Reconnaissance d’objets et vision artificielle 2009

Visual search and object recognition
using local invariant features

Josef Sivic
http://www.di.ens.fr/~josef
Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548
Laboratoire d’Informatique, Ecole Normale Supérieure, Paris

With slides from: O. Chum, K. Grauman, B. Leibe, D. Lowe, S.
Lazebnik, J. Philbin, D. Nister, N. Snavely, A. Zisserman

The goal of this lecture

Understand how a large scale visual search system works
“local invariant regions in action”

Understand and see in practice some useful techniques
- Approximate nearest neighbour search

- Large scale indexing using inverted files

Other applications using local invariant regions

Problem specification: particular object matching

Example I: Visual search in feature films

Visually defined query “Groundhog Day” [Rammis, 1993]

“Find this
clock”

“Find this [
place” RS

Example |I: Search photos on the web for
particular places

e

Find these landmarks ...In these images and 1M more

Review: Why is it difficult?

Want to find the object despite possibly large changes in
scale, viewpoint, lighting and partial occlusion

Lighting Occlusion

The need for visual search

flickr Flickr: has 2 billion photographs, more than 1 million
added daily

Facebook: has 15 billion images (~27 million added
daily)

Company collections

Personal collections: 10000s of digital camera photos
and mpegs

Vast majority will have minimal, if any, textual annotation.
Yet text is the only common way of searching / accessing
documents (e.g. Google / Live search)

Review: Image representation

* Image content is transformed into local features that are
iInvariant to geometric and photometric transformations

\

s

a
\

Slide credit: David Lowe

1000+ regions per image

128D descriptor space

 a region’s size and shape are not fixed, but
« automatically adapts to the image intensity to cover the same physical surface

* i.e. pre-image is the same surface region

Represent each region by the 128-dimensional SIFT descriptor vector

Example I: Two images -“Where is the Graffiti?”

Review: Object recognition / matching

Establish correspondences between object model image and target image by
nearest neighbour matching on SIFT vectors

@
_______________ e SEETEEERNE
S 0 /S / S o0
Model (query) image 128D descriptor Target image
space

Solve following problem for all feature vectors, xX; € 'R128, in the query image:
Vi NN(j) = arg miin |[x; — x|

where, X; € 'R128 , are features in the target image.

Review: problem with matching on descriptors alone

 too much individual invariance
 each region can affine deform independently (by different amounts)

 use semi-local and global spatial relations to verify matches, e.g.:
« common affine transformation [Lowe ‘99] (strong requirement)
* locally similar affine transformation [Ferrari ‘04]
« spatial neighbours match spatial neighbours [Schmid ‘97]

See lectures 1 and 3 for more details.

Example I: Two images -“Where is the Graffiti?”

Initial matches

Nearest-neighbor
search based on
appearance descriptors
alone.

Spatial consistency
required

Example Il: Two images again

1000+ descriptors per frame Shape adapted regions

Maximally stable regions

Match regions between frames using SIFT descriptors and
spatial consistency

Multiple regions overcome problem of partial occlusion

Shape adapted regions

Maximally stable regions

What about multiple images”?

» Two images work fine (for some types of objects, which
ones?, we come back to this).

* How to generalize this strategy to multiple images with
reasonable complexity?

« 10,107, 103, ..., 107, ... 10'% images?

ok~ wbh =

Strategy |: Combine descriptor vectors from all images

regions

invariant
descriptor
vectors

>

frames

invariant
descriptor
vectors

Compute affine covariant regions in each frame independently (Lecture 2)

“Label” each region by a vector of descriptors based on its intensity (Lecture 2)
Finding corresponding regions is transformed to finding nearest neighbour vectors
Rank retrieved frames by number of corresponding regions

Verify retrieved frame based on spatial consistency (Lecture 1+3)

Finding nearest neighbour vectors

Establish correspondences between object model image and images in the
database by nearest neighbour matching on SIFT vectors

R
®e ® Z
° 77
X
y 4
JSo o0 /S / i
Model image 128D descriptor Image database
space

Solve following problem for all feature vectors, xX; € 'R128, in the query image:
Vi NN(j) = arg miin |[x; — x|

where, X; € 'R128 , are features from all the database images.

