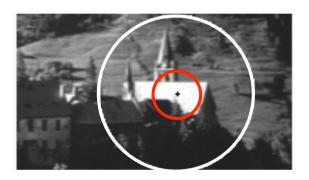
Overview

- Introduction to local features
- Harris interest points + SSD, ZNCC, SIFT
- Scale & affine invariant interest point detectors
- Evaluation and comparison of different detectors
- Region descriptors and their performance

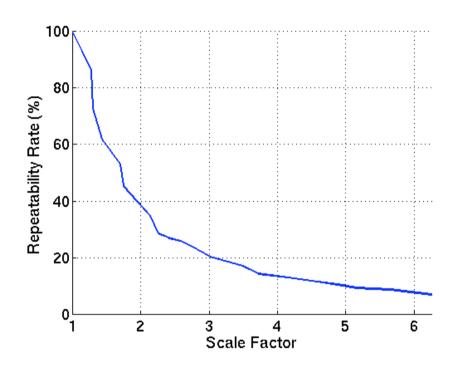
Scale invariance - motivation

Description regions have to be adapted to scale changes



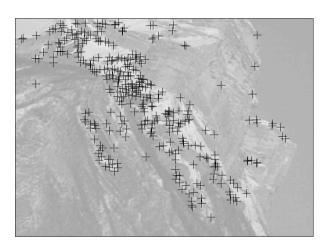
Interest points have to be repeatable for scale changes

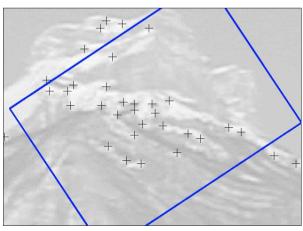
Harris detector + scale changes



Repeatability rate

$$R(\varepsilon) = \frac{\left| \left\{ (\mathbf{a}_i, \mathbf{b}_i) \mid dist(H(\mathbf{a}_i), \mathbf{b}_i) < \varepsilon \right\} \right|}{\max(|\mathbf{a}_i|, |\mathbf{b}_i|)}$$





Scale change between two images

$$I_{1}\begin{pmatrix} x_{1} \\ y_{1} \end{pmatrix} = I_{2}\begin{pmatrix} x_{2} \\ y_{2} \end{pmatrix} = I_{2}\begin{pmatrix} SX_{1} \\ SY_{1} \end{pmatrix}$$

Scale adapted derivative calculation

Scale change between two images

$$I_{1}\begin{pmatrix} x_{1} \\ y_{1} \end{pmatrix} = I_{2}\begin{pmatrix} x_{2} \\ y_{2} \end{pmatrix} = I_{2}\begin{pmatrix} SX_{1} \\ SY_{1} \end{pmatrix}$$

Scale adapted derivative calculation

$$I_{1}\begin{pmatrix} x_{1} \\ y_{1} \end{pmatrix} \otimes G_{i_{1}...i_{n}}(\boldsymbol{\sigma}) = \boldsymbol{s}^{n}I_{2}\begin{pmatrix} x_{2} \\ y_{2} \end{pmatrix} \otimes G_{i_{1}...i_{n}}(\boldsymbol{s}\boldsymbol{\sigma})$$

$$G(\widetilde{\sigma}) \otimes egin{bmatrix} L_x^2(\sigma) & L_x L_y(\sigma) \ L_x L_y(\sigma) & L_y^2(\sigma) \end{bmatrix}$$

where $L_i(\sigma)$ are the derivatives with Gaussian convolution

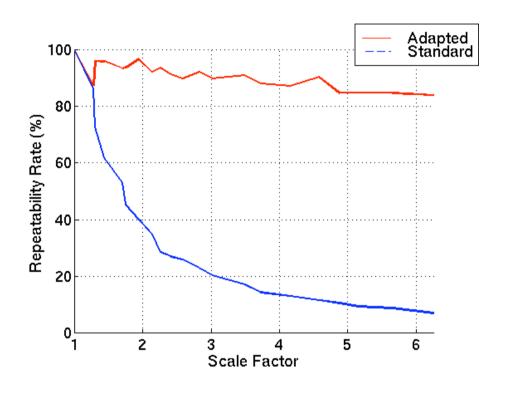
$$G(\widetilde{\sigma}) \otimes egin{bmatrix} L_x^2(\sigma) & L_x L_y(\sigma) \ L_x L_y(\sigma) & L_y^2(\sigma) \end{bmatrix}$$

