
Step 3: Classification 
•  Learn a decision rule (classifier) assigning 

bag-of-features representations of images 
to different classes 
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Decision 
boundary 



Classification 
•  Assign input vector to one of two or more 

classes 
•  Any decision rule divides input space into 

decision regions separated by decision 
boundaries 



Nearest Neighbor Classifier


•  Assign label of nearest training data point to each test data 
point 


Voronoi partitioning of feature space  
for 2-category 2-D and 3-D data 

from Duda et al. 

Source: D. Lowe 



•  For a new point, find the k closest points from training data

•  Labels of the k points “vote” to classify

•  Works well provided there is lots of data and the distance 

function is good


K-Nearest Neighbors


k = 5 

Source: D. Lowe 



Functions for comparing histograms 

•  L1 distance 

•  χ2 distance 

•  Quadratic distance (cross-bin) 



Linear classifiers 
•  Find linear function (hyperplane) to separate 

positive and negative examples 

Which hyperplane 
is best? 





Linear classifiers - margin 

Generalization is not  
good in this case: 

Better if a margin  
is introduced: 







Support vector machines 
•  Find hyperplane that maximizes the margin 

between the positive and negative examples 

Margin Support vectors 

For support, vectors,  

The margin is  2 / ||w||  



Finding the maximum margin hyperplane 
1.  Maximize margin 2/||w|| 
2.  Correctly classify all training data: 

Quadratic optimization problem: 

  Minimize 

 Subject to  yi(w·xi+b) ≥ 1 

Solution based on Lagrange multipliers 



Finding the maximum margin hyperplane 
•  Solution: 

   

Support  
vector 

learned 
weight 



Finding the maximum margin hyperplane 
•  Solution: 

    b = yi – w·xi   for any support vector 

•  Classification function (decision boundary): 

•  Notice that it relies on an inner product between 
the test point x and the support vectors xi 

•  Solving the optimization problem also involves 
computing the inner products xi · xj between all 
pairs of training points 









•  Datasets that are linearly separable work out great: 

•  But what if the dataset is just too hard?  

•  We can map it to a higher-dimensional space: 
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Nonlinear SVMs 

Slide credit: Andrew Moore 



Φ:  x → φ(x) 

Nonlinear SVMs 
•  General idea: the original input space can 

always be mapped to some higher-dimensional 
feature space where the training set is 
separable: 

Slide credit: Andrew Moore 



Nonlinear SVMs 
•  The kernel trick: instead of explicitly computing 

the lifting transformation φ(x), define a kernel 
function K such that 

         K(xi , xjj) = φ(xi ) · φ(xj) 

 (to be valid, the kernel function must satisfy 
Mercer’s condition) 

•  This gives a nonlinear decision boundary in the 
original feature space: 











Kernels for bags of features 
•  Histogram intersection kernel: 

•  Generalized Gaussian kernel: 

•  D can be Euclidean distance, χ2 distance, 
Earth Mover’s Distance, etc. 



SVM classifier 

SMV with multi-channel chi-square kernel  

●  Channel c is a combination of detector, descriptor 

●                 is the chi-square distance between histograms 

●      is the mean value of the distances between all training sample 

●  Extension: learning of the weights, for example with MKL 
J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, 
Local Features and Kernels for Classifcation of Texture and Object Categories: A 
Comprehensive Study, IJCV 2007 



Pyramid match kernel 
•  Weighted sum of histogram intersections 

at mutliple resolutions (linear in the 
number of features instead of cubic) 

optimal partial 
matching between 

sets of features 

K. Grauman and T. Darrell.  
The Pyramid Match Kernel: Discriminative Classification with Sets of Image Features, 
ICCV 2005. 



Pyramid Match 

Histogram 
intersection 



Difference in histogram intersections across 
levels counts number of new pairs matched 

matches at this level matches at previous level 

Histogram 
intersection 

Pyramid Match 



Pyramid match kernel 

•   Weights inversely proportional to bin size  

•   Normalize kernel values to avoid favoring large sets 

measure of difficulty of 
a match at level i 

histogram pyramids 

number of newly matched pairs at level i 



Example pyramid match 
Level 0 



Example pyramid match 
Level 1 



Example pyramid match 
Level 2 



Example pyramid match 

pyramid match 

optimal match 



Summary: Pyramid match kernel 

optimal partial 
matching between 

sets of features 

number of new matches at level i difficulty of a match at level i 



Review: Discriminative methods 
•  Nearest-neighbor and k-nearest-neighbor 

classifiers 
•  L1 distance, χ2 distance, quadratic distance,  

•  Support vector machines 
•  Linear classifiers 
•  Margin maximization 
•  The kernel trick 
•  Kernel functions: histogram intersection, generalized 