Quick look at the complexity of the NN-search

N ... images
M ... regions per image (~1000)
D ... dimension of the descriptor (~128)

Exhaustive linear search: O(M NMD)

Example:

* Matching two images (N=1), each having 1000 SIFT descriptors
Nearest neighbors search: 0.4 s (2 GHz CPU, implem. in C)

« Memory footprint: 1000 * 128 = 128kB / image

N= 1,000 ... ~7min (~100MB)
N =10,000 ... ~1h7min (~ 1GB)

N = 107 ~115days (~ 1TB)

All images on Facebook:
N=10 ... ~300years (~ 1PB)

History of “large scale” visual search with local regions

Schmid and Mohr '97 — 1k images

Sivic and Zisserman’03 — 5k images

Nister and Stewenius'06 — 50k images (1M)
Philbin et al.’"07 — 100k images
Chum et al.’07 + Jegou et al.’07 — 1M images
Chum et al.’08 — 5M images
Jegou et al. '09 — 10M images

All on a single machine in ~ 1 second!

Indexing local features

With potentially thousands of features per image, and
hundreds of millions of images to search, how to
efficiently find those that are relevant to a new image?

» Low-dimensional descriptors . can use standard
efficient data structures for nearest neighbor search

« High-dimensional descriptors: approximate nearest
neighbor search methods more practical

* Inverted file indexing schemes

Nearest-neighbor matching

Solve following problem for all feature vectors, x;, in the query image:

Vi NN(j) = arg miin [[x; — x|

where x, are features in database images.

Nearest-neighbour matching is the major computational bottleneck

» Linear search performs dn operations for n features in the
database and d dimensions

 No exact methods are faster than linear search for d>10

» Approximate methods can be much faster, but at the cost of
missing some correct matches. Failure rate gets worse for
large datasets.

Indexing local features:
approximate nearest neighbor search

10

8t

Best-Bin First (BBF), a variant of k-d
trees that uses priority queue to

examine most promising branches
first [Beis & Lowe, CVPR 1997]

ool ,

0010 »

0000

(3)

(L)

(2)

Locality-Sensitive Hashing (LSH), a
randomized hashing technique using
hash functions that map similar
points to the same bin, with high
probability [Indyk & Motwani, 1998]

K-d tree construction

Simple 2D example

4 /]E 6e /,

] | L e
l6

Lo 5 °8.1?

! 9 §o10
/%3. bt
o] o)

¥ o1l

Slide credit: Anna Atramentov

K-d tree query

4 lzi e /,
/s b 7
i L
i o9 §o10
1%3. bt
o] o)
l o]l

Slide credit: Anna Atramentov

K-d tree: Backtracking

Backtracking is necessary as the true nearest neighbor
may not lie in the query cell.

But in some cases, almost all cells need to be inspected.

Flgure 6.6

<

8 A bad -.i‘-'ll|»1|i'o:x which
":2 forces almost all nodes to
o}

o b :.:-]'H'oni.

ot

Figure: A. Moore

Solution: Approximate nearest neighbor K-d tree

Key ideas: Data pointsé o
Juery pointi +

° lelt the number Of 0s L Remaining Esearch hypersphereg
neighbouring k-d tree bins to 5 E |

explore 06 | f\)

« Search k-d tree bins in order 04 | |
of distance from query [i

[=

02 F o
 Requires use of a priority | |
queue 0 . o . P

* Randomization

Randomized K-d trees

. How to choose the dimension to split and the splitting point?
 Pick dimension with the highest variance
« Split at the mean/median