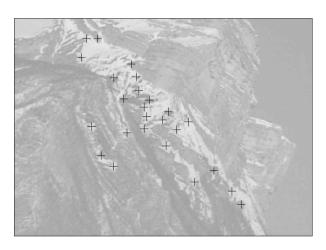
where $L_i(\sigma)$ are the derivatives with Gaussian convolution

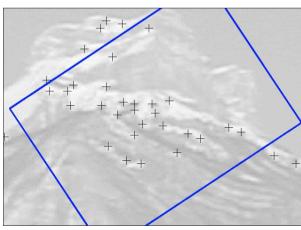
Scale adapted auto-correlation matrix

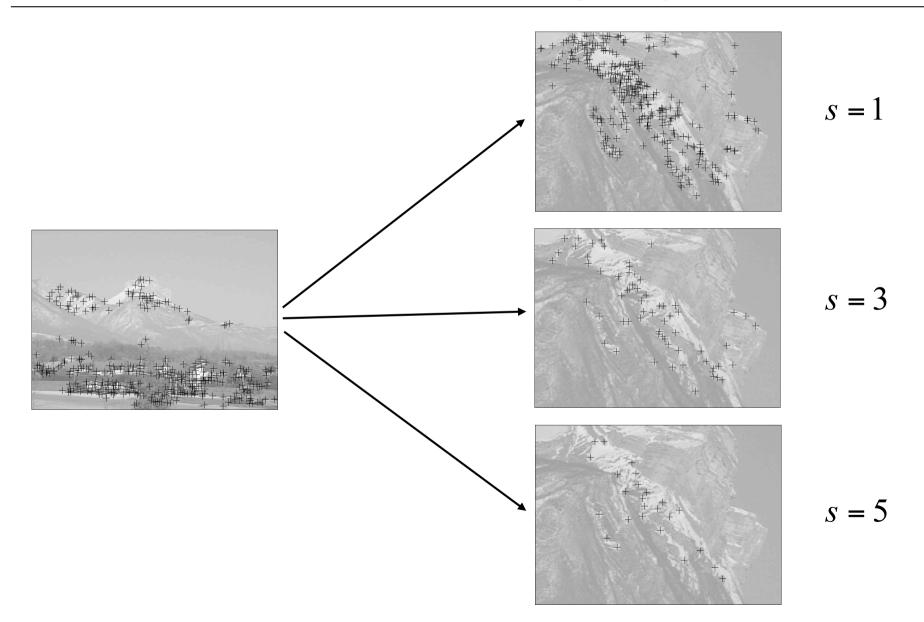
$$s^2G(s\widetilde{\sigma})\otimes egin{bmatrix} L_x^2(s\sigma) & L_xL_y(s\sigma) \ L_xL_y(s\sigma) & L_y^2(s\sigma) \end{bmatrix}$$

