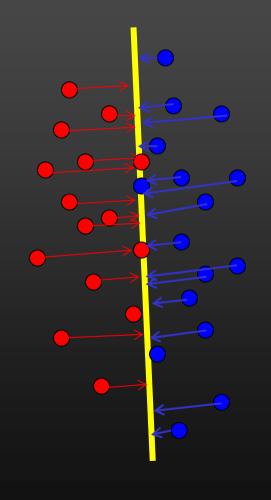


The shape of this dataset is not well described by its principal components

• The direction of maximum variance is not always good for classification



• The direction of maximum variance is not always good for classification



Alternative (Belhumeur et al., 1997)

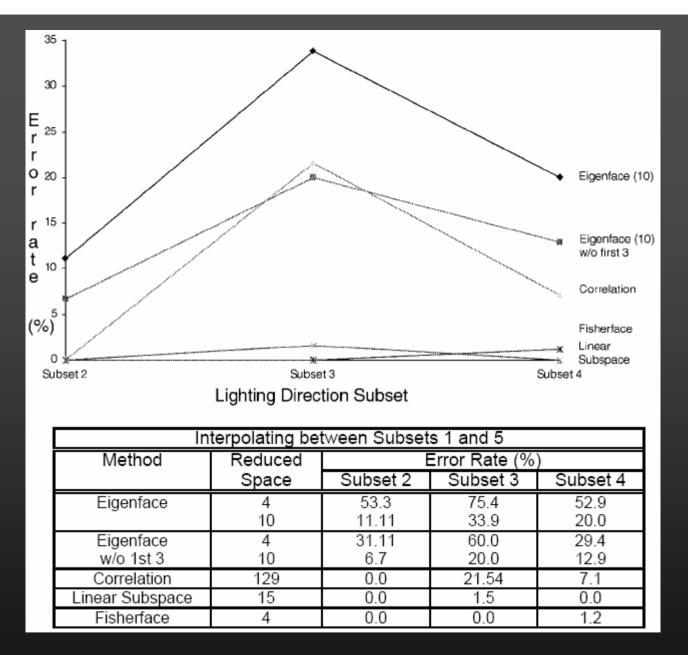
 Fisherfaces (aka linear discriminant analysis): Use the direction that maximizes the ratio of between-class scatter and within-class scatter

Alternative (Belhumeur et al., 1997)

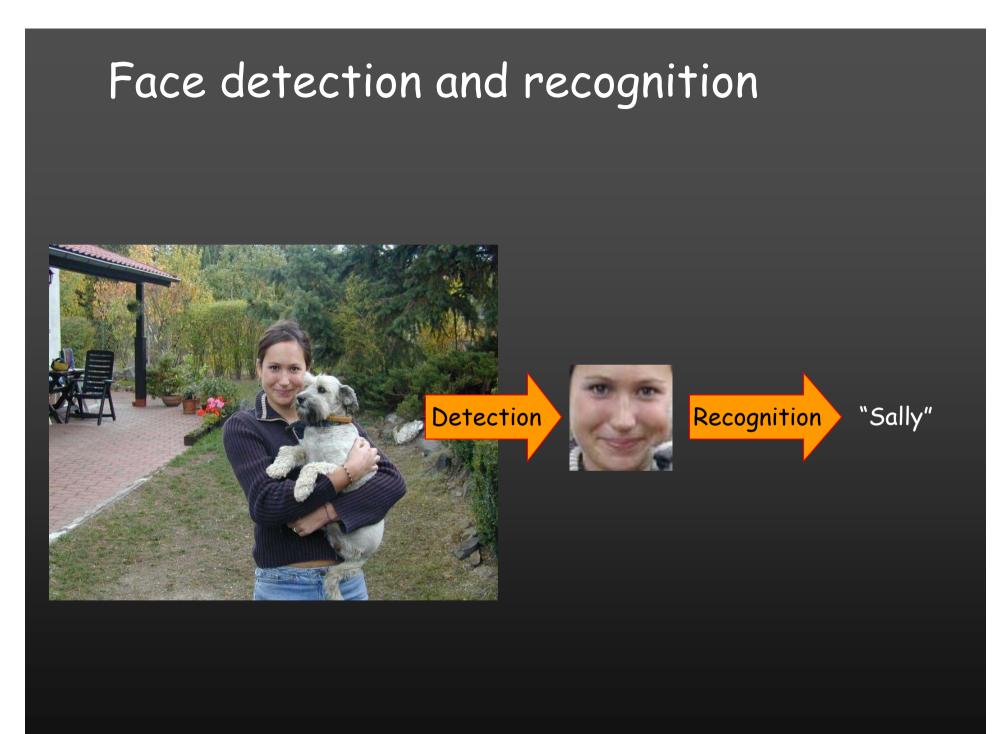
 Fisherfaces (aka linear discriminant analysis): Use the direction that maximizes the ratio of between-class scatter and within-class scatter

Between-class scatter	$S_B = \sum_{i=1}^{c} N_i (\boldsymbol{\mu}_i - \boldsymbol{\mu}) (\boldsymbol{\mu}_i - \boldsymbol{\mu})^T$
Within-class scatter	$S_W = \sum_{i=1}^{c} \sum_{\mathbf{x}_k \in X_i} (\mathbf{x}_k - \boldsymbol{\mu}_i) (\mathbf{x}_k - \boldsymbol{\mu}_i)^T$
Optimal direction	$W_{opt} = \arg \max_{W} \frac{\left W^{T} S_{B} W \right }{\left W^{T} S_{W} W \right }$

Generalized eigenvalue problem



Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection (Belhumeur, Hespanha, Kriegman, PAMI 19(7), 1997)



Face detection

• Basic idea: slide a window across image and evaluate a face model at every location

Challenges of face detection

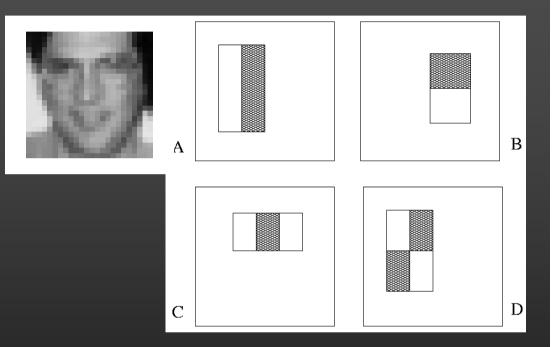
- Sliding window detector must evaluate tens of thousands of location/scale combinations
 - This evaluation must be made as efficient as possible
- Faces are rare: 0–10 per image
 - At least 1000 times as many non-face windows as face windows
 - This means that the false positive rate must be extremely low
 - Also, we should try to spend as little time as possible on the nonface windows

The Viola/Jones Face Detector

- A "paradigmatic" method for real-time object detection
- Training is slow, but detection is very fast
- Key ideas
 - Integral images for fast feature evaluation
 - Boosting for feature selection
 - Attentional cascade for fast rejection of non-face windows

P. Viola and M. Jones. *Rapid object detection using a boosted cascade of simple features*. CVPR 2001.

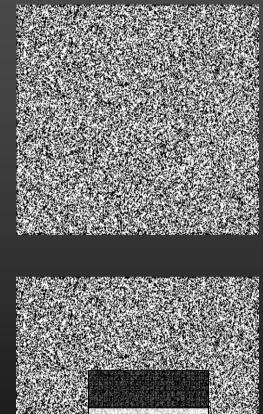
"Rectangle filters"



Value =

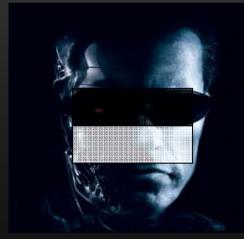
 Σ (pixels in white area) - Σ (pixels in black area)