« Multiple randomized trees increase the chances of finding
nearby points

True nearest
neighbour ——

X

/v X X X

Query point

True nearest neighbour
found? J No No

Approximate nearest neighbour search using a
randomized forest of K-d trees: Algorithm summary

1. Descent all (typically 8) trees to the leaf node

2. Search k-d tree bins in order of distance from query

« Distance between the query and the bin is defined as the minimum
distance between the query and any point on the bin boundary

« Requires the use of a priority queue:

> During lookup an entry is added to the priority queue about the option
not taken

> For multiple trees, the queue is shared among the trees

 Limit the number of neighbouring K-d tree bins to explore
(parameter of the algorithm, typically set to 512)

Experimental evaluation for SIFT matching

http://www.cs.ubc.ca/~lowe/papers/09muja.pdf

Keywords:

Abstract:

FAST APPROXIMATE NEAREST NEIGHBORS

WITH AUTOMATIC ALGORITHM CONFIGURATION

Marius Muja, David G. Lowe
Computer Science Department, University of British Columbia, Vancouver, B.C., Canada
mariusm@cs.ubc.ca, lowe@ cs.ubc.ca

nearest-neighbors search, randomized kd-trees. hierarchical k-means tree. clustering.

For many computer vision problems. the most time consuming component consists of nearest neighbor match-
ing in high-dimensional spaces. There are no known exact algorithms for solving these high-dimensional
problems that are faster than linear search. Approximate algorithms are known to provide large speedups with
only minor loss in accuracy, but many such algorithms have been published with only minimal guidance on
selecting an algorithm and its parameters for any given problem. In this paper, we describe a system that
answers the question, “What is the fastest approximate nearest-neighbor algorithm for my data?” Our system
will take any given dataset and desired degree of precision and use these to automatically determine the best
algorithm and parameter values. We also describe a new algorithm that applies priority search on hierarchical
k-means trees. which we have found to provide the best known performance on many datasets. After testing a
range of alternatives, we have found that multiple randomized k-d trees provide the best performance for other
datasets. We are releasing public domain code that implements these approaches. This library provides about
one order of maenitude improvement in query time over the best previously available software and provides

Randomized K-d trees

Performance w.r.t. the number of trees

- ™ :

&) L .

E

(0] - .

@

E - .

(O] L .

= - S R R

5 10' e T T]

> e e e e e

o i

Q_ L T T

> .

3 S

@ T R

0_) 1

Q :

1 N o R ‘ --
-------------------------------- —70% precision‘
. s o | = = —95% precision

10 = ' '

10° 10' 10°

Number of trees

Figure 2: Speedup obtained by using multiple random kd-
trees (100K SIFT features dataset)

Randomized K-d trees

Performance w.r.t. the number of dimensions

SRR . 1 i iiiiii | —e—20% precision —A—81% precision | "I
:i| —%— 68% precision —%— 85% precision
2| —+—92% precision[] —+—91% precision R
-g, | —A—98% precision] § || —©—97%precision| i i
© L S Ne i ®
[0} @
- o
8 10)':3 8
= 5 =
'q—) CR) VR edeiadiat LN Lot 6
- I TR R T NERE T T . FUpty iy U S0 P N SO A A S s >
o (o]
o =
10 f::i:
g 10 g 2
%) %)
0 1 ; i
10 M- M " N PR | M " PSR S 10 " " PR S | " " PR S |
10’ 10° 10° 10’ 10° 10°
Dimensions Dimensions
(a) Random vectors (b) Image patches

Figure 4: Search efficiency for data of varying dimensionality. The random vectors (a) represent the hardest case in which
dimensions have no correlations, while most real-world problems behave more like the image patches (b)

Randomized K-d trees: discussion

* Find approximate nearest neighbor in O(logN) time,
where N is the number of data points.

* Increased memory requirements: needs to store multiple
(~8) trees

« Good performance in practice for recognition problems
(NN-search for SIFT descriptors and image patches).

