Step 3: Classification

» Learn a decision rule (classifier) assigning
bag-of-features representations of images
to different classes

..............
-------------
..........
. 0
. N
.
.,

boundary \/




Classification

» Assign input vector to one of two or more
classes

* Any decision rule divides input space into
decision regions separated by decision
boundaries ,

X




Nearest Neighbor Classifier

e Assign label of nearest training data point to each test data
point

from Duda et al.

Voronoi partitioning of feature space
for 2-category 2-D and 3-D data Source: D. Lowe



K-Nearest Neighbors

e For a new point, find the k closest points from training data

e Labels of the k points “vote” to classify

 Works well provided there is lots of data and the distance

function 1s good
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Source: D. Lowe



Functions for comparing histograms

N
« L1 distance D(h, h,) = 2|h1(i)—h2(i)|
i=1

D(hl,hz) _ Q (hl(l) _hz(l))2

« v distance : :
= (i) +h(i)

» Quadratic distance (cross-bin)

D(hlahz) - E Aij(hl(i) - hz(]))2



Linear classifiers

* Find linear function (hyperplane) to separate
positive and negative examples

@
® X, positive: X, w+b=0
® o X, negative: X, w+b<0
@
@
® e e o
@ ® \
@
@
® @
Which hyperplane
@

IS best?



Recall: Geometry of hyperplanes

A hyperplane is defined by an equa-

. rT A =
tion wix+w,=0

wlx + wg =0

@ The unit vector w/||w]|| is
normal to the hyperplane.

@ The signed distance of any
point x; to the hyperplane is
given by




Linear classifiers - margin

Generalization is not
good in this case:

Better if a margin
IS introduced:

x, (roundness)



Maximum-margin separating hyperplane

Margin maximization (for linearly
separable data) is formulated as
follows:

max M
(W,wo)

subject to yz-(wa,; + wp) > M||w

bl

1=1,....n

>

Explanation: ﬂ%ﬂ(wai + wyp) is the signed distance between x;

and the hyperplane w!'x + wg = 0. The constraints require that
each training point is on the correct side of the decision boundary
and is at least an unsigned distance M from it. The goal is to find
the hyperplane with parameters w and wg that would have the

largest such M.



Maximum-margin separating hyperplane

Constrained optimization problem:

max M
(wW,wo)

subject to y;(w!x; +wg) > M||wl|], i=1,...,n

We can choose M = 1/||w|| and instead solve

1
min —||w||*
(W,wo)

subject to y.i(wa.,; + wp) > 1 1=1,....n




Support vector machines

* Find hyperplane that maximizes the margin
between the positive and negative examples

X, positive (y, =1): X, W+b=1

x, negative(y, =-1): X, w+b=-1

For support, vectors, X; W +b =1

® The marginis 2/ ||w||




Finding the maximum margin hyperplane

1. Maximize margin 2/||w||
2. Correctly classify all training data:
X, positive (y, =1): X,*W+b=1

x, negative(y, =-1): X, -w+b=-1

Quadratic optimization problem:

|
Minimize EWTW

Subjectto y(w-x+b)>1

Solution based on Lagrange multipliers



Finding the maximum margin hyperplane

e Solution: w= Eiaiyixi

/

learned Support
weight vector




Finding the maximum margin hyperplane

« Solution: W = Eiaiy,.xi
b=y —wx, forany supportvector

 Classification function (decision boundary):
W:'X+b= Eiaiyl.xl. ‘X +b

* Notice that it relies on an inner product between
the test point x and the support vectors Xx;

« Solving the optimization problem also involves
computing the inner products x; - x; between all
pairs of training points



Non-separable case

What if the training data are not linearly separable? We can
no longer require exact margin constraints.

One idea: minimize

1

min = ||w||? + C/(#mistakes).
w2 |

This is the 0-1 loss.

The parameter (' determines the penalty paid for violating
margin constraints. (Tradeoff: number of mistakes and
margin.)

Problem: not QP anymore, also does not distinguish between
“near misses” and bad mistakes.



Non-separable case

@ Another idea: rewrite the constraints with slack variables

& = 0

1 n
min E'IW" — (;_'Z(i
i=1

(W,wqp) £

subject to y; (-wo i wa,,f) —1+& = 0.

@ Whenever margin is > 1 (original constraint is satisfied),
& = 0.

@ Whenever margin is < 1 (constraint violated), pay linear
penalty.



SVM with slack variables

Source: G. Shakhnarovich

a=C,0<¢<1

@ Support vectors: points with o > 0
o If 0 < a < C': SVson the margin, £ = 0.

o If 0 < a = (" over the margin, either misclassified (£ > 1) or
not (0 <& <1).



Nonlinear SVMs

« Datasets that are linearly separable work out great:

0 X

* But what if the dataset is just too hard?