Example



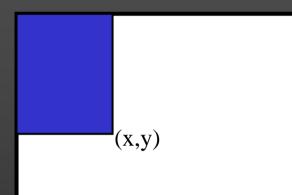
Source

Result

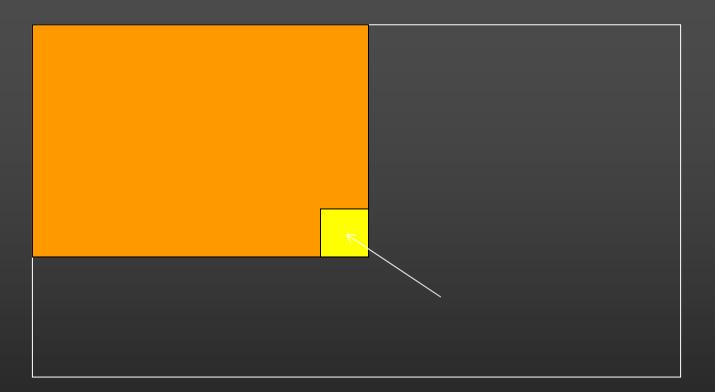


Fast computation with integral images

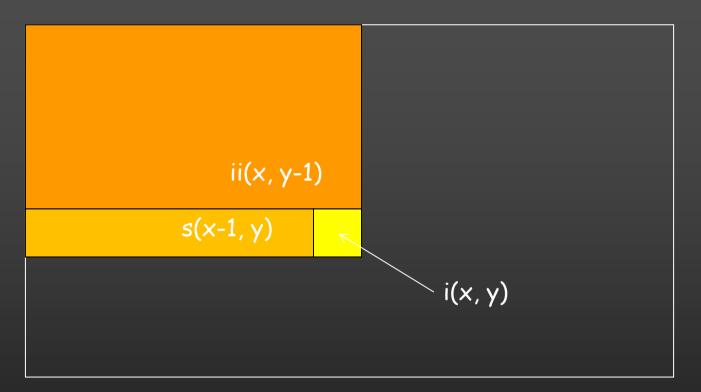
- The *integral image* computes a value at each pixel (*x*, *y*) that is the sum of the pixel values above and to the left of (*x*, *y*), inclusive
- This can quickly be computed in one pass through the image



Computing the integral image



Computing the integral image



Cumulative row sum: s(x, y) = s(x-1, y) + i(x, y)Integral image: ii(x, y) = ii(x, y-1) + s(x, y)

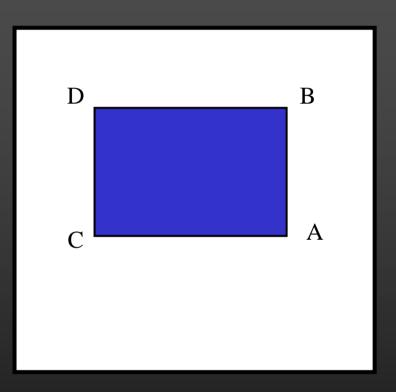
MATLAB: ii = cumsum(cumsum(double(i)), 2);

Computing sum within a rectangle

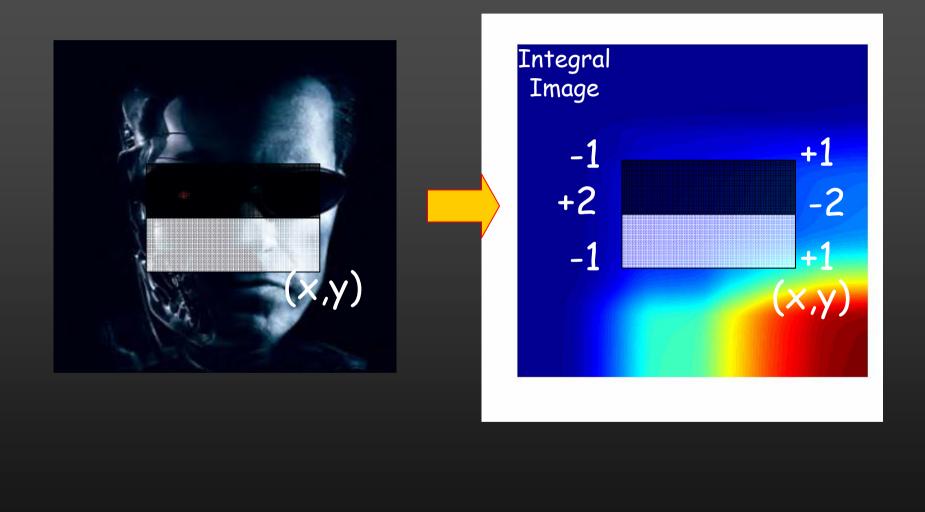
- Let A,B,C,D be the values of the integral image at the corners of a rectangle
- Then the sum of original image values within the rectangle can be computed as:

sum = A - B - C + D

- Only 3 additions are required for any size of rectangle!
 - This is now used in many areas
 of computer vision

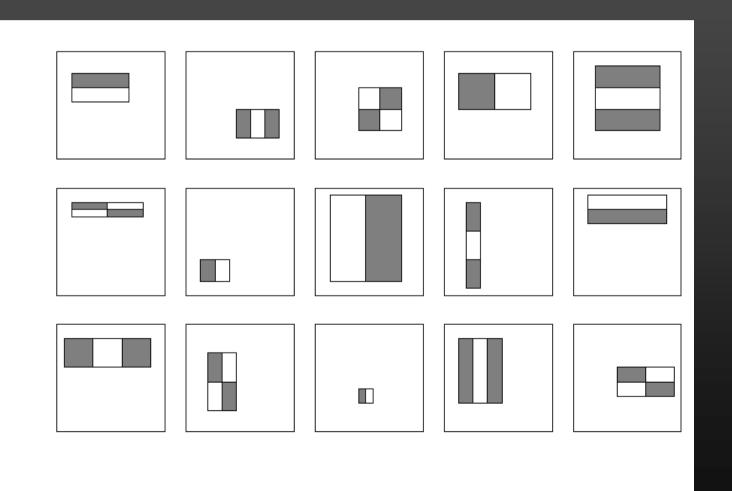


Example



Feature selection

 For a 24x24 detection region, the number of possible rectangle features is ~180,000!



Feature selection

- For a 24x24 detection region, the number of possible rectangle features is ~180,000!
- At test time, it is impractical to evaluate the entire feature set
- Can we create a good classifier using just a small subset of all possible features?
- How to select such a subset?

Boosting

- Boosting is a classification scheme that works by combining *weak learners* into a more accurate ensemble classifier
- *Weak learner*. classifier with accuracy that need be only better than chance
- We can define weak learners based on rectangle features:

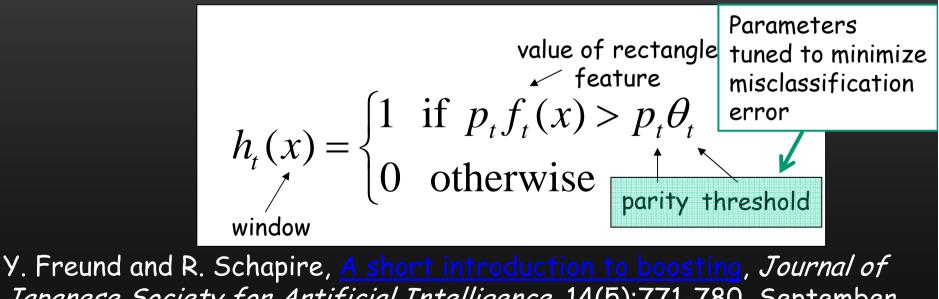
value of rectangle

$$\checkmark$$
 feature
 $h_t(x) = \begin{cases} 1 & \text{if } p_t f_t(x) > p_t \theta_t \\ 0 & \text{otherwise} \end{cases}$
parity threshold
window

Y. Freund and R. Schapire, <u>A short introduction to boosting</u>, *Journal of Japanese Society for Artificial Intelligence*, 14(5):771-780, September, 1999

Boosting

- Boosting is a classification scheme that works by combining *weak classifiers* into a more accurate ensemble classifier
- *Weak classifier*. classifier with accuracy that need be only better than chance
- We can define weak classifiers based on rectangle features:

