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et vision artificielle
http://www.di.ens.fr/willow/teaching/recvis09

Lecture 3

A refresher on camera geometry
Image alignment and 3D alignment




Check it out!

Cours de "Computational photography”
de Frédo Durand
Le jeudi de 9h30 a 12h30 Salle Info 2

http://people.csail.mit.edu/fredo/Classes/Comp_Photo_ENS/




N'oubliez pas!

Premier exercice de programmation du
le 27 octobre

http://www.di.ens.fr/willow/teaching/recvis09/assignment1/




Pinhole perspective equation

NOTE: zis always negative..




Affine models: Weak perspective projection

where m= —Zf— is the magnification.
0

When the scene relief is small compared its distance from the
Camera, m can be taken constant: weak perspective projection.




Affine models: Orthographic projection

When the camera is at a
(roughly constant) distance
from the scene, take m=1.







Coordinate Changes: Pure Translations

OP=0,0,+ 0P = BP=4P+80,




Coordinate Changes: Pure Rotations




Coordinate Changes: Rotations about
the z Axis




A rotation matrix is characterized by the following
properties:

- I'ts inverse is equal to its transpose, and

* its determinant is equal to 1.

Or equivalently:

* Its rows (or columns) form a right-handed
orthonormal coordinate system.




Coordinate changes:
pure rotations







Pinhole perspective equation

NOTE: zis always negative..




The intrinsic parameters of a camera

Units:
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The intrinsic parameters of a camera

Pinhole

J Normalized
image plane

Calibration matrix

a —acotf ug)
U

p=Kp, where p(UJ and K% |0
L 0 Iy

The perspective g EMP? where M < (K 0)
projection equation Z




The extrinsic parameters of a camera

e When the camera frame (C') is different from the world frame

W °py (SR COw\ (VP
(1):(%1” 1 )(1)

e Thus,

(M=K(R t),

R =GR,

t = Oy,




Perspective projections induce projective
transformations between pianes

Scene planc




Affine cameras
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More affine cameras

Orthographic projection

Parallel projection




(Pis in homogeneous coordinates)

\ p = A P + b (neither p nor Pis in hom. coordinates)




Affine projections induce affine
transformations from planes
onto their images.

Frojection
direction

Projection
direction




I'mage alignment task

* It helps to be able to compare descriptors of local
patches surrounding interest points (cf last lecture).

e This is not strictly necessary. We will concentrate
here on the geometry of the problem.




Dealing with outliers

The set of putative matches still contains a very high
percentage of outliers

How do we fit a geometric transformation to a small
subset of all possible matches?

Possible strategies:
« RANSAC
* Incremental alignment
 Hough transform
 Hashing




Strategy 1: RANSAC

RANSAC loop (Fischler & Bolles, 1981):

Randomly select a seed group of matches
Compute transformation from seed group
Find inliers to this transformation

If the number of inliers Is sufficiently large, re-compute
least-squares estimate of transformation on all of the
Inliers

Keep the transformation with the largest number of
inliers




RANSAC example: Translation

Putative matches




RANSAC example: Translation

Select one match, count inliers




RANSAC example: Translation

Select one match, count inliers




RANSAC example: Translation

Find “average” translation vector




Strategy 2: Incremental alignment

Take advantage of strong locality constraints: only pick
close-by matches to start with, and gradually add
more matches in the same neighborhood

Approach introduced in [Ayache & Faugeras, 1982;
Hebert & Faugeras, 1983; Gaston & Lozano-Perez,

1984]

lllustrated here with the method from S. Lazebnik, C.
Schmid and J. Ponce, “Semi-local affine parts for
object recognition”, BMVC 2004




Incremental alignment: Details

Generating seed groups:
 Identify triples of neighboring features (i, j, k) in first image

« Find all triples (i, j', k') in the second image such that i* (resp.
j', K') is a putative match of i (resp. j, k), and ', k' are
neighbors of I'




Incremental alignment: Details

)

Beginning with each seed triple, repeat:

« Estimate the aligning transformation between corresponding features
In current group of matches

Grow the group by adding other consistent matches in the
neighborhood
Until the transformation is no longer consistent
or no more matches can be found




Incremental alignment: Details

/:

Beginning with each seed triple, repeat:

« Estimate the aligning transformation between corresponding features
In current group of matches

Grow the group by adding other consistent matches in the
neighborhood
Until the transformation is no longer consistent
or no more matches can be found




Incremental alignment: Details
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Beginning with each seed triple, repeat:

« Estimate the aligning transformation between corresponding features
In current group of matches

Grow the group by adding other consistent matches in the
neighborhood
Until the transformation is no longer consistent
or no more matches can be found




Incremental alignment: Details
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Beginning with each seed triple, repeat:

« Estimate the aligning transformation between corresponding features
In current group of matches

Grow the group by adding other consistent matches in the
neighborhood
Until the transformation is no longer consistent
or no more matches can be found




Strategy 3: Hough transform

Suppose our features are scale- and rotation-covariant

 Then a single feature match provides an alignment hypothesis
(translation, scale, orientation)

David G. Lowe. “Distinctive image features from scale-invariant keypoints”,
IJCV 60 (2), pp. 91-110, 2004.




Strategy 3: Hough transform

Suppose our features are scale- and rotation-covariant

 Then a single feature match provides an alignment hypothesis
(translation, scale, orientation)

Of course, a hypothesis obtained from a single match is unreliable

Solution: let each match vote for its hypothesis in a Hough space
with very coarse bins

David G. Lowe. “Distinctive image features from scale-invariant keypoints”,
IJCV 60 (2), pp. 91-110, 2004.




Hough transform

e An early type of voting scheme

e General outline:
» Discretize parameter space into bins

» For each feature point in the image, put a vote in every bin in
the parameter space that could have generated this point

* Find bins that have the most votes

- HEEEE
T
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Image space Hough parameter space

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc.
Int. Conf. High Energy Accelerators and Instrumentation, 1959




Parameter space representation

 Aline in the image corresponds to a point in Hough
space

Image space Hough parameter space

y = moz + bg




Parameter space representation

« What does a point (X, Yo) In the image space map to in
the Hough space?
« Answer: the solutions of b = —x,m + y,
e This is a line in Hough space

Image space Hough parameter space

b= —xzom + yo

Source: K. Grauman




Parameter space representation

* Where is the line that contains both (x,, y,) and
(X1,Y1)?

 |tis the intersection of the lines b = —x,m + y,and
b=-xm+y,

Image space Hough parameter space

b= —zom + yo

Source: K. Grauman




Hough transform details (D. Lowe's system)

Training phase: For each model feature, record 2D
location, scale, and orientation of model (relative to
normalized feature frame)

Test phase: Let each match between a test and a
model feature vote in a 4D Hough space

» Use broad bin sizes of 30 degrees for orientation, a factor of
2 for scale, and 0.25 times image size for location

e Vote for two closest bins in each dimension

Find all bins with at least three votes and perform
geometric verification
« Estimate least squares affine transformation
e Use stricter thresholds on transformation residual
e Search for additional features that agree with the alignment




Affine projections induce affine
transformations from planes
onto their images.

Frojection
direction

Projection
direction




Affine transformations

An affine transformation maps a parallelogram onto
another parallelogram




Fitting an affine transformation

Equation for affine transformation:

9 entries, 6 degrees of freedom

Ua=U

In general uniquely determined
by 3 correspondences

Linear least squares for
more correspondences




Strategy 4: Hashing

Make each invariant image feature into a low-dimensional “key”
that indexes into a table of hypotheses

hash table




Strategy 4: Hashing

Make each invariant image feature into a low-dimensional “key”
that indexes into a table of hypotheses

Given a new test image, compute the hash keys for all features
found in that image, access the table, and look for consistent
hypotheses

hash table

e
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Strategy 4: Hashing

Make each invariant image feature into a low-dimensional “key”
that indexes into a table of hypotheses