4 o *—0— *-0—@ oo o>

0 X

 We can map it to a higher-dimensional space:

Slide credit: Andrew Moore



Nonlinear SVMs

» General idea: the original input space can
always be mapped to some higher-dimensional
feature space where the training set is
separable:
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Slide credit: Andrew Moore



Nonlinear SVMs

» The kernel trick: instead of explicitly computing
the lifting transformation ¢(x), define a kernel
function K such that

K(x;, x;) = 9(x;) - p(X))

(to be valid, the kernel function must satisfy
Mercer’s condition)

* This gives a nonlinear decision boundary in the
original feature space:

Y .y K(x,,x) +b



M erce l’, S kel’n el S Source: G. Shakhnarovich

What kind of function /& is a valid kernel, i.e. such that there
exists a feature space ®(x) in which K(x,z) = &(x)T ¢(z)?

Theorem due to Mercer (1930s)
K must be
@ continuous;
e symmetric: K(x,z) = K(z,x);

@ positive definite: for any x1,..., xnN, the kernel matrix

K(x1.x1) K(x1.x2) K(x1.xn)
K =

-

_IX' (XN . Xl) K (XN. XQ) K (XN~ XN)_

must be positive definite.




Radial basis function kernel Source: C. Shakhnarovich

@ [he RBF kernel is a measure of similarity between two
examples.

o [he mapping ¢&(x) is infinite-dimensional!

@ What is the role of parameter o7

o Consider o0 — 0.Then K(x;,x;0) — lifx=2zor0if x # z.
The SVM simply “memorizes” the training data (overfitting,
lack of generalization).

o What about 0 — o0? Then K(x,z) — 1 for all x, z. The
SVM underfits.



SVM with RBF (Gaussian) kernels Source: G. Shakhnarovich
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@ Note: some SV here not close to the boundary



Multi-class SVMs

@ Various “direct” formulations exist, but they are not widely
used in practice. |t is more common to obtain multi-class
classifiers by combining two-class SVMs in various ways.

@ One vs. others:

o Iraning: learn an SVM for each class vs. the others
o lesting: apply each SVM to test example and assign to it the
class of the SVM that returns the highest decision value

@ One vs. one:

o Iraining: learn an SVM for each pair of classes

o lesting: each learned SVM "“votes" for a class to assign to the
test example



Kernels for bags of features

* Histogram intersection kernel:
N .
[(hla h2) = 2 mln(hl (l)a h2 (Z))
i=1

e Generalized Gaussian kernel:

|
K(h,h,) = exp(_gD(hlahz)z)

* D can be Euclidean distance, y? distance,
Earth Mover’'s Distance, etc.



SVM classifier

SMV with multi-channel chi-square kernel

K(Hi Hy) = exp (= 3 o DelHi. H)

ceC
Channel c is a combination of detector, descriptor

D.(H,H,) is the chi-square distance between histograms

I m
D.(H,H,)= 521-:1[(]711' _h2i)2/(h1i +h,,)]
4. is the mean value of the distances between all training sample

Extension: learning of the weights, for example with MKL

J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid,
Local Features and Kernels for Classifcation of Texture and Object Cateqories: A
Comprehensive Study, IJCV 2007




Pyramid match kernel

* Weighted sum of histogram intersections
at mutliple resolutions (linear in the
number of features instead of cubic)

< N\
| | X I
< | 44 <4 < 4 4 /
2" S=as n".

optimal partial
matching between
sets of features

K. Grauman and T. Darrell.

The Pyramid Match Kernel: Discriminative Classification with Sets of Image Features,
|ICCV 2005.




Histogram T(H(X),H(Y)) = Zmin (H(X);,H(Y);)

intersection

Pyramid Match




Pyramid Match

intersection

Histogram T(H(X),H(Y)) = Zmin (H(X);,H(Y);)

N;

matches at this level matches at previous level

A A
~— =~ — —

1 (H;(X),Hi(Y)) - T(Hi-1(X),Hi-1(Y))

Difference in histogram intersections across
levels counts number of new pairs matched




Pyramid match kernel

histogram pyramids

A
- N

Ka (W(X),¥(Y)) =

> o (T (LX), Hi(Y) ~T(Hi 1 (%), Hi 1 (Y)))

N~ I
—

number of newly matched pairs at level i

measure of difficulty of
a match at level J

* Weights inversely proportional to bin size

« Normalize kernel values to avoid favoring large sets



Example pyramid match

Level O

I
Hy(X)




Example pyramid match

Level 1




Example pyramid match

Level 2




pyramid match

Example pyramid match
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1=0

=1(2) + 5(2) + 3(1) = 3.25
optimal match K — -I%%aXY S (X,,;, 7T(X,,; ))
H .Hoo/o ° . XQEX



Summary: Pyramid match kernel

‘ ° ° . 0.. ng : & 4444 < 4 \ I /
— I | g optimal partial

matching between
sets of features

difficulty of a match at level i number of new matches at level i



Review: Discriminative methods

* Nearest-neighbor and k-nearest-neighbor

classifiers
« L1 distance, y? distance, quadratic distance,

« Support vector machines
 Linear classifiers
« Margin maximization
* The kernel trick

« Kernel functions: histogram intersection, generalized
Gaussian, pyramid match

» Of course, there are many other classifiers

out there
* Neural networks, boosting, decision trees, ...