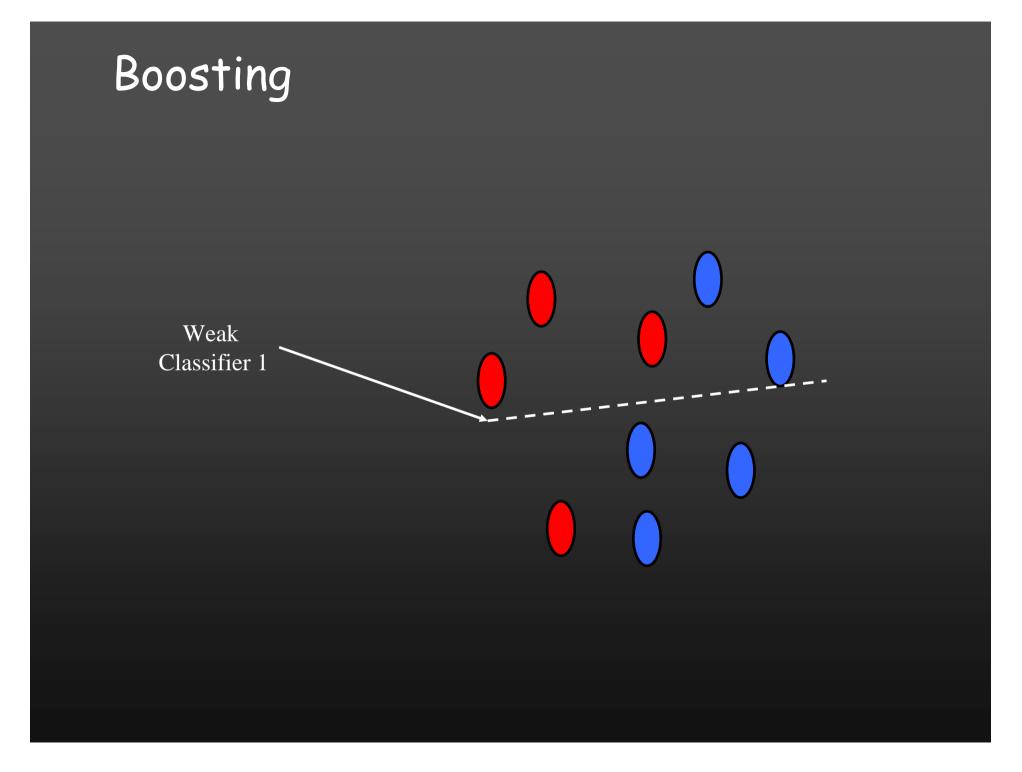


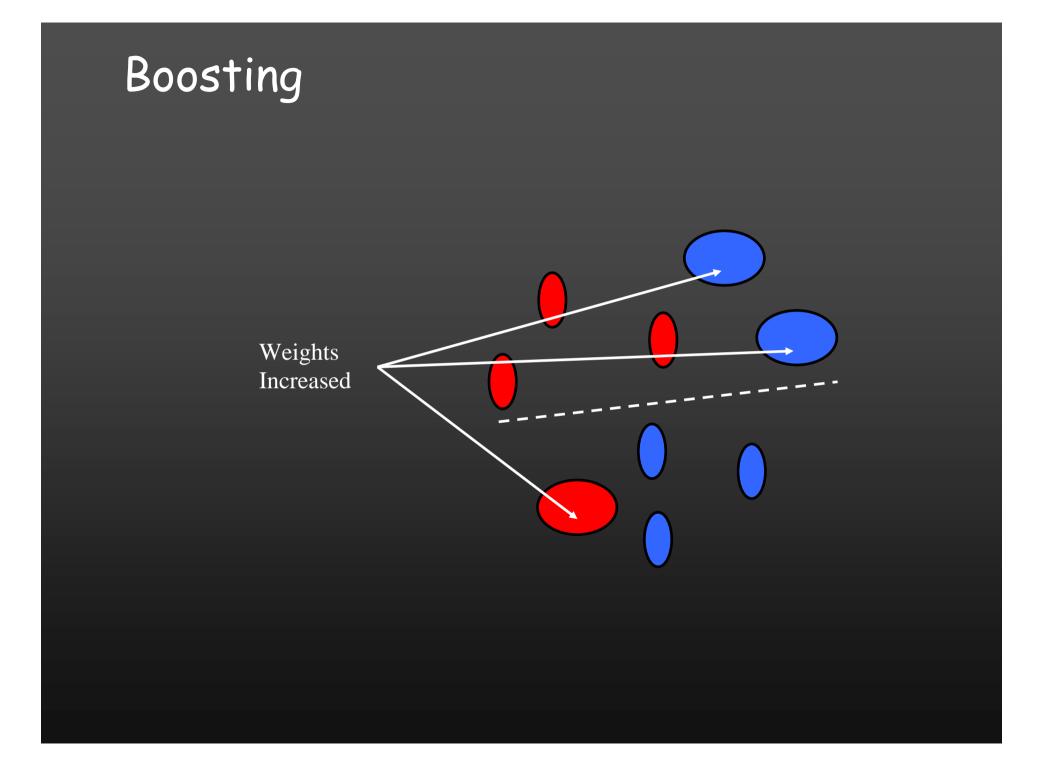
9. Freund and R. Schapire, <u>A short introduction to boosting</u>, *Journal of Japanese Society for Artificial Intelligence*, 14(5):771-780, September, 1999

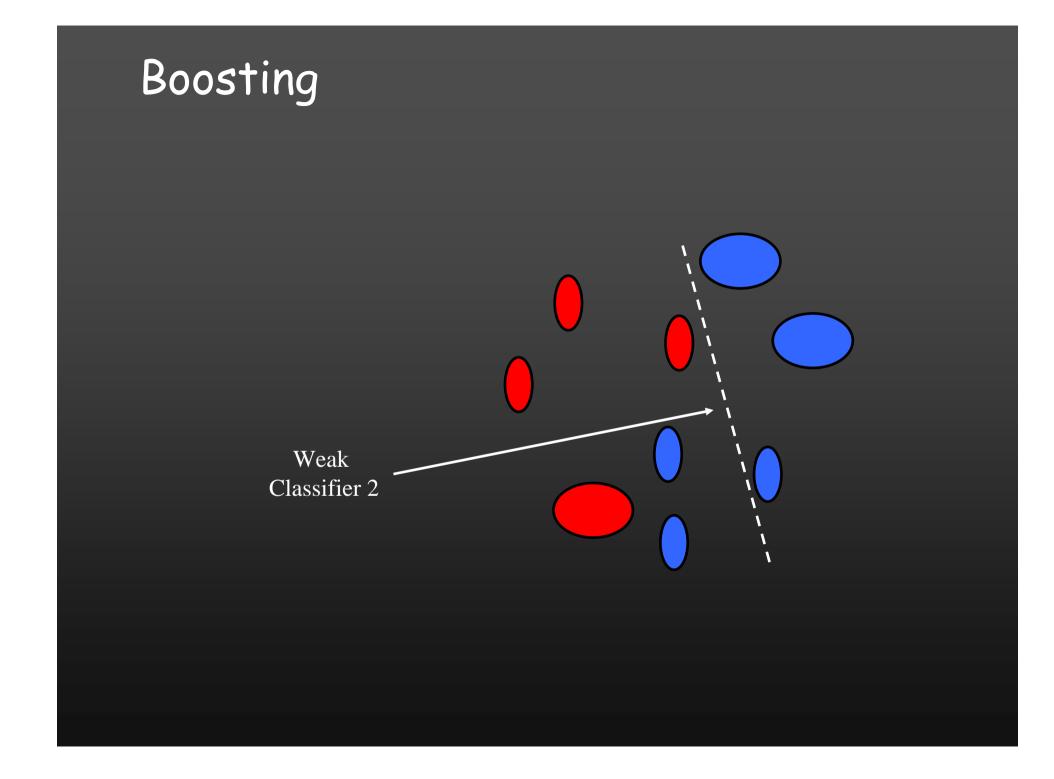
Boosting outline

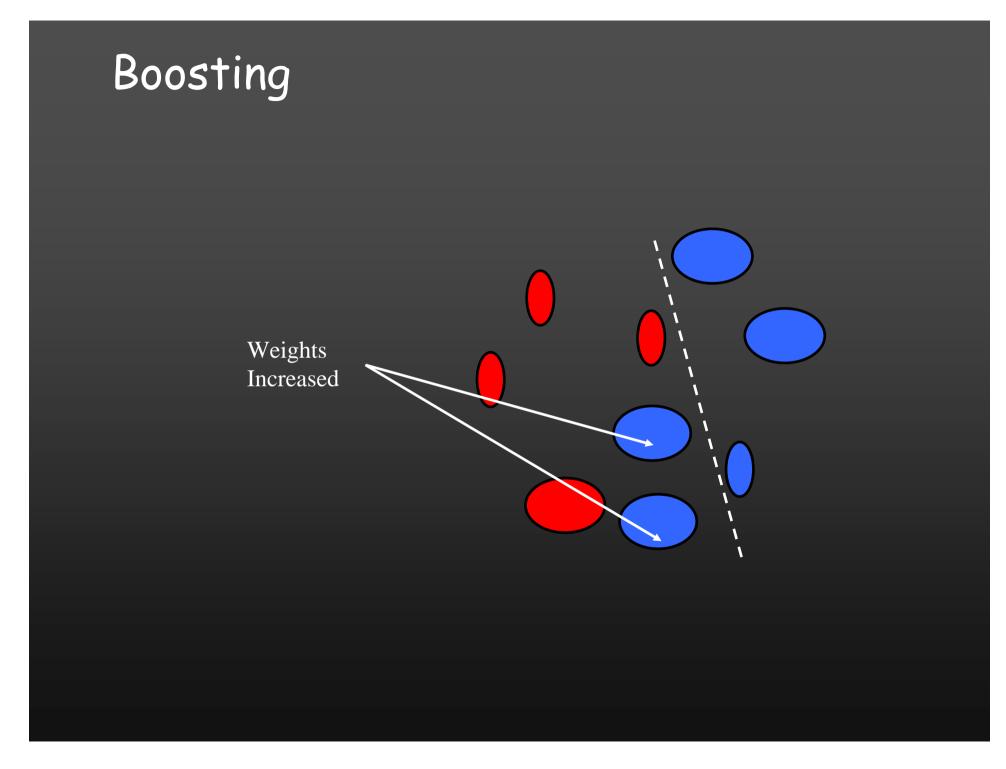
- Initially, give equal weight to each training example
- Iterative training procedure
 - Find best weak classifier for current weighted training set
 - Raise the weights of training examples misclassified by current weak learner
- Compute final classifier as linear combination of all weak classifiers (weight of each learner is related to its accuracy)

