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Visual search

« Particular objects and scenes, large databases




Category recognition

* Image classification: assigning a class label to the image

Car: present

Cow: present
Bike: not present
Horse: not present




Category recognition

* Image classification: assigning a class label to the image
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Difficulties: within object variations

Variability: Camera position, Illumination,Internal parameters

:> Within-object variations



Difficulties: within-class variations




Category recognition

* Robust image description
— Appropriate descriptors for categories

 Statistical modeling and machine learning for vision
— Use and validation of appropriate techniques



Why machine learning?

« Early approaches: simple features + handcrafted models
« Can handle only few images, simples tasks

L. G. Roberts, Machine Perception of Three Dimensional Solids,
Ph.D. thesis, MIT Department of Electrical Engineering, 1963.




Why machine learning?

« Early approaches: manual programming of rules
* Tedious, limited and does not take into accout the data
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Figure 3. A system developed in 1978 by Ohta, Kanade and Sakai [33. 32] for knowledge-based interpretation of outdoor natural scenes.
The system is able to label an image (c) into semantic classes: S-sky, T-tree. R-road, B-building, U-unknown.

Y Ohta, T. Kanade, and T. Sakai, “An Analysis System for Scenes Containing objects with Substructures,” International Joint Conference on Pattern Recognition, 1978.



Why machine learning?

« Today lots of data, complex tasks
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Why machine learning?

« Today lots of data, complex tasks

Surveillance and security



Why machine learning?

« Today: Lots of data, complex tasks

 Instead of trying to encode rules directly, learn them from
examples of inputs and desired outputs



Types of learning problems

« Supervised

— Classification
— Regression

« Unsupervised
« Semi-supervised
* Active learning



Supervised learning

« Given training examples of inputs and corresponding
outputs, produce the “correct” outputs for new inputs

« TwO main scenarios:

— Classification: outputs are discrete variables (category labels).
Learn a decision boundary that separates one class from the other

— Regression: also known as “curve fitting” or “function
approximation.” Learn a continuous input-output mapping from
examples (possibly noisy)



Unsupervised Learning

* Given only unlabeled data as input, learn some sort of
structure

* The objective is often more vague or subjective than in
supervised learning. This is more of an exploratory/
descriptive data analysis



Unsupervised Learning

* Clustering

— Discover groups of “similar” data points
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Unsupervised Learning

 Quantization

— Map a continuous input to a discrete (more compact) output
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Unsupervised Learning

 Dimensionality reduction, manifold learning

— Discover a lower-dimensional surface on which the data lives
15-




Unsupervised Learning

* Density estimation

— Find a function that approximates the probability density of the
data (i.e., value of the function is high for “typical” points and low
for “atypical” points)

— Can be used for anomaly detection
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Other types of learning

« Semi-supervised learning: lots of data is available, but
only small portion is labeled (e.g. since labeling is
expensive)



Other types of learning

« Semi-supervised learning: lots of data is available, but
only small portion is labeled (e.g. since labeling is
expensive)

— Why is learning from labeled and unlabeled data better than
learning from labeled data alone?



Other types of learning

* Active learning: the learning algorithm can choose its
own training examples, or ask a “teacher” for an answer
on selected inputs

Annotators
Current P 72
»| category ssue request:
models “Get a full
segmentation on
image #31.”

Partially and weakly Labeled data
labeled data

Unlabeled data




Bag-of-features for image classification

 Origin: texture recognition

« Texture is characterized by the repetition of basic elements or
textons

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003



Texture recognition
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Bag-of-features for image classification

 Origin: bag-of-words
» Orderless document representation: frequencies of words from a
dictionary
» Classification to determine document categories

2007-01-23: State of the Union Address

George W. Bush (2001-)

abandon accountable affordable afghanistan africa ally baghdad :i=:: challenges chamber chaos
choices civilians coalition commitment confident confront congressman corps debates deduction

deficit deliver democratic deploy dikembe diplomacy disruptions earmarks €CO nomy einstein elections eliminates
expand extremists failing families freedom fuel fu nding god haven ideology immigration impose

L J
insurgents iran ] raq islam julie lebanon love madam marine math medicare neighborhoods nuclear offensive

palestinian payroll qaeda radical regimes resolve retreat rieman sacrifices science sectarian
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shia stays strength students succeed sunni LaX te rro r] Sts threats uphold victory

violence violent Wal washington weapons wesley




Bag-of-features for image classification

Extract regions
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[Nowak,Jurie&Triggs,ECCV’06], [Zhang,Marszalek,Lazebnik&Schmid,|JCV’'07]



