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Pinhole perspective equation
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Affine models: Weak perspective projectionp p p j
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When the scene relief is small compared its distance from the
Camera, m can be taken constant: weak perspective projection.



Affine models: Orthographic projectionff g p p j
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Analytical camera geometryAnalytical camera geometry



Coordinate Changes: Pure Translations

OBP = OBOA + OAP  ⇔ BP = AP + BOA



Coordinate Changes: Pure Rotations
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Coordinate Changes: Rotations about 
the z Axis
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A rotation matrix is characterized by the following 
properties:properties:

• Its inverse is equal to its transpose, andq p

• its determinant is equal to 1.

Or equivalently:

• Its rows (or columns) form a right-handedIts rows (or columns) form a right handed
orthonormal coordinate system.



Coordinate changes: g
pure rotations
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Coordinate Changes: Rigid TransformationsCoordinate Changes: Rigid Transformations
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Pinhole perspective equation
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The intrinsic parameters of a camera

Units:
k l : pixel/mk,l : pixel/m
f : m
α β : pixelα,β : pixel

Physical image coordinates 

Normalized image
coordinatescoordinates



The intrinsic parameters of a camera

Calibration matrix

Th  tiThe perspective
projection equation



The extrinsic parameters of a camera



Perspective projections induce projective 
f i  b  ltransformations between planes



Affine cameras
Weak-perspective projection

Paraperspective projectionParaperspective projection



More affine cameras
Orthographic projection

Parallel projection



Weak perspective projection modelWeak-perspective projection model

(p and P are in homogeneous coordinates)

r

(p n n m g n u n )

p = M P (P is in homogeneous coordinates)p  M P

p = A P + b (neither p nor P is in hom. coordinates)p



Affine projections induce affine p j
transformations from planes 
onto their images.onto their images.



Image alignment task

?

• It helps to be able to compare descriptors of local 
patches surrounding interest points (cf last lecture).

• This is not strictly necessary. We will concentrate 
here on the geometry of the problem.



Dealing with outliers
The set of putative matches still contains a very high 

percentage of outliers

How do we fit a geometric transformation to a small 
subset of all possible matches?

Possible strategies:
• RANSAC
• Incremental alignment
• Hough transform
• Hashing



Strategy 1: RANSAC
RANSAC loop (Fischler & Bolles, 1981):

• Randomly select a seed group of matches

• Compute transformation from seed group

Fi d i li t thi t f ti• Find inliers to this transformation

If the number of inliers is sufficiently large re compute• If the number of inliers is sufficiently large, re-compute 
least-squares estimate of transformation on all of the 
inliers

• Keep the transformation with the largest number of 
inliersinliers



RANSAC example: Translation

Putative matches



RANSAC example: Translation

Select one match, count inliers



RANSAC example: Translation

Select one match, count inliers



RANSAC example: Translation

Find “average” translation vector



Strategy 2: Incremental alignment
Take advantage of strong locality constraints: only pick 

close-by matches to start with, and gradually add 
more matches in the same neighborhood

Approach introduced in [Ayache & Faugeras, 1982;
Hebert & Faugeras, 1983; Gaston & Lozano-Perez, 
1984]

Illustrated here with the method from S. Lazebnik, C. 
Schmid and J. Ponce, “Semi-local affine parts for 
object recognition” BMVC 2004object recognition , BMVC 2004



Incremental alignment: Details

Generating seed groups:
• Identify triples of neighboring features (i, j, k) in first imagey p g g ( , j, ) g
• Find all triples (i', j', k') in the second image such that i' (resp. 

j', k') is a putative match of i (resp. j, k), and j', k' are 
neighbors of i'neighbors of i



Incremental alignment: Details

A

Beginning with each seed triple repeat:Beginning with each seed triple, repeat:
• Estimate the aligning transformation between corresponding features 

in current group of matches
• Grow the group by adding other consistent matches in the 

neighborhood

U til th t f ti i l i t tUntil the transformation is no longer consistent 
or no more matches can be found
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Incremental alignment: Details

A

Beginning with each seed triple repeat:Beginning with each seed triple, repeat:
• Estimate the aligning transformation between corresponding features 

in current group of matches
• Grow the group by adding other consistent matches in the 

neighborhood

U til th t f ti i l i t tUntil the transformation is no longer consistent 
or no more matches can be found



Strategy 3: Hough transform
Suppose our features are scale- and rotation-covariant

• Then a single feature match provides an alignment hypothesis 
(translation scale orientation)(translation, scale, orientation)

model

David G. Lowe. “Distinctive image features from scale-invariant keypoints”, 
IJCV 60 (2), pp. 91-110, 2004. 



Strategy 3: Hough transform
Suppose our features are scale- and rotation-covariant

• Then a single feature match provides an alignment hypothesis 
(translation scale orientation)(translation, scale, orientation)

• Of course, a hypothesis obtained from a single match is unreliable
• Solution: let each match vote for its hypothesis in a Hough space 

with very coarse bins

model

David G. Lowe. “Distinctive image features from scale-invariant keypoints”, 
IJCV 60 (2), pp. 91-110, 2004. 