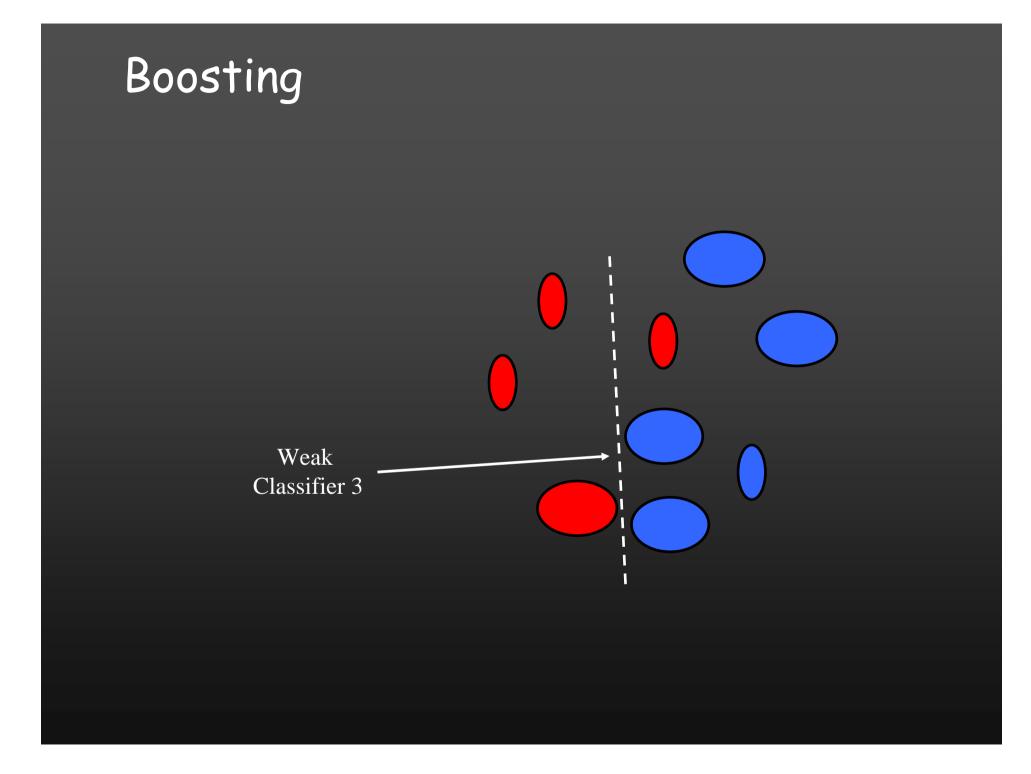
Y. Freund and R. Schapire, <u>A short introduction to boosting</u>, *Journal of Japanese Society for Artificial Intelligence*, 14(5):771-780, September, 1999











Boosting

Final classifier is linear combination of weak classifiers

 ١

AdaBoost algorithm: more details

Start with equal weights on each data point (i)

For t = 1 ...,T

• Select weak classifier with minimum error

$$arepsilon_t = \sum_i \omega_i [h_t(x_i)
eq y_i]$$
 where ω_i are weights

• Set

$$\alpha_t = \frac{1}{2} \ln \frac{1 - \epsilon_t}{\epsilon_t}$$

 Reweight examples (boosting) to give misclassified examples more weight

$$\omega_{t+1,i} = \omega_{t,i} e^{-\alpha_t y_i h_t(x_i)}$$

Add weak classifier with weight

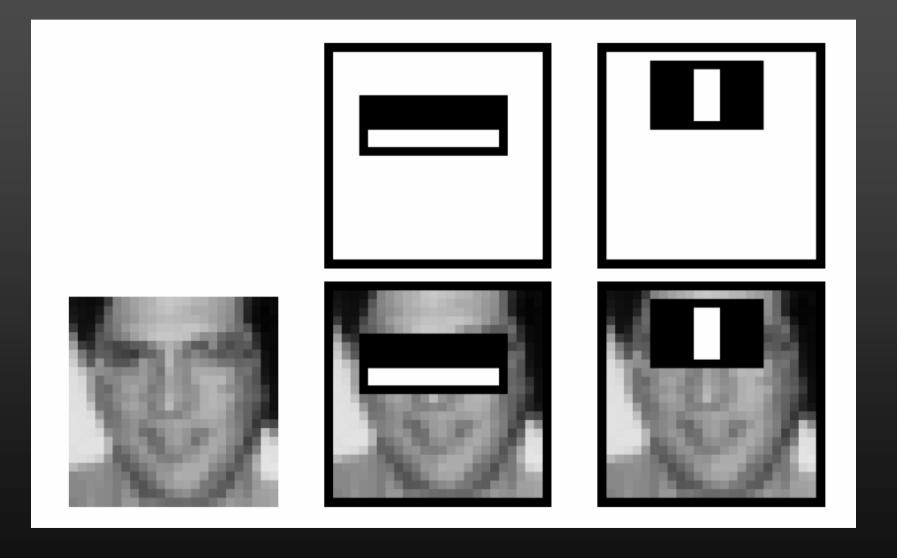
Final classifie

$$H(x) = \operatorname{sign} \sum_{t=1}^{T} \alpha_t h_t(x)$$

Boosting for face detection

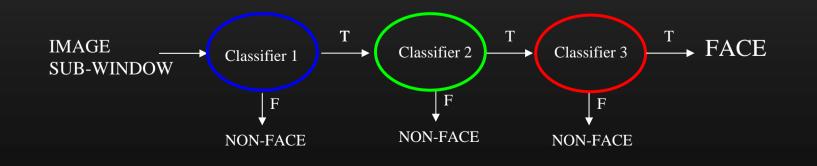
- For each round of boosting:
 - Evaluate each rectangle filter on each example
 - Select best threshold for each filter
 - Select best filter/threshold combination
 - Reweight examples
- Computational complexity of learning: O(MNT)
 - *M* filters, *N* examples, *T* thresholds

First two features selected by boosting



Cascading classifiers

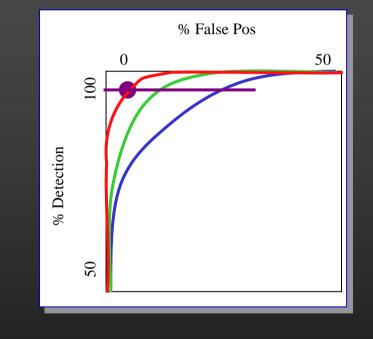
- We start with simple classifiers which reject many of the negative sub-windows while detecting almost all positive sub-windows
- Positive results from the first classifier triggers the evaluation of a second (more complex) classifier, and so on
- A negative outcome at any point leads to the immediate rejection of the sub-window

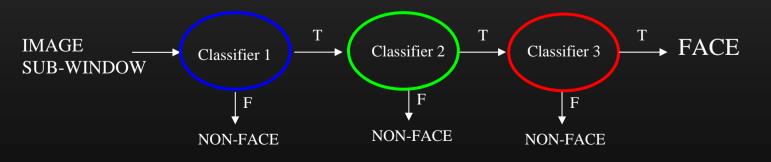


Cascading classifiers

 Chain classifiers that are progressively more complex and have lower false positive rates:

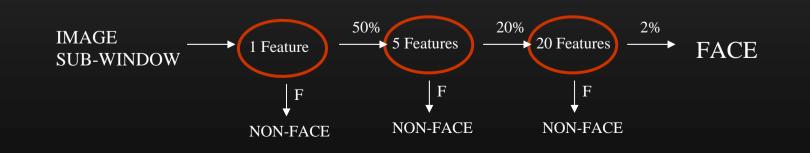
Receiver operating characteristic





Training the cascade

- Adjust weak learner threshold to minimize *false* negatives (as opposed to total classification error)
- Each classifier trained on false positives of previous stages
 - A single-feature classifier achieves 100% detection rate and about 50% false positive rate
 - A five-feature classifier achieves 100% detection rate and 40% false positive rate (20% cumulative)
 - A 20-feature classifier achieve 100% detection rate with 10% false positive rate (2% cumulative)