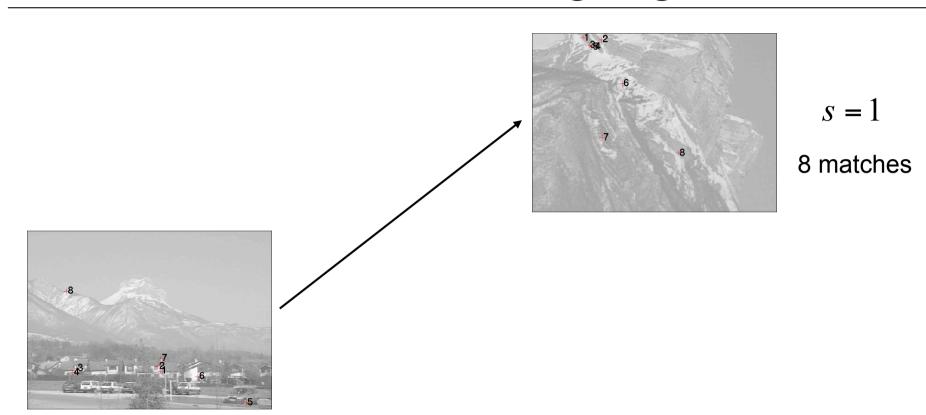
Harris detector – adaptation to scale

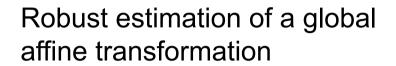


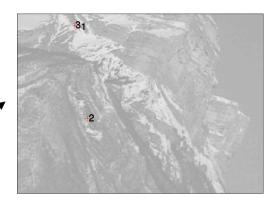






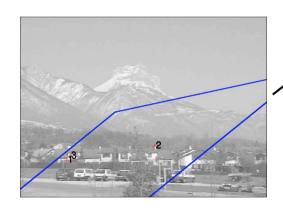


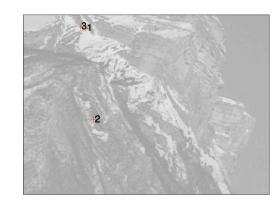




s = 1

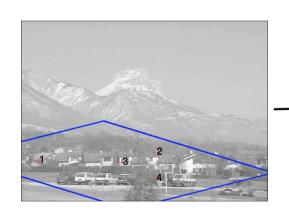
3 matches

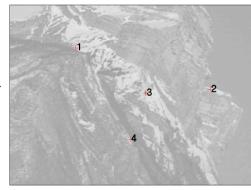




s = 1

3 matches



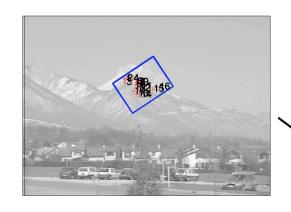


s = 3

4 matches



3 matches

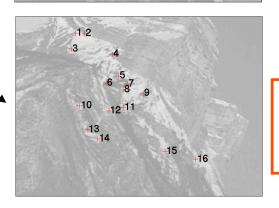




$$s = 3$$

4 matches

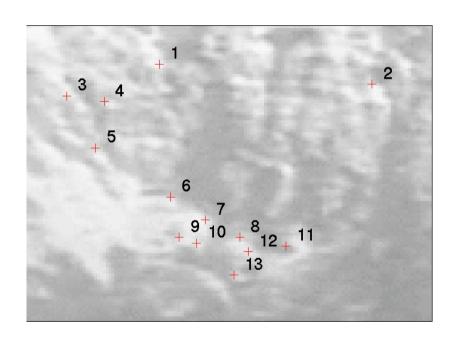
correct scale

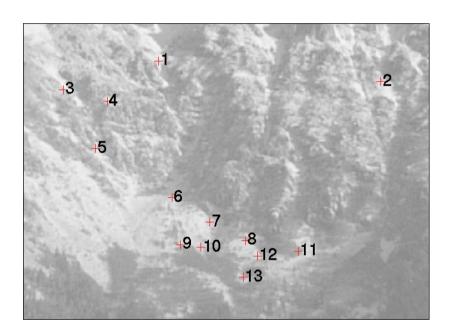


$$s = 5$$

16 matches

Scale change of 5.7





100% correct matches (13 matches)

Scale selection

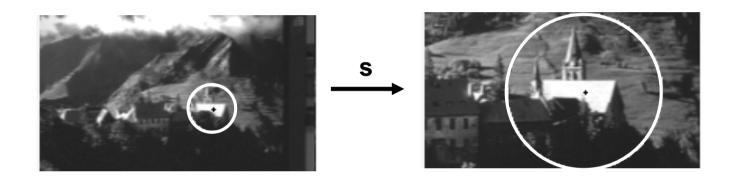
- For a point compute a value (gradient, Laplacian etc.) at several scales
- Normalization of the values with the scale factor e.g. Laplacian $|s^2(L_{xx} + L_{yy})|$
- Select scale s^{*} at the maximum → characteristic scale

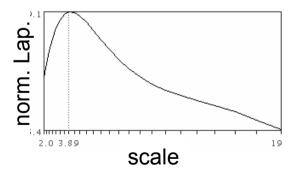
$$|s^{2}(L_{xx} + L_{yy})|$$
scale

Exp. results show that the Laplacian gives best results

Scale selection

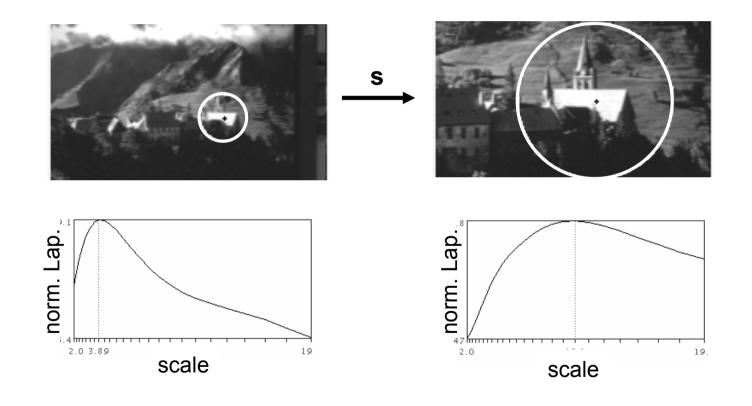
Scale invariance of the characteristic scale