Given a new test image, compute the hash keys for all features
found in that image, access the table, and look for consistent
hypotheses

This can even work when we don’t have any feature descriptors:

we can take n-tuples of neighboring features and compute
iInvariant hash codes from their geometric configurations




Beyond affine transformations

What is the transformation between two views of a




Perspective projections induce projective
transformations between pianes

Scene planc




Beyond affine transformations

Homography: plane projective transformation
(transformation taking a quad to another arbitrary
guad)




Fitting a homography

Recall: homogenenous coordinates

Converting to homogenenous Converting from homogenenous
image coordinates Image coordinates




Fitting a homography

Recall: homogenenous coordinates

T X

(z,y) = {y Y } = (z/w, y/w)

1 w

Converting to homogenenous Converting from homogenenous
image coordinates Image coordinates

Equation for homography:




Fitting a homography

Equation for homography:

9 entries, 8 degrees of freedom
(scale is arbitrary)

3 equations, only 2 linearly
independent




Direct linear transform

H has 8 degrees of freedom (9 parameters, but scale is
arbitrary)

One match gives us two linearly independent equations

Four matches needed for a minimal solution (null space
of 8x9 matrix)

More than four: homogeneous least squares




Application: Panorama stitching

Images courtesy of A. Zisserman.




Recognizing panoramas

Given contents of a camera memory card, automatically
figure out which pictures go together and stitch them
together into panoramas

e M

M. Brown and D. Lowe, “Recognizing panoramas”, ICCV 2003.




1. Estimate homography (RANSAC)




imate homography (RANSAC)




1. Estimate homography (RANSAC)




connected sets of images

TR




2. Find connected sets of images




2. Find connected sets of images

1




3. Stitch and blend the panoramas




Results




Issues in alignment-based applications

Choosing the geometric alignment model

» Tradeoff between “correctness” and robustness (also,
efficiency)
Choosing the descriptor
« “Rich” imagery (natural images): high-dimensional patch-based
descriptors (e.g., SIFT)

“Impoverished” imagery (e.g., star fields): need to create
iInvariant geometric descriptors from k-tuples of point-based
features

Strategy for finding putative matches

Small number of images, one-time computation (e.g., panorama
stitching): brute force search

Large database of model images, frequent queries: indexing or
hashing

Heuristics for feature-space pruning of putative matches




Issues in alignment-based applications

Choosing the geometric alignment model
Choosing the descriptor
Strategy for finding putative matches

Hypothesis generation strategy
* Relatively large inlier ratio: RANSAC
« Small inlier ratio: locality constraints, Hough transform

Hypothesis verification strategy

Size of consensus set, residual tolerance depend on inlier ratio
and expected accuracy of the model

Possible refinement of geometric model
Dense verification
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Repeatibi | 1Ty, covariance,

invariance

Tell & Carlsson (2000); Kadir & Brady (2001); Matas et al.
(2001); Tuytelaars & Van Gool (2002)




Modeling and .
recognhizing 3D ® o
rigid solids , )

Johnson & Hebert (1998); Lowe
(1999)

Ideas - y N
* The (?mooﬂTTsu‘Face of
a solid is never globally

plana® — M, N
* but itgs ‘ah/vlbﬁ Lomlly\//

planar
Tomasi & Kanade (1992)

Rothganger et al. (CVPR'03)

Duda & Hart (1972); Weiss (1987); Burns et al. (1992); Mundy et al. (1992, 1994); Rothwell et al. (1992)
Ayache & Faugeras (1982); Hebert & Faugeras (1983); Gaston et al. (1984); Huttenlocher & Ullman (1987)







Number of images per object

Dataset: 149 training images of 8 objects

Apple

Bear

Rubble

Salt

Shoe

Spidey

Truck

29

20

Number of patches per model

16

8 learned 3D object models (Rothganger et al.”04)

Apple

Bear

Rubble

Salt

Shoe

Spidey

Truck

YVasze

739

4014

127

566

488

526

518

1085
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Some successes