Summary: SVMs for image classification

. Pick an image representation (in our case, bag
of features)

. Pick a kernel function for that representation

. Compute the matrix of kernel values between
every pair of training examples

. Feed the kernel matrix into your favorite SVM
solver to obtain support vectors and weights

. At test time: compute kernel values for your test
example and each support vector, and combine
them with the learned weights to get the value of

the decision function



SVMs: Pros and cons

* Pros

« Many publicly available SVM packages:
http.//www.kernel-machines.org/software

« Kernel-based framework is very powerful, flexible

« SVMs work very well in practice, even with very small
training sample sizes

e Cons
 No “direct” multi-class SVM, must combine two-class SVMs

« Computation, memory

— During training time, must compute matrix of kernel values for
every pair of examples

— Learning can take a very long time for large-scale problems



Generative methods

* Model the probability distribution that
produced a given bag of features

* We will cover two models, both inspired by

text document analysis:
* Naive Bayes
* Probabilistic Latent Semantic Analysis



The Naive Bayes model

 Assume that each feature is conditionally | *=
iIndependent given the class

N
pW,...,wy | C) = np(wl. | ¢)
=1

Csurka et al. 2004



The Naive Bayes model -7

- Assume that each feature is conditionally =
iIndependent given the class

N
c* = argmax, p()] [ p(w, | c)
1=1

: )

MAP Prior prob. of Likelihood of ith visual word

decision the object classes given the class

Estimated by empirical
frequencies of visual words
in images from a given class

Csurka et al. 2004



The Naive Bayes model

Assume that each feature is conditionally

iIndependent given the class

N
c* =argmax, p(o)] [ p(w,|¢)
=1

“Graphica

model’:

©

©

Csurka et al. 2004



Probabilistic Latent Semantic Analysis

-.‘r',;/

zebra

-l

“visual topics”

grass

:ID:I:I

tree

T. Hofmann, Probabilistic Latent Semantic Analysis, UAI 1999




Probabilistic Latent Semantic Analysis
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New image zebra grass tree

T. Hofmann, Probabilistic Latent Semantic Analysis, UAI 1999




Probabilistic Latent Semantic Analysis

* Unsupervised technique

* Two-level generative model: a document is a
mixture of topics, and each topic has its own
characteristic word distribution

A
A A

document topic word
P(z|d) P(w|z)

T. Hofmann, Probabilistic Latent Semantic Analysis, UAI 1999




Probabilistic Latent Semantic Analysis

* Unsupervised technique

* Two-level generative model: a document is a
mixture of topics, and each topic has its own
characteristic word distribution

O ow

p(w, |dj) = Zp(wi |z, ) p(z, |dj)

T. Hofmann, Probabilistic Latent Semantic Analysis, UAI 1999




pLSA for images

Document = image, topic = class, word = quantized feature

OSIaRe

“face”

J. Sivic, B. Russell, A. Efros, A. Zisserman, B. Freeman,
Discovering Objects and their Location in Images, ICCV 2005




The pLSA model

p(Wz‘ ‘d]) = Zp(Wi ‘Zk)p(zk ‘dj)

N J J\ J
Y Y Y
Probability of word i Probability of Probability of
in document | word i given topic k given
(known) topic k document |

(unknown) (unknown)



words

The pLSA model

p(Wz’ ‘d]) = Zp(Wi ‘Zk)p(zk ‘dj)

documents= topics R documents R
g ;1) p(zild)
p(wid) = | pwiz)
Observed codeword  Codeword distributions Class distributions
distributions per topic (class) per image

(MxN) (MxK) (KxN)



Learning pLSA parameters

Maximize likelihood of data using EM:

Observed counts of
word / in document j

\
[ = P (w, ‘ /‘_ :)m:, wi )

M ... number of codewords i3 |
§ P(z|d;) P(w;|z1)
N ... number of images 1

Slide credit: Josef Sivic



Recognition

* Finding the most likely topic (class) for an image:

z =argmax p(z|d)



Recognition

* Finding the most likely topic (class) for an image:

z =argmax p(z|d)

* Finding the most likely topic (class) for a visual
word in a given image:

s s LD



Toplc dlscovery INn Images

J. Sivic, B. Russell, A. Efros, A. Zisserman, B. Freeman,
Discovering Objects and their Location in Images, ICCV 2005




Summary: Generative models

* Nalve Bayes
* Unigram models in document analysis
« Assumes conditional independence of words given class
« Parameter estimation: frequency counting

* Probabilistic Latent Semantic Analysis

* Unsupervised technique

« Each document is a mixture of topics (image is a mixture of
classes)

« Can be thought of as matrix decomposition
« Parameter estimation: EM