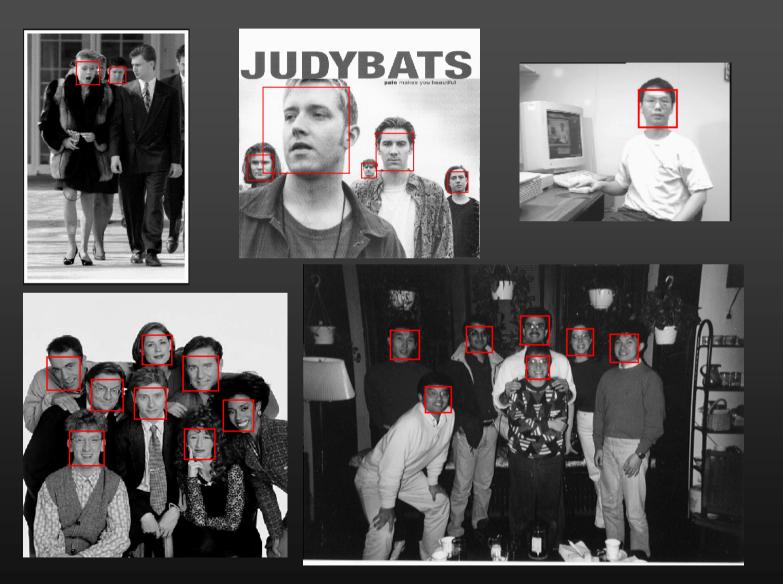
The implemented system

- Training Data
 - 5000 faces
 - All frontal, rescaled to 24x24 pixels
 - 300 million non-faces
 9500 non-face images
 - Faces are normalized
 - Scale, translation
- Many variations
 - Across individuals
 - Illumination
 - Pose

System performance

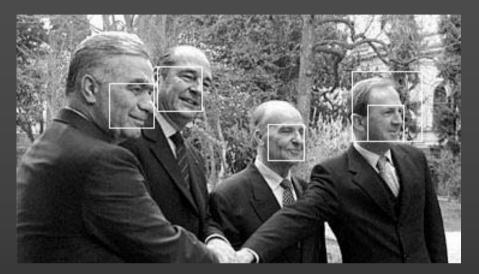
- Training time: "weeks" on 466 MHz Sun workstation
- 38 layers, total of 6061 features
- Average of 10 features evaluated per window on test set
- "On a 700 Mhz Pentium III processor, the face detector can process a 384 by 288 pixel image in about .067 seconds"
 - 15 Hz
 - 15 times faster than previous detector of comparable accuracy (Rowley et al., 1998)

Output of Face Detector on Test Images

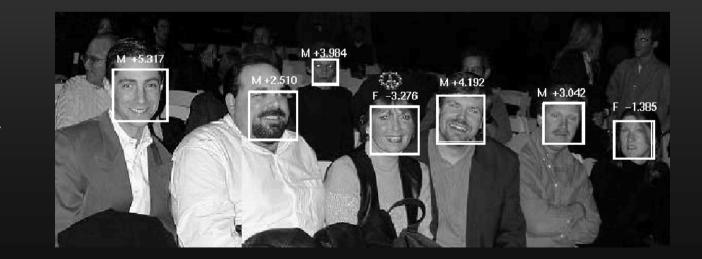


Other detection tasks

Facial Feature Localization



Profile Detection



Male vs. female

Profile Detection

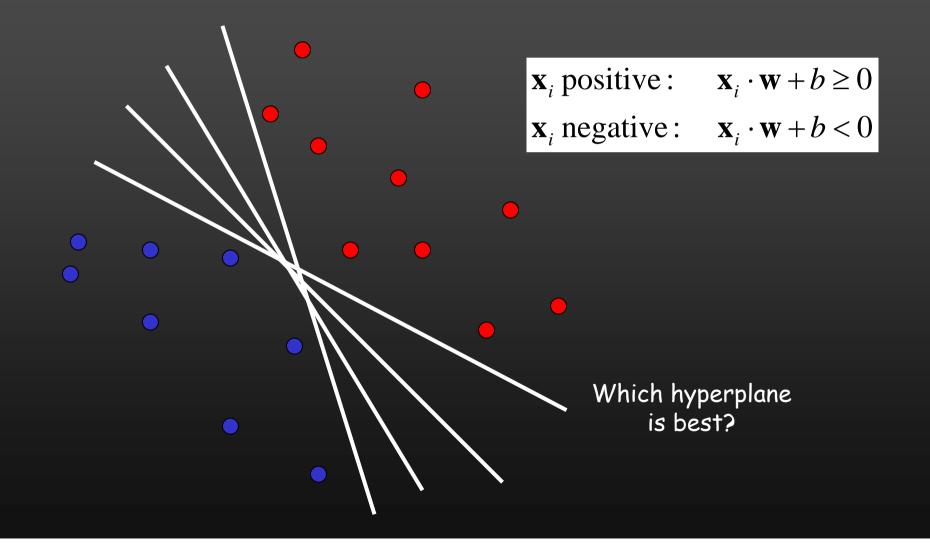
Profile Features

Summary: Viola/Jones detector

- Rectangle features
- Integral images for fast computation
- Boosting for feature selection
- Attentional cascade for fast rejection of negative windows

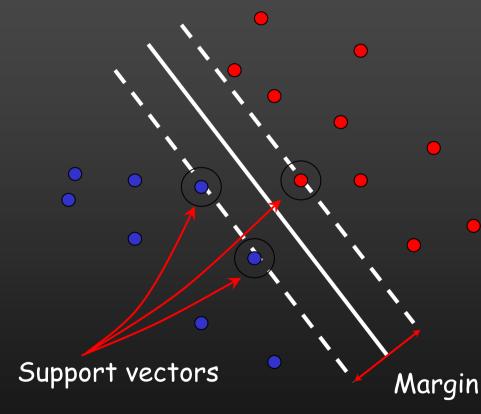
Linear classifiers

• Find linear function (*hyperplane*) to separate positive and negative examples



Support vector machines

• Find hyperplane that maximizes the *margin* between the positive and negative examples



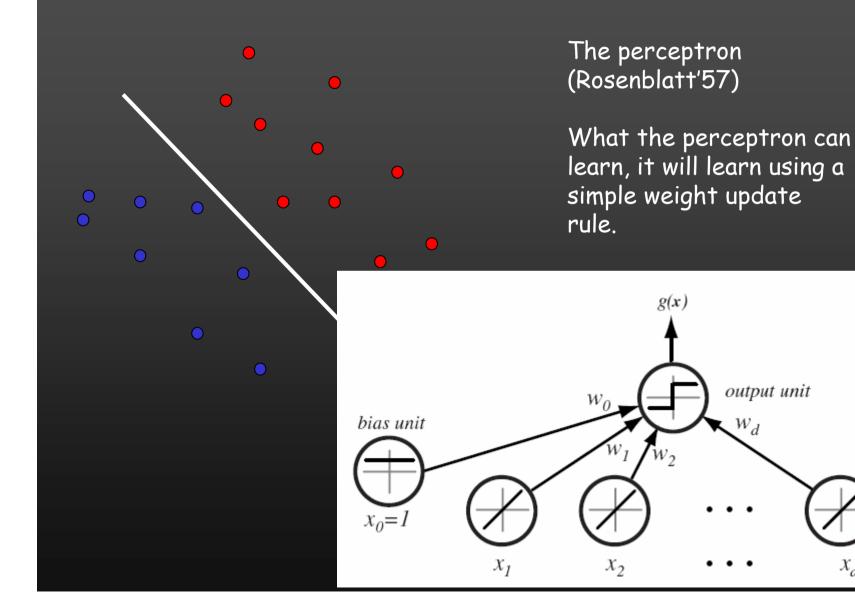
 \mathbf{x}_i positive $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$ \mathbf{x}_i negative $(y_i = -1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \le -1$ For support, vectors, $\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1$ Distance between point
and hyperplane: $||\mathbf{x}_i \cdot \mathbf{w} + b||$
 $|||\mathbf{w}||$ Therefore, the margin is $2/||\mathbf{w}||$