Scale selection

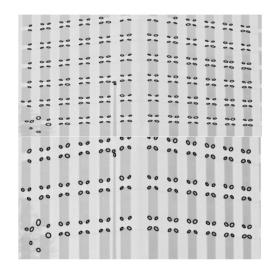
Scale invariance of the characteristic scale



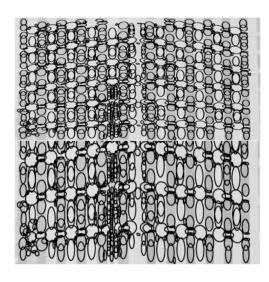
• Relation between characteristic scales $s \cdot s_1^* = s_2^*$

Scale-invariant detectors

- Harris-Laplace (Mikolajczyk & Schmid'01)
- Laplacian detector (Lindeberg'98)
- Difference of Gaussian (Lowe'99)



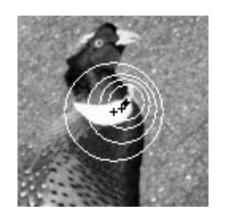
Harris-Laplace



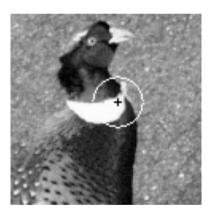
Laplacian

Harris-Laplace

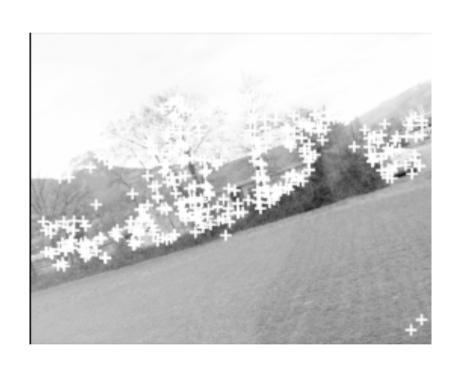
multi-scale Harris points



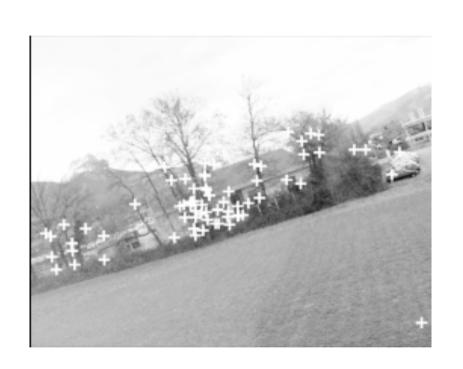
selection of points at maximum of Laplacian



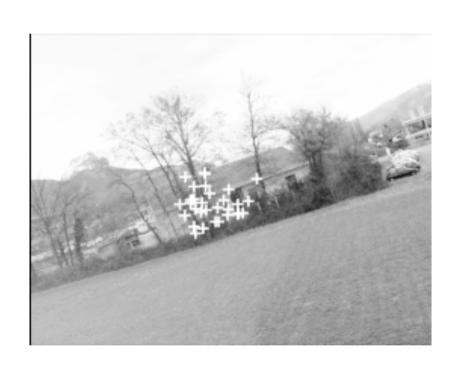
invariant points + associated regions [Mikolajczyk & Schmid'01]



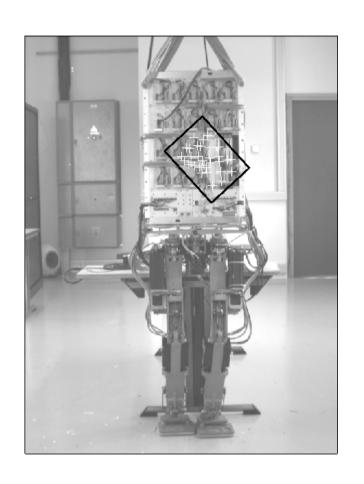
213 / 190 detected interest points



58 points are initially matched



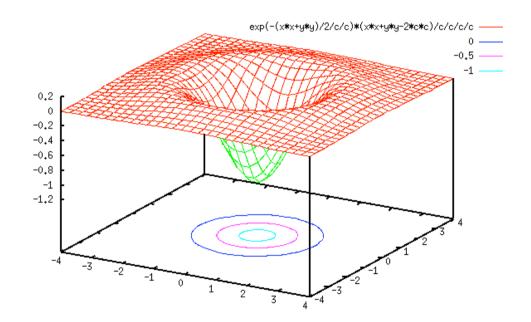
32 points are matched after verification – all correct



all matches are correct (33)