Hough transform
• An early type of voting scheme
• General outline: 

• Discretize parameter space into bins
• For each feature point in the image, put a vote in every bin in 

th t th t ld h t d thi i tthe parameter space that could have generated this point
• Find bins that have the most votes

Image space Hough parameter space
P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. 
Int. Conf. High Energy Accelerators and Instrumentation, 1959 



Parameter space representation
• A line in the image corresponds to a point in Hough 

space

Image space Hough parameter space

Source: K. Grauman



Parameter space representation
• What does a point (x0, y0) in the image space map to in 

the Hough space?
• Answer: the solutions of b = –x0m + y0

• This is a line in Hough space

Image space Hough parameter space

Source: K. Grauman



Parameter space representation
• Where is the line that contains both (x0, y0) and 

(x1,y1)?
• It is the intersection of the lines b = –x0m + y0 and 

b = –x1m + y1

Image space Hough parameter space

(x1, y1)

(x0, y0)

b = –x1m + y1

Source: K. Grauman



Hough transform details (D. Lowe’s system)
Training phase: For each model feature, record 2D 

location, scale, and orientation of model (relative to 
normalized feature frame)

Test phase: Let each match between a test and a 
fmodel feature vote in a 4D Hough space

• Use broad bin sizes of 30 degrees for orientation, a factor of 
2 for scale and 0 25 times image size for location2 for scale, and 0.25 times image size for location

• Vote for two closest bins in each dimension

Find all bins with at least three votes and perform p
geometric verification 
• Estimate least squares affine transformation 
• Use stricter thresholds on transformation residual
• Search for additional features that agree with the alignment



Affine projections induce affine p j
transformations from planes 
onto their images.onto their images.



Affine transformations
An affine transformation maps a parallelogram onto
another parallelogramp g
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Fitting an affine transformation
Equation for affine transformation:
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Strategy 4: Hashing
Make each invariant image feature into a low-dimensional “key” 

that indexes into a table of  hypotheses

hash table

model



Strategy 4: Hashing
Make each invariant image feature into a low-dimensional “key” 

that indexes into a table of  hypotheses
Gi t t i t th h h k f ll f tGiven a new test image, compute the hash keys for all features 

found in that image, access the table, and look for consistent 
hypotheses

hash table

test image

model

g



Strategy 4: Hashing
Make each invariant image feature into a low-dimensional “key” 

that indexes into a table of  hypotheses
Gi t t i t th h h k f ll f tGiven a new test image, compute the hash keys for all features 

found in that image, access the table, and look for consistent 
hypotheses

This can even work when we don’t have any feature descriptors: 
we can take n-tuples of neighboring features and compute 
invariant hash codes from their geometric configurationsinvariant hash codes from their geometric configurations

C

B

C
D

A



Beyond affine transformations
What is the transformation between two views of a 

planar surface?

What is the transformation between images from two g
cameras that share the same center?



Perspective projections induce projective 
f i  b  ltransformations between planes



Beyond affine transformations
Homography: plane projective transformation 

(transformation taking a quad to another arbitrary 
quad)



Fitting a homography
Recall: homogenenous coordinates

Converting to homogenenous
image coordinates

Converting from homogenenous
image coordinates



Fitting a homography
Recall: homogenenous coordinates

Converting to homogenenous
image coordinates

Converting from homogenenous
image coordinates

Equation for homography:q g p y
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Fitting a homography
Equation for homography:
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Direct linear transform
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Application: Panorama stitching

Images courtesy of A. Zisserman. 



Recognizing panoramas
Given contents of a camera memory card, automatically 

figure out which pictures go together and stitch them 
together into panoramas

M. Brown and D. Lowe,  “Recognizing panoramas”, ICCV 2003. 



1. Estimate homography (RANSAC)



1. Estimate homography (RANSAC)



1. Estimate homography (RANSAC)



2. Find connected sets of images



2. Find connected sets of images



2. Find connected sets of images



3. Stitch and blend the panoramas



Results



Issues in alignment-based applications

Choosing the geometric alignment model
• Tradeoff between “correctness” and robustness (also• Tradeoff between correctness  and robustness (also, 

efficiency)

Choosing the descriptorg p
• “Rich” imagery (natural images): high-dimensional patch-based 

descriptors (e.g., SIFT)
“I i h d” i ( t fi ld ) d t t• “Impoverished” imagery (e.g., star fields): need to create 
invariant geometric descriptors from k-tuples of point-based 
features

Strategy for finding putative matches
• Small number of images, one-time computation (e.g., panorama 

tit hi ) b t f hstitching): brute force search
• Large database of model images, frequent queries: indexing or 

hashingg
• Heuristics for feature-space pruning of putative matches



Issues in alignment-based applications

Choosing the geometric alignment model
Choosing the descriptorChoosing the descriptor
Strategy for finding putative matches
Hypothesis generation strategyHypothesis generation strategy

• Relatively large inlier ratio: RANSAC
• Small inlier ratio: locality constraints Hough transformSmall inlier ratio: locality constraints, Hough transform

Hypothesis verification strategy
• Size of consensus set, residual tolerance depend on inlier ratio , p

and expected accuracy of the model
• Possible refinement of geometric model

D ifi ti• Dense verification



Affine Patches 
for 3D Alignmentfor 3D Alignment

Repeatibility, covariance, 
invariance

Tell & Carlsson (2000); Kadir & Brady (2001); Matas et al. 
(2001); Tuytelaars & Van Gool (2002)

invariance



Modeling andg
recognizing 3D
rigid solids

Johnson & Hebert (1998); Lowe 
(1999)

rigid solids

Idea :S = M×N

(1999)

Idea :
• The (smooth) surface of 

a solid is never globally 

S = M×N

 
g y

planar,
• but it is always locally 

l

S → M , N
E ←|S -M N|

planar

Rothganger et al  (CVPR’03)
Tomasi & Kanade (1992)

| |

Rothganger et al. (CVPR 03)
Duda & Hart (1972); Weiss (1987); Burns et al. (1992); Mundy et al. (1992, 1994); Rothwell et al. (1992)
Ayache & Faugeras (1982); Hebert & Faugeras (1983); Gaston et al. (1984); Huttenlocher  & Ullman (1987)



20 images





Dataset: 51 test images with 1 to 5 of the 
8 objects present in each image.







The four failures

Some successes