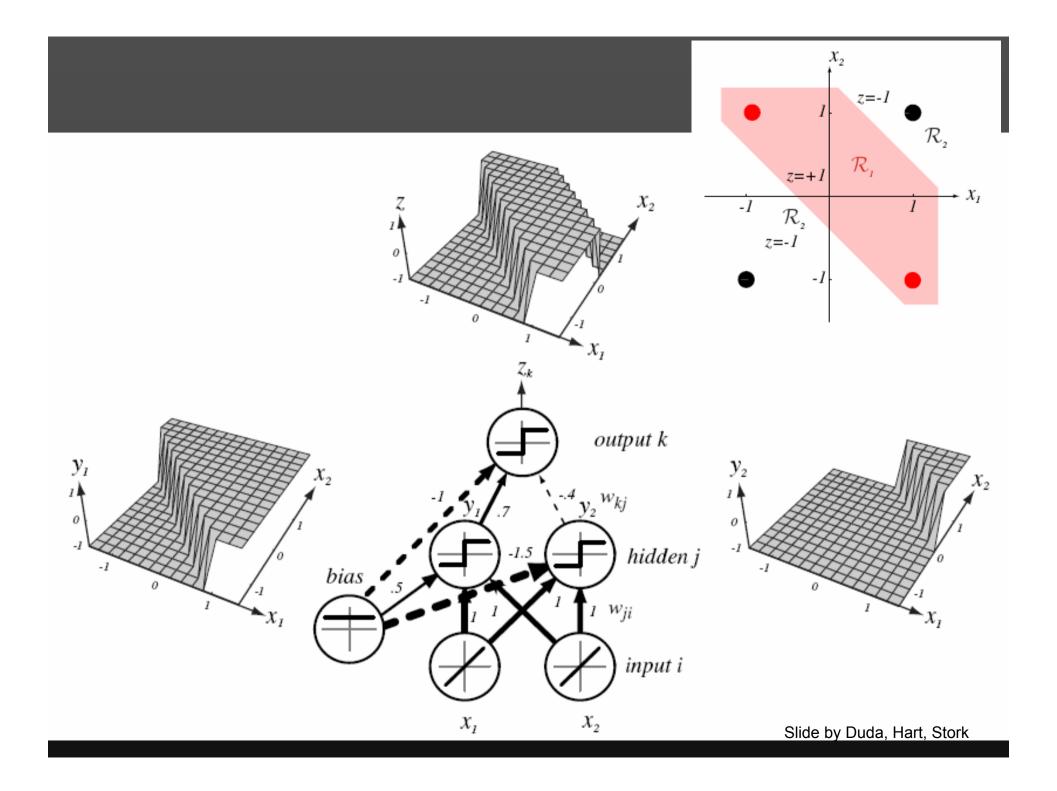
C. Burges, <u>A Tutorial on Support Vector Machines for Pattern Recognition</u>, Data Mining and Knowledge Discovery, 1998

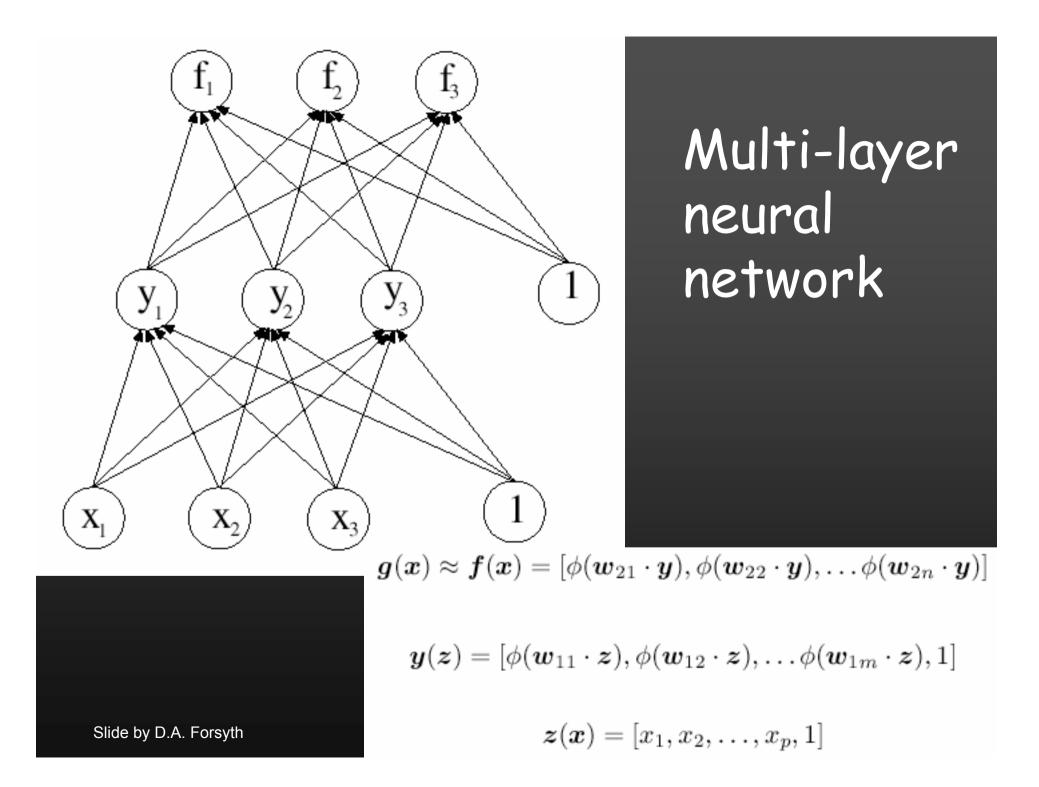
Linear classifiers

input units

 X_d







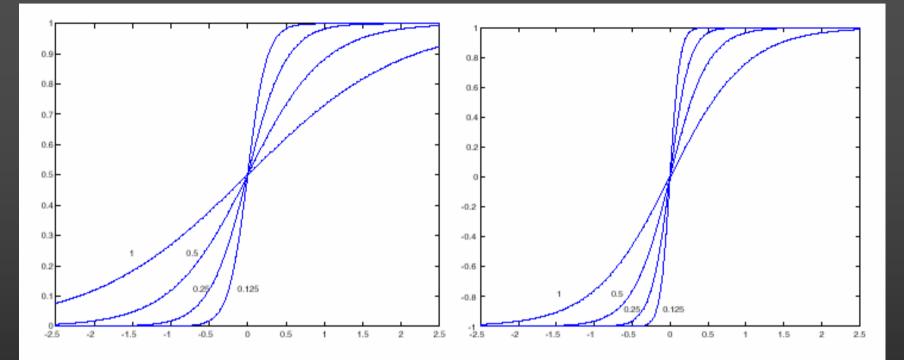
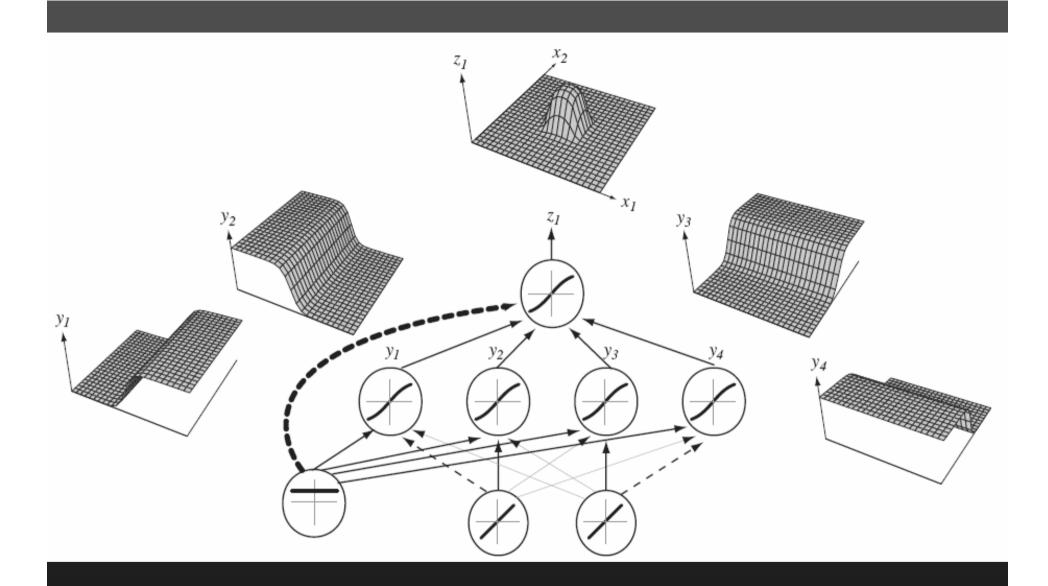
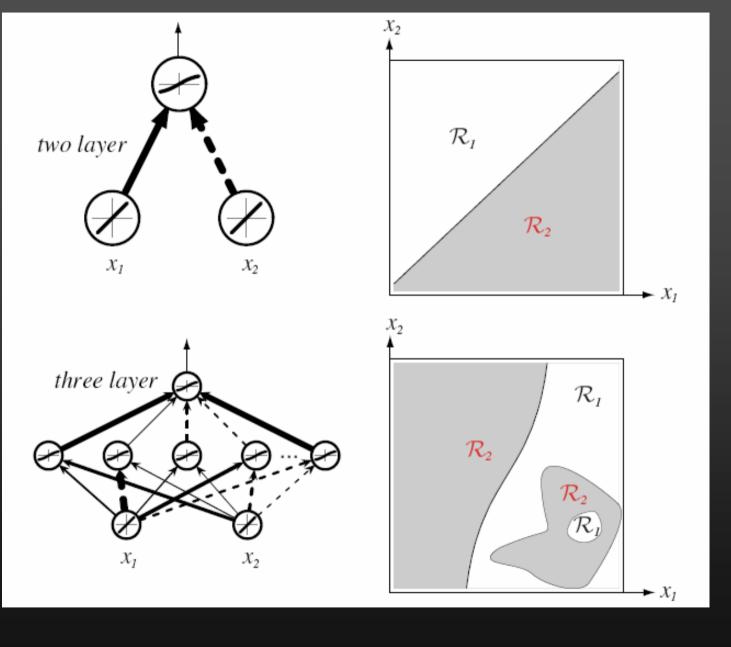


Figure 22.14. On the **left**, a series of squashing functions obtained using $\phi(x;\nu) = \frac{e^{x/\nu}}{1+e^{x/\nu}}$, for different values of ν indicated on the figure. On the **right**, a series of squashing functions obtained using $\phi(x;\nu,A) = A \tanh(x/\nu)$ for different values of ν indicated on the figure. Generally, for x close to the center of the range, the squashing function is linear; for x small or large, it is strongly non-linear.