* Code available online:
http://people.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN

Variation: K-means tree

 Partition of the space is determined by recursive
application of k-means clustering.

« Cell boundaries are not axis aligned, but given by the set
of cluster centers.

» Also called “tree structured vector quantization™.

* Finding nearest neighbor to a query point involves
recursively finding nearest cluster center.

* Look-up complexity O(logN)

Example

Tree construction:

Figure credit: David Nister

Example

Query look-up:

Figure credit: David Nister

Indexing local features:
approximate nearest neighbor search

10

8t

Best-Bin First (BBF), a variant of k-d
trees that uses priority queue to

examine most promising branches
first [Beis & Lowe, CVPR 1997]

ool ,

0010 »

0000

(3)

(L)

(2)

Locality-Sensitive Hashing (LSH), a
randomized hashing technique using
hash functions that map similar
points to the same bin, with high
probability [Indyk & Motwani, 1998]

Locality Sensitive Hashing (LSH)

ldea: construct hash functions g: R4—Z¥ such that

for any points p,q:

If ||p-q|| =r, then Pr[g(p)=g(q)] is “high” or “not-so-small”
If ||p-q]| > cr, then Pr[g(p)=g(q)] is “small”

Example of g: linear projections

g(p)=<h4(p),hy(p),...,n(pP)>, where hy (p)=|(p*X+b)/w]

|.] is the “floor” operator.

X. are sampled from a Gaussian.

w is the width of each quantization bin.

b is sampled from uniform distr. [0,w]. [Datar-Immorlica-Indyk-Mirrokni'04]

Locality Sensitive Hashing (LSH)

« Choose a random projection Q

. Project points 50 /e/
« Points close in the original space O//

remain close under the projection o ©

« Unfortunately, converse not true e

« Answer: use multiple quantized projections which define a
high-dimensional “grid”

Slide: Philbin, Chum, Isard, Zissrman

Locality Sensitive Hashing (LSH)

« Cell contents can be efficiently

Indexed using a hash table

« Repeat to avoid quantization errors OO’
(0,2) (1,3) (2,4)

near the cell boundaries

« Point that shares at least one cell = potential candidate

« Compute distance to all candidates

Slide: Philbin, Chum, Isard, Zissrman

LSH: discussion

In theory, query time is O(kL), where k is the number of
projections and L is the number of hash tables

|.e. independent of the number of points, N.

In practice, LSH has high memory requirements as large
number of projections/hash tables are needed.

Code and more materials available online:
http://www.mit.edu/~andoni/LSH/

See also:
http://cobweb.ecn.purdue.edu/~malcolm/yahoo/
Slaney2008(LSHTutorialDraft).pdf

Comparison of approximate NN-search methods

Dataset: 100K SIFT descriptors

3

10 - e ———

—%— rand. kd-trees - sift 100K
—&— ANN - sift 100K
—6— LSH - sift 100K

Speedup over linear search

50 60 70
Correct neighbors

80 90

(%)

100

Code for all methods available online, see Muja&Lowe’09

Figure: Muja&Lowe’09

Another idea: visual indexing using inverted files

 |Is storing all feature descriptors in memory feasible?
Example: N = 107 images, 100 features, 1TB memory?

« Look how text-based search engines (Google) index
documents — inverted files.

dl d2 d3 d4
com n
Document common people It sculpture common commo
. sculpture
collection: e —
people people
common sculpture people
people common
Inverted file: Term List of hits (occurrences in documents)

People [d1:hit hit hit], [d4:hit hit] ...
Common [d1:hit hit], [d3: hit], [d4: hit hit hit] ...
Sculpture [d2:hit], [d3: hit hit hit] ...

Need to map feature descriptors to “visual words”.

Visual words: main idea

some local features from a number of images ...