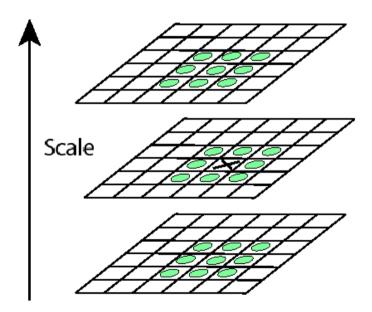
Laplacian of Gaussian (LOG)

$$LOG = G_{xx}(\sigma) + G_{yy}(\sigma)$$



LOG detector

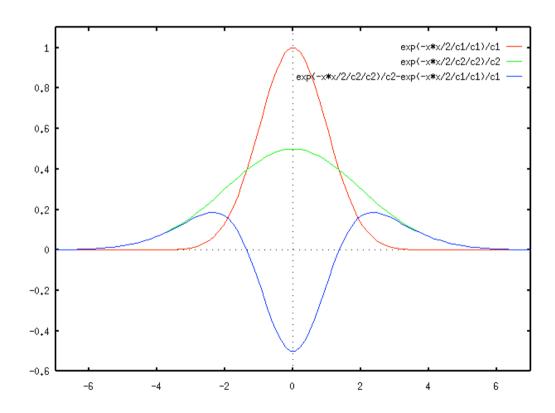
Detection of maxima and minima of Laplacian in scale space



Difference of Gaussian (DOG)

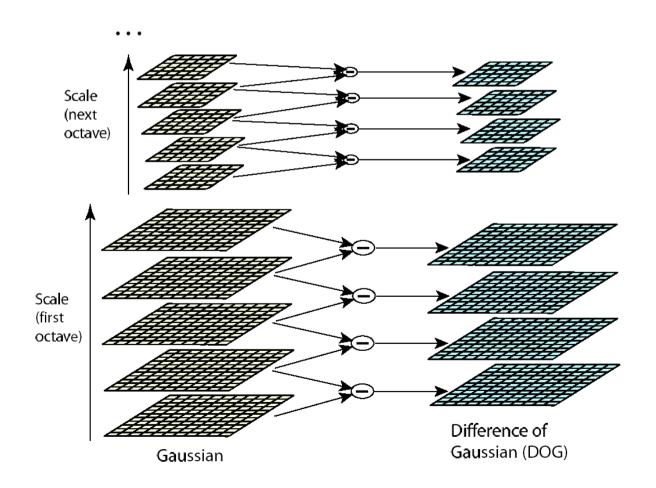
Difference of Gaussian approximates the Laplacian

$$DOG = G(k\sigma) - G(\sigma)$$



DOG detector

Fast computation, scale space processed one octave at a time



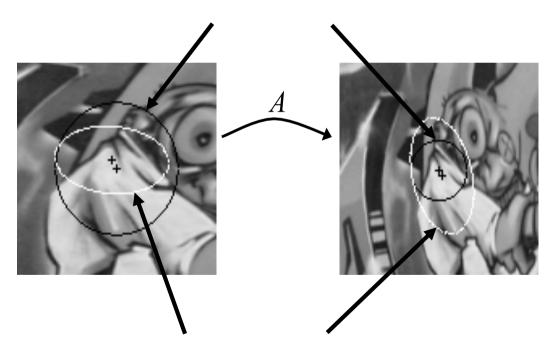
Local features - overview

- Scale invariant interest points
- Affine invariant interest points
- Evaluation of interest points
- Descriptors and their evaluation

Affine invariant regions - Motivation

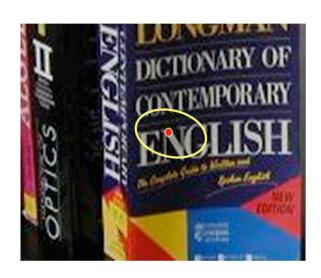
Scale invariance is not sufficient for large baseline changes

detected scale invariant region

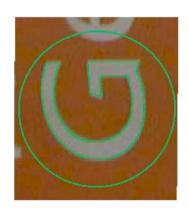


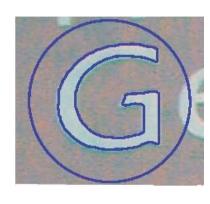
projected regions, viewpoint changes can locally be approximated by an affine transformation A

