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Plan for the reminder of the class today 

1.  Assignments 

2.  Brief review of linear filtering 

3.  Efficient indexing for visual search and 
recognition of particular objects 



Admin Stuff 

Mailing list for the class 
  - Please write your name and email address 
  - Will be used to distribute class 

announcements 



Assignments 

Due date for assignment 1 (Scale-invariant blob 
detection) postponed to next week (Nov. 3rd). 

Assignment 2: Stitching photo-mosaics out. 
Note that due date is still two weeks from now 
(Nov. 10th). 

See the course webpage: 
http://www.di.ens.fr/willow/teaching/recvis09/ 



Assignment 2: Stitching photo-mosaics 



Assignments 

Due date for assignment 1 (Scale-invariant blob 
detection) postponed to next week (Nov. 3rd). 

Assignment 2: Stitching photo-mosaics out. 
Note that due date is still two weeks from now 
(Nov. 10th). 

http://www.di.ens.fr/willow/teaching/recvis09/ 

Any questions? 



Linear filtering – brief review 
With slides from: S. Lazebnik and others 



Motivation I.: Blob detection 
Assignment I.: Scale-invariant blob detection 

using the Laplacian of Gaussian filter 

filt_size =  2*ceil(3*sigma)+1; % filter size 
LoG       =  sigma^2 * fspecial('log', filt_size, sigma); 
imFiltered = imfilter(im, LoG, 'same', 'replicate'); 



Motivation II: Noise reduction 
Given a camera and a still scene, how can you 

reduce noise? 

Take lots of images and average them!  
What’s the next best thing? 

Source: S. Seitz 



•  Let’s replace each pixel with a weighted 
average of its neighborhood 

•  The weights are called the filter kernel 
•  What are the weights for a 3x3 moving 

average? 

Moving average 

1 1 1 

1 1 1 

1 1 1 

“box filter” 

Source: D. Lowe 



Defining convolution 

f 

•  Let f be the image and g be the kernel. The 
output of convolving f with g is denoted f * g. 

Source: F. Durand 

•    Convention: kernel is “flipped” 
•    MATLAB: conv2 vs. filter2 (also imfilter) 



Key properties 
•  Linearity: filter(f1 + f2 ) = filter(f1) + filter(f2) 
•  Shift invariance: same behavior regardless of 

pixel location: filter(shift(f)) = shift(filter(f)) 
•  Theoretical result: any linear shift-invariant 

operator can be represented as a convolution 

Source: S. Lazebnik 



Properties in more detail 
•  Commutative: a * b = b * a 

•  Conceptually no difference between filter and signal 

•  Associative: a * (b * c) = (a * b) * c 
•  Often apply several filters one after another: (((a * b1) * b2) * b3) 
•  This is equivalent to applying one filter: a * (b1 * b2 * b3) 

•  Distributes over addition: a * (b + c) = (a * b) + (a * c) 
•  Scalars factor out: ka * b = a * kb = k (a * b) 
•  Identity: unit impulse e = […, 0, 0, 1, 0, 0, …], 

a * e = a 

Source: S. Lazebnik 



Annoying details 
What is the size of the output? 
•  MATLAB: filter2(g, f, shape) 

•  shape = ‘full’: output size is sum of sizes of f and g 
•  shape = ‘same’: output size is same as f 
•  shape = ‘valid’: output size is difference of sizes of f and g  

f 

g g 

g g 

f 

g g 

g g 

f 

g g 

g g 

full same valid 

Source: S. Lazebnik 



Annoying details 
What about near the edge? 

•  the filter window falls off the edge of the image 
•  need to extrapolate 
•  methods: 

–  clip filter (black) 
–  wrap around 
–  copy edge 
–  reflect across edge 

Source: S. Marschner 



Annoying details 
What about near the edge? 