Gaussian, pyramid match 

•  Of course, there are many other classifiers 
out there 
•  Neural networks, boosting, decision trees, … 



Summary: SVMs for image classification 
1.  Pick an image representation (in our case, bag 

of features) 
2.  Pick a kernel function for that representation 
3.  Compute the matrix of kernel values between 

every pair of training examples 
4.  Feed the kernel matrix into your favorite SVM 

solver to obtain support vectors and weights 
5.  At test time: compute kernel values for your test 

example and each support vector, and combine 
them with the learned weights to get the value of 
the decision function 



SVMs: Pros and cons 
•  Pros 

•  Many publicly available SVM packages: 
http://www.kernel-machines.org/software 

•  Kernel-based framework is very powerful, flexible 
•  SVMs work very well in practice, even with very small 

training sample sizes 

•  Cons 
•  No “direct” multi-class SVM, must combine two-class SVMs 
•  Computation, memory  

–  During training time, must compute matrix of kernel values for 
every pair of examples 

–  Learning can take a very long time for large-scale problems 



Generative methods 
•  Model the probability distribution that 

produced a given bag of features 
•  We will cover two models, both inspired by 

text document analysis: 
•  Naïve Bayes 
•  Probabilistic Latent Semantic Analysis 



Csurka et al. 2004 

•     Assume that each feature is conditionally  
     independent given the class 



Prior prob. of  
the object classes 

Likelihood of ith visual word 
given the class 

Csurka et al. 2004 

MAP 
decision 

•     Assume that each feature is conditionally  
     independent given the class 

Estimated by empirical 
frequencies of visual words 
in images from a given class 



Csurka et al. 2004 

•     Assume that each feature is conditionally  
     independent given the class 

w 
N 

c 

•     “Graphical model”: 



T. Hofmann, Probabilistic Latent Semantic Analysis, UAI 1999 

zebra 

grass 

tree 

“visual topics” 



T. Hofmann, Probabilistic Latent Semantic Analysis, UAI 1999 

zebra grass tree New image 

= α1 + α2 + α3 



•  Unsupervised technique 
•  Two-level generative model: a document is a 

mixture of topics, and each topic has its own 
characteristic word distribution 

w d z 

T. Hofmann, Probabilistic Latent Semantic Analysis, UAI 1999 

document topic word 
P(z|d) P(w|z) 



•  Unsupervised technique 
•  Two-level generative model: a document is a 

mixture of topics, and each topic has its own 
characteristic word distribution 

w d z 

T. Hofmann, Probabilistic Latent Semantic Analysis, UAI 1999 



w d z 

“face” 

Document = image, topic = class, word = quantized feature 

J. Sivic, B. Russell, A. Efros, A. Zisserman, B. Freeman, 
Discovering Objects and their Location in Images, ICCV 2005  



Probability of word i  
in document j 

(known) 

Probability of  
word i given 

topic k  
(unknown) 

Probability of 
topic k given 
document j 
(unknown) 



Observed codeword 
 distributions 

(M×N) 

Codeword distributions 
per topic (class) 

(M×K) 

Class distributions 
per image 

(K×N) 
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Maximize likelihood of data using EM: 
Observed counts of 
word i in document j 

M … number of codewords 

N … number of images 

Slide credit: Josef Sivic 



•     Finding the most likely topic (class) for an image: 



•     Finding the most likely topic (class) for an image: 

•     Finding the most likely topic (class) for a visual 
     word in a given image: 



Topic discovery in images 

J. Sivic, B. Russell, A. Efros, A. Zisserman, B. Freeman, 
Discovering Objects and their Location in Images, ICCV 2005  



Summary: Generative models 
•  Naïve Bayes 

•  Unigram models in document analysis 
•  Assumes conditional independence of words given class 
•  Parameter estimation: frequency counting 

•  Probabilistic Latent Semantic Analysis 
•  Unsupervised technique 
•  Each document is a mixture of topics (image is a mixture of 

classes) 
•  Can be thought of as matrix decomposition 
•  Parameter estimation: EM 