Bag-of-features for image classification
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Bag-of-features for image classification

Excellent results in the presence of background clutter
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Examples for misclassified images

Cars- misclassified intoA buildings, phones, phones



Step 1: feature extraction

« Scale-invariant image regions + SIFT (see lecture 2)
— Affine invariant regions give “too” much invariance
— Rotation invariance in many cases “too” much invariance

* Dense descriptors
— Improve results in the context of categories (for most categories)
— Interest points do not necessarily capture “all” features



Dense features
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- Multi-scale dense grid: extraction of small overlapping patches at multiple scales
- Computation of the SIFT descriptor for each grid cells



Step 1: feature extraction

Scale-invariant image regions + SIFT (see lecture 2)
— Affine invariant regions give “too” much invariance

— Rotation invariance for many realistic collections “too” much
iInvariance

Dense descriptors
— Improve results in the context of categories (for most categories)
— Interest points do not necessarily capture “all” features

Color-based descriptors

Shape-based descriptors



Step 2: Quantization
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Step 2:Quantization

Clustering



Step 2: Quantization

Visual vocabulary

Clustering




Examples for visual words
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Step 2: Quantization

* Cluster descriptors
— K-mean
— Gaussian mixture model

» Assign each visual word to a cluster
— Hard or soft assignment

 Build frequency histogram



K-means Clustering: Cost function

>

| 2

>

Partition dataset {x1,...,xy} in K clusters

Clusters characterized by cluster prototypes {pt1.
» Assign x to closest prototype

Cost function
J({pr}) mel\xn pl)?

Non-differentiable, non-convex

ccccc



K-means clustering

« We want to minimize sum of squared Euclidean
distances between points x; and their nearest cluster
centers

Algorithm:
 Randomly initialize K cluster centers

* |terate until convergence:
— Assign each data point to the nearest center

— Recompute each cluster center as the mean of all points
assigned to it



K-means Clustering:

Example
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K-means clustering

* Local minimum, solution dependent on initialization

* Initialization important, run several times
— Select best solution, min cost



From clustering to vector quantization

* Clustering is a common method for learning a visual
vocabulary or codebook

— Unsupervised learning process

— Each cluster center produced by k-means becomes a
codevector

— Codebook can be learned on separate training set

— Provided the training set is sufficiently representative, the
codebook will be “universal”

« The codebook is used for quantizing features

— A vector quantizer takes a feature vector and maps it to the
index of the nearest codevector in a codebook

— Codebook = visual vocabulary
— Codevector = visual word



Visual vocabularies: Issues

* How to choose vocabulary size?
— Too small: visual words not representative of all patches
— Too large: quantization artifacts, overfitting

« Computational efficiency

— Vocabulary trees
(Nister & Stewenius, 20006)

« Soft quantization: Gaussian
mixture instead of k-means




Gaussian mixture model (GMM)

Gaussian density
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Mixture of Gaussians: weighted sum of Gaussians

K
p(x) = Z e N(X; per, 1)
k=1
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Mixture of Gaussians: Maximum Likelthood Estimation

» Given a data set X = {xq...., xy } find clustering

» clustering induced by mixture model
» fit mixture parameters {7, ., 2k} to data

» Find parameters that maximize data (log-)likelihood
» let the x,, independently distributed according mixture

N N
log | [ p(xn) = _ log p(x)
n=1 n=1

— Z log {Z TN (X; e, Zk)}
n k

log p(X)

» Not convex, and not trivial to maximize.



Mixture of Gaussians: EM algorithm

1. Initialize parameters {jip, 25, 7 }
2. Expectation Step: Evaluate responsibilities:

Ink = P(zn = k|xy,) (1)

3. Maximization Step: Re-estimate parameters:

onew _ Zn Unk
: N
1
new
pp = InkXn
g Z-n an ; " h
1
e = Gk (Xn — po1) (X — i) "
I = S Dk — k) )

4. Evaluate log-likelihood log p(X), and check for convergence
(go to step 2).



Hard or soft assignment

« K-means - hard assignment
— Assign to the closest cluster center
— Count number of descriptors assigned to a center

« Gaussian mixture model = soft assignment
— Estimate distance to all centers
— Sum over number of descriptors

* Frequency histogram



Image representation

frequency
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