•  the filter window falls off the edge of the image 
•  need to extrapolate 
•  methods (MATLAB): 

–  clip filter (black):  imfilter(f, g, 0) 
–  wrap around:   imfilter(f, g, ‘circular’) 
–  copy edge:   imfilter(f, g, ‘replicate’) 
–  reflect across edge:  imfilter(f, g, ‘symmetric’) 

Source: S. Marschner 



Practice with linear filters 

0 0 0 
0 1 0 
0 0 0 

Original

?

Source: D. Lowe 



Practice with linear filters 

0 0 0 
0 1 0 
0 0 0 

Original Filtered 
(no change)

Source: D. Lowe 



Practice with linear filters 

0 0 0 
1 0 0 
0 0 0 

Original

?

Source: D. Lowe 



Practice with linear filters 

0 0 0 
1 0 0 
0 0 0 

Original Shifted left
By 1 pixel

Source: D. Lowe 



Practice with linear filters 

Original

?
1 1 1 
1 1 1 
1 1 1 

Source: D. Lowe 



Practice with linear filters 

Original

1 1 1 
1 1 1 
1 1 1 

Blur (with a
box filter)

Source: D. Lowe 



Practice with linear filters 

Original

1 1 1 
1 1 1 
1 1 1 

0 0 0 
0 2 0 
0 0 0 - ?

(Note that filter sums to 1)

Source: D. Lowe 



Practice with linear filters 

Original

1 1 1 
1 1 1 
1 1 1 

0 0 0 
0 2 0 
0 0 0 -

Sharpening filter 
-  Accentuates differences 
with local average 

Source: D. Lowe 



Sharpening 

Source: D. Lowe 



Smoothing with box filter revisited 
•  Smoothing with an average actually doesn’t compare 

at all well with a defocused lens 
•  Most obvious difference is that a single point of light 

viewed in a defocused lens looks like a fuzzy blob; but 
the averaging process would give a little square 

Source: D. Forsyth 



Smoothing with box filter revisited 
•  Smoothing with an average actually doesn’t compare 

at all well with a defocused lens 
•  Most obvious difference is that a single point of light 

viewed in a defocused lens looks like a fuzzy blob; but 
the averaging process would give a little square 

•  Better idea: to eliminate edge effects, weight 
contribution of neighborhood pixels according to their 
closeness to the center, like so: 

“fuzzy blob” 
Source: S. Lazebnik 



Gaussian Kernel 

•  Constant factor at front makes volume sum to 1 (can be 
ignored, as we should re-normalize weights to sum to 1 in 
any case) 

0.003   0.013   0.022   0.013   0.003 
0.013   0.059   0.097   0.059   0.013 
0.022   0.097   0.159   0.097   0.022 
0.013   0.059   0.097   0.059   0.013 
0.003   0.013   0.022   0.013   0.003 

5 x 5, σ = 1 

Source: C. Rasmussen  



Choosing kernel width 
•  Gaussian filters have infinite support, but 

discrete filters use finite kernels 

Source: K. Grauman 



Choosing kernel width 
•  Rule of thumb: set filter half-width to about  

3 σ 

Source: S. Lazebnik 



Example: Smoothing with a Gaussian 

Source: S. Lazebnik 



Mean vs. Gaussian filtering 

Source: S. Lazebnik 



Gaussian filters 
•  Remove “high-frequency” components from 

the image (low-pass filter) 
•  Convolution with self is another Gaussian 

•  So can smooth with small-width kernel, repeat, and get 
same result as larger-width kernel would have 

•  Convolving two times with Gaussian kernel of width σ is 
same as convolving once with kernel of width  σ√2  

•  Separable kernel 
•  Factors into product of two 1D Gaussians 

Source: K. Grauman 



Separability of the Gaussian filter 

Source: D. Lowe 



Separability example 

* 

* 

= 

= 

2D convolution 
(center location only) 

Source: K. Grauman 

The filter factors 
into a product of 1D 

filters: 

Perform convolution 
along rows: 

Followed by convolution 
along the remaining column: 



Separability 
•  Why is separability useful in practice? 

•  Assignment 1:  
Is the Laplacian of Gaussian filter separable? 


