
Reconnaissance d’objets et
vision artificielle

Josef Sivic
http://www.di.ens.fr/~josef

Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548
Laboratoire d’Informatique,

Ecole Normale Supérieure, Paris

Reconnaissance d’objets et vision artificielle 2009

Plan for the reminder of the class today

1.  Assignments

2. Brief review of linear filtering

3. Efficient indexing for visual search and
recognition of particular objects

Admin Stuff

Mailing list for the class
 - Please write your name and email address
 - Will be used to distribute class

announcements

Assignments

Due date for assignment 1 (Scale-invariant blob
detection) postponed to next week (Nov. 3rd).

Assignment 2: Stitching photo-mosaics out.
Note that due date is still two weeks from now
(Nov. 10th).

See the course webpage:
http://www.di.ens.fr/willow/teaching/recvis09/

Assignment 2: Stitching photo-mosaics

Assignments

Due date for assignment 1 (Scale-invariant blob
detection) postponed to next week (Nov. 3rd).

Assignment 2: Stitching photo-mosaics out.
Note that due date is still two weeks from now
(Nov. 10th).

http://www.di.ens.fr/willow/teaching/recvis09/

Any questions?

Linear filtering – brief review
With slides from: S. Lazebnik and others

Motivation I.: Blob detection
Assignment I.: Scale-invariant blob detection

using the Laplacian of Gaussian filter

filt_size = 2*ceil(3*sigma)+1; % filter size
LoG = sigma^2 * fspecial('log', filt_size, sigma);
imFiltered = imfilter(im, LoG, 'same', 'replicate');

Motivation II: Noise reduction
Given a camera and a still scene, how can you

reduce noise?

Take lots of images and average them!
What’s the next best thing?

Source: S. Seitz

•  Let’s replace each pixel with a weighted
average of its neighborhood

•  The weights are called the filter kernel
•  What are the weights for a 3x3 moving

average?

Moving average

1 1 1

1 1 1

1 1 1

“box filter”

Source: D. Lowe

Defining convolution

f

•  Let f be the image and g be the kernel. The
output of convolving f with g is denoted f * g.

Source: F. Durand

•  Convention: kernel is “flipped”
•  MATLAB: conv2 vs. filter2 (also imfilter)

Key properties
•  Linearity: filter(f1 + f2) = filter(f1) + filter(f2)
•  Shift invariance: same behavior regardless of

pixel location: filter(shift(f)) = shift(filter(f))
•  Theoretical result: any linear shift-invariant

operator can be represented as a convolution

Source: S. Lazebnik

Properties in more detail
•  Commutative: a * b = b * a

•  Conceptually no difference between filter and signal

•  Associative: a * (b * c) = (a * b) * c
•  Often apply several filters one after another: (((a * b1) * b2) * b3)
•  This is equivalent to applying one filter: a * (b1 * b2 * b3)

•  Distributes over addition: a * (b + c) = (a * b) + (a * c)
•  Scalars factor out: ka * b = a * kb = k (a * b)
•  Identity: unit impulse e = […, 0, 0, 1, 0, 0, …],

a * e = a

Source: S. Lazebnik

Annoying details
What is the size of the output?
•  MATLAB: filter2(g, f, shape)

•  shape = ‘full’: output size is sum of sizes of f and g
•  shape = ‘same’: output size is same as f
•  shape = ‘valid’: output size is difference of sizes of f and g

f

g g

g g

f

g g

g g

f

g g

g g

full same valid

Source: S. Lazebnik

Annoying details
What about near the edge?

•  the filter window falls off the edge of the image
•  need to extrapolate
•  methods:

–  clip filter (black)
–  wrap around
–  copy edge
–  reflect across edge

Source: S. Marschner

Annoying details
What about near the edge?

•  the filter window falls off the edge of the image
•  need to extrapolate
•  methods (MATLAB):

–  clip filter (black): imfilter(f, g, 0)
–  wrap around: imfilter(f, g, ‘circular’)
–  copy edge: imfilter(f, g, ‘replicate’)
–  reflect across edge: imfilter(f, g, ‘symmetric’)

Source: S. Marschner

Practice with linear filters

0 0 0
0 1 0
0 0 0

Original

?

Source: D. Lowe

Practice with linear filters

0 0 0
0 1 0
0 0 0

Original Filtered
(no change)

Source: D. Lowe

Practice with linear filters

0 0 0
1 0 0
0 0 0

Original

?

Source: D. Lowe

Practice with linear filters

0 0 0
1 0 0
0 0 0

Original Shifted left
By 1 pixel

Source: D. Lowe

Practice with linear filters

Original

?
1 1 1
1 1 1
1 1 1

Source: D. Lowe

Practice with linear filters

Original

1 1 1
1 1 1
1 1 1

Blur (with a
box filter)

Source: D. Lowe

Practice with linear filters

Original

1 1 1
1 1 1
1 1 1

0 0 0
0 2 0
0 0 0 - ?

(Note that filter sums to 1)

Source: D. Lowe

Practice with linear filters

Original

1 1 1
1 1 1
1 1 1

0 0 0
0 2 0
0 0 0 -

Sharpening filter
-  Accentuates differences
with local average

Source: D. Lowe

Sharpening

Source: D. Lowe

Smoothing with box filter revisited
•  Smoothing with an average actually doesn’t compare

at all well with a defocused lens
•  Most obvious difference is that a single point of light

viewed in a defocused lens looks like a fuzzy blob; but
the averaging process would give a little square

Source: D. Forsyth

Smoothing with box filter revisited
•  Smoothing with an average actually doesn’t compare

at all well with a defocused lens
•  Most obvious difference is that a single point of light

viewed in a defocused lens looks like a fuzzy blob; but
the averaging process would give a little square

•  Better idea: to eliminate edge effects, weight
contribution of neighborhood pixels according to their
closeness to the center, like so:

“fuzzy blob”
Source: S. Lazebnik

Gaussian Kernel

•  Constant factor at front makes volume sum to 1 (can be
ignored, as we should re-normalize weights to sum to 1 in
any case)

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

5 x 5, σ = 1

Source: C. Rasmussen

Choosing kernel width
•  Gaussian filters have infinite support, but

discrete filters use finite kernels

Source: K. Grauman

Choosing kernel width
•  Rule of thumb: set filter half-width to about

3 σ

Source: S. Lazebnik

Example: Smoothing with a Gaussian

Source: S. Lazebnik

Mean vs. Gaussian filtering

Source: S. Lazebnik

Gaussian filters
•  Remove “high-frequency” components from

the image (low-pass filter)
•  Convolution with self is another Gaussian

•  So can smooth with small-width kernel, repeat, and get
same result as larger-width kernel would have

•  Convolving two times with Gaussian kernel of width σ is
same as convolving once with kernel of width σ√2

•  Separable kernel
•  Factors into product of two 1D Gaussians

Source: K. Grauman

Separability of the Gaussian filter

Source: D. Lowe

Separability example

*

*

=

=

2D convolution
(center location only)

Source: K. Grauman

The filter factors
into a product of 1D

filters:

Perform convolution
along rows:

Followed by convolution
along the remaining column:

Separability
•  Why is separability useful in practice?

•  Assignment 1:
Is the Laplacian of Gaussian filter separable?