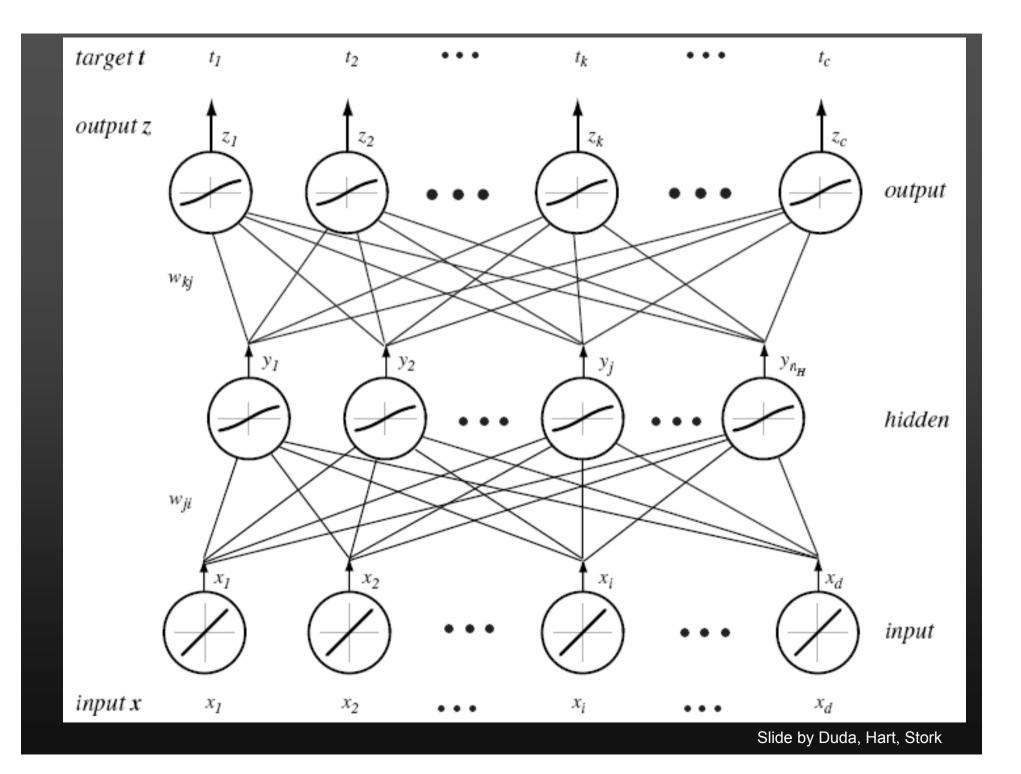


Any function can be learned by a 3-layer network with enough hidden units

Slide by Duda, Hart, Stork



Slide by Duda, Hart, Stork



Gradient-based supervised learning

- Parametric prediction function: $f(x, w) \rightarrow y$
- Learning: Minimize $E = \sum_{i} L(y_{i}, f(x_{i}, w))$

Recognition: y = f(x, w)

How can we minimize E? ..Gradient descent..

Gradient-based supervised learning II

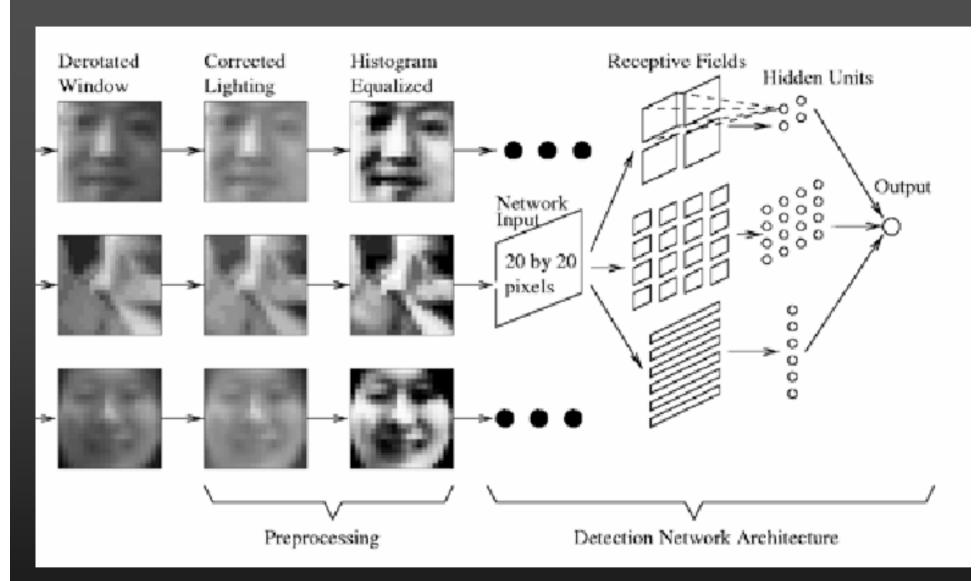
- Gradient descent:
 - compute $\nabla E=(\partial E/\partial w_1, ..., \partial E/\partial w_n)$
 - $\mathbf{w}_{k+1} \leftarrow \mathbf{w}_k \epsilon \nabla \mathbf{E}$
- Stochastic gradient descent:
 - compute ∇E_i
 - $\mathbf{w}_{k+1} \leftarrow \mathbf{w}_k \epsilon \nabla \mathsf{E}_i$
 - where E_i is the energy associated with some random training sample i

• The stochastic version works much better in practice.

Gradient-based supervised learning III

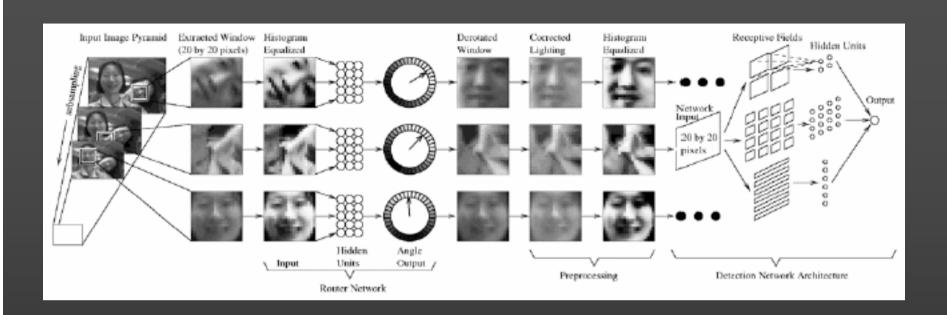
 Consider a feed-forward system composed of successive modules:
 x_i = f_i (w_i, x_{i-1})

 $E = L (y, x), \text{ with } x = x_n = f_n (w_n, x_{n-1})$ $\partial E / \partial w_n = \partial E / \partial x \partial f_n / \partial w_n$ $\partial E / \partial x_{n-1} = \partial E / \partial x \partial f_n / \partial x_{n-1}$ • Backward recursion: backpropagation



The vertical face-finding part of Rowley, Baluja and Kanade's system

Figure from "Rotation invariant neural-network based face detection," H.A. Rowley, S. Baluja and T. Kanade, Proc. Computer Vision and Pattern Recognition, 1998, copyright 1998, IEEE



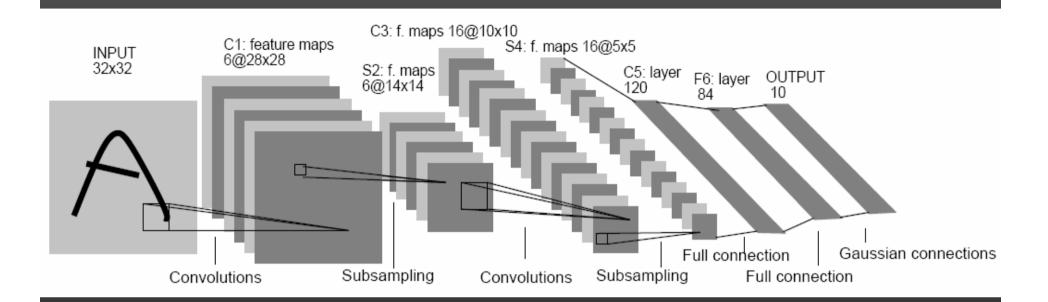
Architecture of the complete system: they use another neural net to estimate orientation of the face, then rectify it. They search over scales to find bigger/smaller faces.