Extract

g

e.g., SIFT descriptor space: each
point is 128-dimensional

Slide credit: D. Nister

Visual words: main idea

Slide credit: D. Nister

Visual words: main idea

Slide credit: D. Nister

Visual words: main idea

_

!

|

| - ,7. >
— > []

L —
s»‘*—
——

//

9

|
I

Slide credit: D. Nister

Slide credit: D. Nister

° o
o o
([
° o
([
o
.. o R
o fR.are. .-
o L] .. . °
¢ ¢, 9 ‘e’ ° ° ° .
° oy o
. ® o ... @ .. ® .
. © ° ° L .o : . N °
e, .. :.°. ° oo..o o’ e
[] ° ..o e o:0
°".O'ooo' ..°. ¢
. .. .O.o ..0330 .. °
° ° ° ™ e ° °e
.. ...o e [IS ° oo)
‘s o o do *° ° .o %® . *
() e L, ° o o °
L4 . ‘ ° .. []
° ° o
LK) o ¢° o y .
[] .. [® . o.. .‘ °
... .. [] ° L4 .O o. []
® oo o 00 ° o °
d .. ¢ [J
[J e ° i .. *
o * o . °
[])
[]
[] * ..
[] . °
[]

Slide credit: D. Nister

Visual words: main idea

Map high-dimensional descriptors to tokens/words by

quantizing the feature space
* Quantize via

clustering, let
cluster centers be
the prototype
“words”

v
/®) / escriptor space

K. Grauman, B. Leibe

Visual words: main idea

Map high-dimensional descriptors to tokens/words by

quantizing the feature space

* Determine which
word to assign to
each new image
region by finding
the closest cluster
center.

K. Grauman, B. Leibe

Visual words

Example: each gro uunnuuuuuu
of patghés belor?gsutlcj) Eﬁuuuuuunu
the same visual word Euuuuupnun
sle/s ol wlslwialn
alalelenle/oinliels
ansaminila nin
=l BNt IR LV
N
MNSNNN- <«Ew-
AN s W ="
DI IENES
el ACALIEN 5 dT3]S

Visual words

* First explored for texture and
material representations

 Texton = cluster center of
filter responses over collection
of images

» Describe textures and
materials based on distribution
of prototypical texture
elements.

Leung & Malik 1999; Varma &
Zisserman, 2002; Lazebnik,
Schmid & Ponce, 2003;

Slide: Grauman&Leibe

Inverted file index for images comprised of
visual words

Word List of image
number numbers

1)\— 510, ...
2, 10..

frame #5 frame #10
Y

« Score each image by the number of common visual words
(tentative correspondences)

Another interpretation:
Bags of visual words

Summarize entire image based
on its distribution (histogram)

of visual word occurrences.

Analogous to bag of words

representation commonly used

for documents.

> o
&5 &
& & &
g5 8
T o $
d ju— oo o O 1 oo 2 O oo e

Slide: Grauman&Leibe, Image: L. Fei-Fei

Hofmann 2001

£ - lew & 7 T
o A j i @ . t M ‘\' b
‘ ke m </ X L) =i N &‘

A —

[] M |_| }
A

JT ' . W) fee
A/

S h @

Another interpretation: the bag-of-words model

For a vocabulary of size K, each image is represented by a
K-vector T
V4 =— (tl,...,ti,...,tK)

where t is the number of occurrences of visual word i.

Images are ranked by the normalized scalar product between
the query vector v, and all vectors in the database vy

T
f ‘d

Vg Vd
Scalar product can be computed efficiently using inverted file.

vl Ivall2

What if vectors are binary? What is the meaning of VqTVd ?

