Reconnaissance d'objets et vision artificielle

Josef Sivic

http://www.di.ens.fr/~josef
Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548
Laboratoire d'Informatique,
Ecole Normale Supérieure, Paris

Plan for the reminder of the class today

1. Assignments
2. Brief review of linear filtering
3. Efficient indexing for visual search and recognition of particular objects

Admin Stuff

Mailing list for the class

- Please write your name and email address
- Will be used to distribute class announcements

Assignments

Due date for assignment 1 (Scale-invariant blob detection) postponed to next week (Nov. $3^{\text {rd }}$).

Assignment 2: Stitching photo-mosaics out. Note that due date is still two weeks from now (Nov. 10 ${ }^{\text {th }}$).

See the course webpage:
http://www.di.ens.fr/willow/teaching/recvis09/

Assignment 2: Stitching photo-mosaics

The goal of the assignment is to automatically stitch images acquired by a panning camera into a mosaic as illustrated in figures 1 and 2 below.

Fig.1: Three images acquired by a panning camera.

Fig.2: Images stitched to a mosaic.

Assignments

Due date for assignment 1 (Scale-invariant blob detection) postponed to next week (Nov. $3^{\text {rd }}$).

Assignment 2: Stitching photo-mosaics out. Note that due date is still two weeks from now (Nov. 10 ${ }^{\text {th }}$).
http://www.di.ens.fr/willow/teaching/recvis09/

Any questions?

Linear filtering - brief review

With slides from: S. Lazebnik and others

Motivation I.: Blob detection

Assignment I.: Scale-invariant blob detection using the Laplacian of Gaussian filter


```
filt_size = 2*ceil(3*sigma)+1; % filter size
LoG = sigma^2 * fspecial('log', filt_size, sigma);
imFiltered = imfilter(im, LoG, 'same', 'replicate');
```


Motivation II: Noise reduction

Given a camera and a still scene, how can you reduce noise?

Take lots of images and average them! What's the next best thing?

Moving average

- Let's replace each pixel with a weighted average of its neighborhood
- The weights are called the filter kernel
- What are the weights for a 3×3 moving average?

"box filter"

Defining convolution

- Let f be the image and g be the kernel. The output of convolving f with g is denoted $f^{*} g$.

$$
(f * g)[m, n]=\sum_{k, l} f[m-k, n-l] g[k, l]
$$

- Convention: kernel is "flipped"
- MATLAB: conv2 vs. filter2 (also imfilter)

Key properties

- Linearity: $\operatorname{filter}\left(f_{1}+f_{2}\right)=\operatorname{filter}\left(f_{1}\right)+\operatorname{filter}\left(f_{2}\right)$
- Shift invariance: same behavior regardless of pixel location: filter(shift(f)) = shift(filter (f))
- Theoretical result: any linear shift-invariant operator can be represented as a convolution

Properties in more detail

- Commutative: $a * b=b^{*} a$
- Conceptually no difference between filter and signal
- Associative: $a^{*}\left(b^{*} c\right)=\left(a^{*} b\right)$ * c
- Often apply several filters one after another: $\left(\left(\left(a{ }^{*} b_{1}\right) * b_{2}\right) * b_{3}\right)$
- This is equivalent to applying one filter: a * $\left(b_{1}{ }^{*} b_{2}{ }^{*} b_{3}\right)$
- Distributes over addition: $a^{*}(b+c)=\left(a^{*} b\right)+\left(a^{*} c\right)$
- Scalars factor out: $k a^{*} b=a{ }^{*} k b=k\left(a{ }^{*} b\right)$
- Identity: unit impulse $e=[\ldots, 0,0,1,0,0, \ldots]$, $a{ }^{*} e=a$

Annoying details

What is the size of the output?

- MATLAB: filter2(g, f, shape)
- shape = 'full': output size is sum of sizes of f and g
- shape = 'same': output size is same as f
- shape = 'valid': output size is difference of sizes of f and g

Annoying details

What about near the edge?

- the filter window falls off the edge of the image
- need to extrapolate
- methods:
- clip filter (black)
- wrap around
- copy edge
- reflect across edge

Annoying details

What about near the edge?

- the filter window falls off the edge of the image
- need to extrapolate
- methods (MATLAB):
- clip filter (black): imfilter(f, g, 0)
- wrap around: imfilter(f, g, 'circular')
- copy edge: imfilter(f, g, 'replicate’)
- reflect across edge: imfilter(f, g, ‘symmetric’)

Practice with linear filters

$?$

Practice with linear filters

Original

Filtered (no change)

Practice with linear filters

$?$

Practice with linear filters

Original

Shifted left
By 1 pixel

Practice with linear filters

?

Original

Practice with linear filters

Original

Blur (with a box filter)

Practice with linear filters

Original

(Note that filter sums to 1)

Practice with linear filters

Original

Sharpening filter

- Accentuates differences with local average

Sharpening

before

after

Smoothing with box filter revisited

- Smoothing with an average actually doesn't compare at all well with a defocused lens
- Most obvious difference is that a single point of light viewed in a defocused lens looks like a fuzzy blob; but the averaging process would give a little square

Smoothing with box filter revisited

- Smoothing with an average actually doesn't compare at all well with a defocused lens
- Most obvious difference is that a single point of light viewed in a defocused lens looks like a fuzzy blob; but the averaging process would give a little square
- Better idea: to eliminate edge effects, weight contribution of neighborhood pixels according to their closeness to the center, like so:

[^0]
Gaussian Kernel

$$
G_{\sigma}=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{\left(x^{2}+y^{2}\right)}{2 \sigma^{2}}}
$$

0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013
0.003	0.013	0.022	0.013	0.003
$5 \times 5, \sigma=1$				

- Constant factor at front makes volume sum to 1 (can be ignored, as we should re-normalize weights to sum to 1 in any case)

Choosing kernel width

- Gaussian filters have infinite support, but discrete filters use finite kernels

Choosing kernel width

- Rule of thumb: set filter half-width to about 3σ

Effect of σ

Example: Smoothing with a Gaussian

Mean vs. Gaussian filtering

Gaussian filters

- Remove "high-frequency" components from the image (low-pass filter)
- Convolution with self is another Gaussian
- So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have
- Convolving two times with Gaussian kernel of width σ is same as convolving once with kernel of width $\sigma \sqrt{ } 2$
- Separable kernel
- Factors into product of two 1D Gaussians

Separability of the Gaussian filter

$$
\begin{aligned}
\mathcal{G}_{\sigma}(x, y) & =\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} \\
& =\left(\frac{1}{\sqrt{2 \pi} \sigma} \exp ^{-\frac{x^{2}}{2 \sigma^{2}}}\right)\left(\frac{1}{\sqrt{2 \pi} \sigma} \exp ^{-\frac{y^{2}}{2 \sigma^{2}}}\right)
\end{aligned}
$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y In this case, the two functions are the (identical) 1D Gaussian

Separability example

Followed by convolution
along the remaining column:

Separability

- Why is separability useful in practice?
- Assignment 1 :

Is the Laplacian of Gaussian filter separable?

[^0]: "fuzzy blob"