Figure from "Rotation invariant neural-network based face detection," H.A. Rowley, S. Baluja and T. Kanade, Proc. Computer Vision and Pattern Recognition, 1998, copyright 1998, IEEE

Figure from "Rotation invariant neural-network based face detection," H.A. Rowley, S. Baluja and T. Kanade, Proc. Computer Vision and Pattern Recognition, 1998, copyright 1998, IEEE

Convolutional neural networks

- Template matching using NN classifiers seems to work
- Natural features are filter outputs
 - probably, spots and bars, as in texture
 - but why not learn the filter kernels, too?



A convolutional neural network, LeNet; the layers filter, subsample, filter, subsample, and finally classify based on outputs of this process.

Figure from "Gradient-Based Learning Applied to Document Recognition", Y. Lecun et al Proc. IEEE, 1998 copyright 1998, IEEE

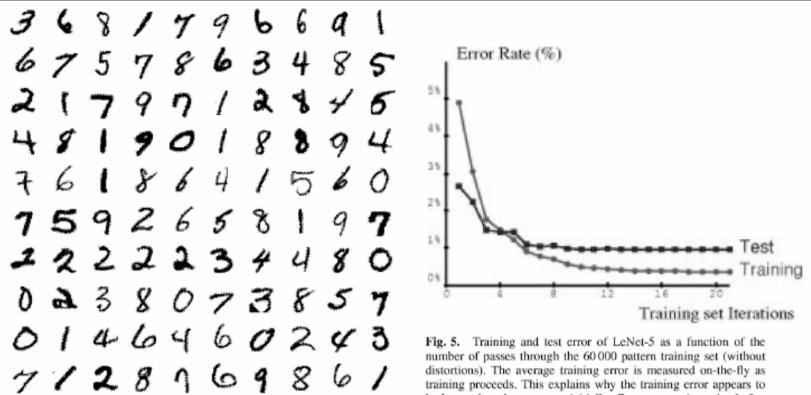
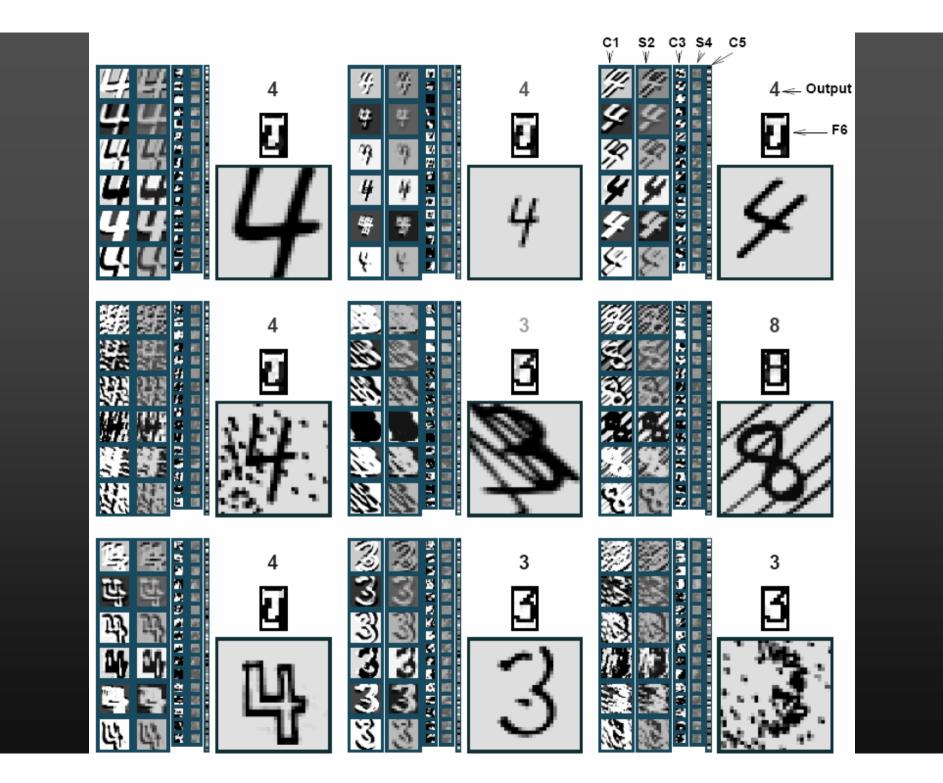
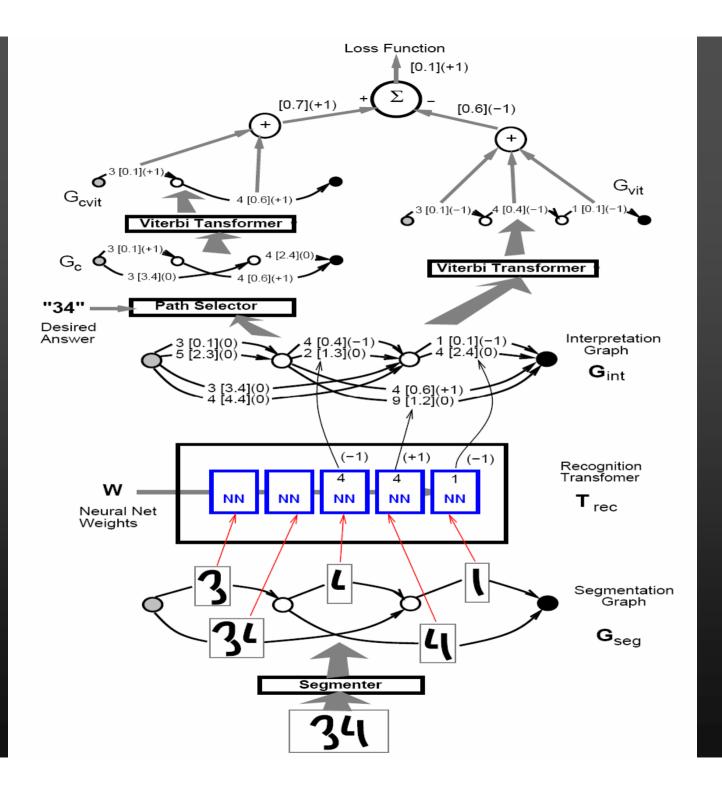


Fig. 4. Size-normalized examples from the MNIST database.

be larger than the test error initially. Convergence is attained after 10-12 passes through the training set.

Figure from "Gradient-Based Learning Applied to Document Recognition", Y. Lecun et al Proc. IEEE, 1998 copyright 1998, IEEE





Benchmarking SGD in Simple Problems

- The theory suggests that SGD is very competitive.
 - Many people associate SGD with trouble.
- SGD historically associated with back-propagation.
 - Multilayer networks are very hard problems (nonlinear, nonconvex)
 - What is difficult, SGD or MLP?

- Try <u>PLAIN SGD</u> on simple learning problems.
 - Support Vector Machines
 - Conditional Random Fields

Download from http://leon.bottou.org/projects/sgd. These simple programs are very short.

See also (Shalev-Schwartz et al., 2007; Vishwanathan et al., 2006)

Text Categorization with SVMs

Dataset

- Reuters RCV1 document corpus.

- 781,265 training examples, 23,149 testing examples.

- 47,152 TF-IDF features.

Task

- Recognizing documents of category CCAT.

- Minimize
$$E_n = \frac{1}{n} \sum_i \left(\frac{\lambda}{2} w^2 + \ell(w x_i + b, y_i) \right).$$

- Update $w \leftarrow w - \eta_t \nabla(w_t, x_t, y_t) = w - \eta_t \left(\lambda w + \frac{\partial \ell(w x_t + b, y_t)}{\partial w} \right)$

Same setup as (Shalev-Schwartz et al., 2007) but plain SGD.

Text Categorization with SVMs

Results: Linear SVM

 $\ell(\hat{y}, y) = \max\{0, 1 - y\hat{y}\}$ $\lambda = 0.0001$

	Training Time	Primal cost	Test Error
SVMLight	23,642 secs	0.2275	6.02%
SVMPerf	66 secs	0.2278	6.03%
SGD	1.4 secs	0.2275	6.02%

Results: Log-Loss Classifier

 $\ell(\hat{y},y) = \log(1 + \exp(-y\hat{y})) \quad \lambda = 0.00001$

Traini	ng Time	Primal cost	Test Error
LibLinear ($\varepsilon = 0.01$)	30 secs	0.18907	5.68%
LibLinear ($\varepsilon = 0.001$)	44 secs	0.18890	5.70%
SGD	2.3 secs	0.18893	5.66%