Strategy |: Match descriptor vectors from all images

regions invar.iant
descriptor
vectors
frames

Compute affine covariant regions in each frame independently

“Label” each region by a vector of descriptors based on its intensity

Finding corresponding regions is transformed to finding nearest neighbour vectors
Rank retrieved frames by number of corresponding regions

Verify retrieved frame based on spatial consistency

ok~ wbh =

Strategy Il: Match histograms of visual words

- invariant : Singl t
regions _ Quantize ingle vector
vectors
frames)
->

Compute affine covariant regions in each frame independently

“Label” each region by a vector of descriptors based on its intensity

Build histograms of visual words by descriptor quantization

Rank retrieved frames by matching vis. word histograms using inverted files.
Verify retrieved frame based on spatial consistency

ok~ oD~

Visual words: discussion |.

Efficiency — cost of quantization

* Need to still assign each local descriptor to one of the

cluster centers. Could be prohibitive for large vocabularies
(K=1M)

* Approximate NN-search still needed.

* True also for building the vocabulary.

Vocabulary building:
Quantization using K-means

« K-means overview: lterate

KT
Ve

Initialize cluster Find nearest cluster to each Re-compute cluster
centres datapoint (slow) O(N K) centres as centroid

« K-means provably locally minimizes the sum of squared
errors (SSE) between a cluster centre and its points

« Note also that the quantizer depends on the initialization.

« The nearest neighbour search is the bottleneck

Vocabulary building: Efficient K-means

« Use the approximate nearest neighbour search (randomized
forest of kd-trees or k-means trees) to determine the closest
cluster centre for each data point.

« Original K-means complexity: O(N K)

. Approximate K-means / k-means tree complexity: O(N log K)

« Can be scaled to very large K.

Visual words: discussion Il.

Generalization

e |s vocabulary/quantization learned on one dataset good
for searching another dataset?

* Not really — need to build vocabulary for each dataset.

But, see recent work by Jegou et al.:

Hamming Embedding and Weak Geometry Consistency
for Large Scale Image Search, ECCV’2008

http://lear.inrialpes.fr/pubs/2008/JDS08a/

Visual words: discussion lll.

« What about quantization effects?
* Visual word assignment can change due to e.q.
noise in region detection,
descriptor computation or
non-modeled image variation (3D effects, lighting)

See also:
Jegou et al., ECCV’2008, http://lear.inrialpes.fr/pubs/2008/JDS08a/
Philbin et al. CVPR’08, http://www.robots.ox.ac.uk/~vga/publications/html/philbin08-bibtex.html

Visual words: discussion V.

* Need to determine the size of the vocabulary, K.

 Other algorithms for building vocabularies, e.qg.

agglomerative clustering / mean-shift, but typically more
expensive.

« Supervised quantization?: also give examples of images /
descriptors which should and should not match.

Demo

Oxford Buildings Search

http://www.robots.ox.ac.uk/~vgg/research/oxbuildings/
iIndex.html

What objects/scenes local regions do not work on?

il

‘ul

£

o

What objects/scenes local regions do not work on?

E.g. texture-less objects, objects defined by shape, deformable

objects, wiry objects.

Other applications of large scale visual search

Sony Aibo (Evolution Robotics)

AIBO® Entertainment Robot

Official U.S. Resources and Online Destinations

SIFT usage

 Recognize
docking station

e Communicate
with visual cards

Other uses
* Place recognition
* Loop closure in SLAM

re-order Now !

Slide credit: David Lowe

Example Applications

Aachen Cathedr

Mobile tourist guide

« Self-localization

e Object/building recognition
« Photo/video augmentation

[Quack, Leibe, Van Gool, CIVR’08]

Web Demo: Movie Poster Recognition

@& http://www.kooaba.ch - kooaba ooserver: random_movie - Mozilla Firefox

50’000 movie
posters indexed

Query-by-image
from mobile phone
available in Switzer-
land

Done

lkooQba

JAUKIE

CHAN WILSON

$

SHANGHAI
NOON

Show another poster

1. Take a picture with your mobile phone camera

2. Send it:
o in Switzerland to 5555 (Orange Customers 079 394 5700).
o in Germany to 84000
o everywhere else to m@kooaba.ch

3. Search result is sent straight to your phone.

BAPL,@®

@b

http://www.kooaba.com/en/products engine.html#

K. Grauman, B. Leibe

70

Image Auto-Annotation

Left: Wikipedia image
Right: closest match from Flickr

[Quack CIVR’08]

Building Rome in a Day — or —

matching and 3D reconstruction in large
unstructured datasets.

Goal: Build a 3D model of a city from
a large collection of images downloaded from the Internet

Use a cluster with 500 CPU cores.

Building Rome in a Day, Sameer Agarwal, Noah Snavely, lan
Simon, Steven M. Seitz and Richard Szeliski,

International Conference on Computer Vision, 2009
http://grail.cs.washington.edu/rome/

Slide: N. Snavely

ﬁiciu’: Crea;ive C;mmons -.Mézi.li_a Firefox

File Edt View Go Bookmarks Tools Help

@ e C} ¥ @ | X @ X http://www.flickr. com/creativecommons/by-nc-nd-2. 0/ l' © Go |IGL
Home | Tags | Groups | People | Invile Logged in o= Jimantha:) | Your Account | Help | Sign Out el
Photos: Yours - Upload - Organize - Your Contacts' - Explore fIiCkr‘

Creative Commons / Attribution-NonCommercial-NoDerivs License

|

(Or, browse popular tags)

Here are the 100 most recent licensed phoos:

1 darren *djp* From carren ‘dp* rom dizz

=rom metamell Srom muqey 1274
paine pane

Done

Reproduced with permission of Yahoo! Inc. © 2005 by Yahoo! Inc.
YAHOO! and the YAHOO! logo are trademarks of Yahoo! Inc.

g

Adblock

Slide: N. Snavely

Photo Tourism overview

Input photographs

r

.

Scene

~\

reconstruction :I\l/

J

Relative camera
positions and orientations

Point cloud

Sparse correspondence

Photo

_ Explorer)

Slide: N. Snavely

Photo Tourism overview

-
Scene

reconstruction

.

Slide: N. Snavely

Scene reconstruction

Automatically estimate

« position, orientation, and focal length of cameras

« 3D positions of feature points

[Feature detection]

[Feature matching]

Correspondence
estimation

-

g

~

Incremental

structure

from motion

J

Slide: N. Snavely

Feature detection

Detect features using SIFT [Lowe, [JCV 2004]

Slide: N. Snavely

Feature detection

Detect features using SIFT [Lowe, [JCV 2004]

Slide: N. Snavely

Feature detection

Detect features using SIFT [Lowe, [JCV 2004]

Slide: N. Snavely

Feature matching

Complexity of matching:

Unfortunately, even with a well optimized implementa-
tion of the matching procedure described above, it is not
practical to match all pairs of images in our corpus. For a
corpus of 100,000 images, this translates into 5,000,000,000
pairwise comparisons, which with 500 cores operating at 10
image pairs per second per core would require about 11.5
days to match. Furthermore, this does not even take into
account the network transfers required for all cores to have
access to all the SIFT feature data for all images.

From Agarwal et al. “Building
Rome in a Day”, ICCV’09

Feature matching

Obtain candidate pairs of images to match using
visual vocabulary matching based on k-means tree

Figure: N. Snavely

Feature matching

Match features between candidate pairs using
K-d trees built on SIFT descriptors.

Figure: N. Snavely

Feature matching

Refine matching using RANSAC [Fischler & Bolles 1987]
to estimate fundamental matrices between pairs

Slide: N. Snavely

Structure from motion (R. Keriven’s class)

Q D3 minimize

f(R,T,P)

/
\/\
/
L
e
/
/
'/
p
Camera 1
Rl’ tl Camera 2 R3’ t3
sz tz

Slide: N. Snavely

Example of the final 3D point cloud and cameras
57,845 downloaded images, 11,868 registered images. This video: 4,619 images.

-