Affine invariant regions - Motivation



Affine invariant regions - Example





Harris/Hessian/Laplacian-Affine

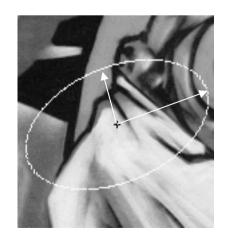
- Initialize with scale-invariant Harris/Hessian/Laplacian points
- Estimation of the affine neighbourhood with the second moment matrix [Lindeberg'94]
- Apply affine neighbourhood estimation to the scaleinvariant interest points [Mikolajczyk & Schmid'02, Schaffalitzky & Zisserman'02]
- Excellent results in a recent comparison

Affine invariant regions

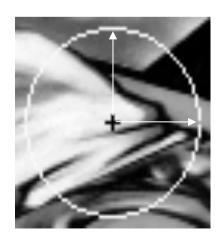
Based on the second moment matrix (Lindeberg'94)

$$M = \mu(\mathbf{x}, \sigma_{I}, \sigma_{D}) = \sigma_{D}^{2} G(\sigma_{I}) \otimes \begin{bmatrix} L_{x}^{2}(\mathbf{x}, \sigma_{D}) & L_{x} L_{y}(\mathbf{x}, \sigma_{D}) \\ L_{x} L_{y}(\mathbf{x}, \sigma_{D}) & L_{y}^{2}(\mathbf{x}, \sigma_{D}) \end{bmatrix}$$

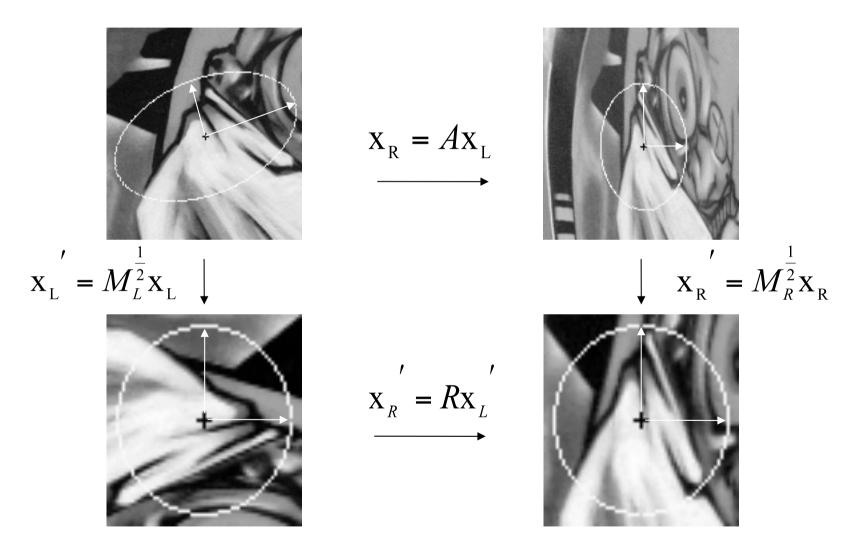
Normalization with eigenvalues/eigenvectors



$$\mathbf{x}' = M^{\frac{1}{2}}\mathbf{x}$$



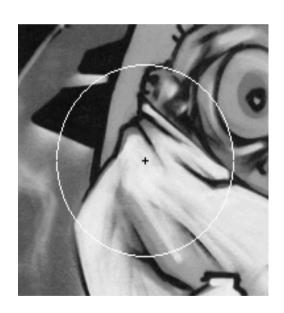
Affine invariant regions



Isotropic neighborhoods related by image rotation

Affine invariant regions - Estimation

Iterative estimation – initial points



Affine invariant regions - Estimation

Iterative estimation – iteration #1

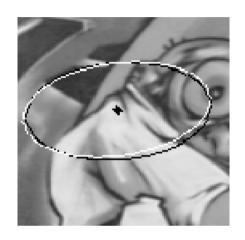
Affine invariant regions - Estimation

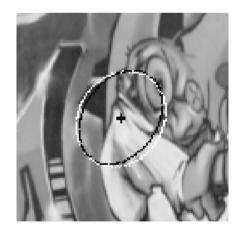
• Iterative estimation – iteration #2

Affine invariant regions - Estimation

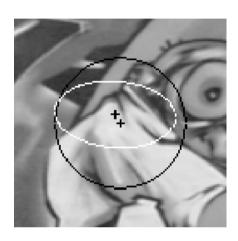
Iterative estimation – iteration #3, #4

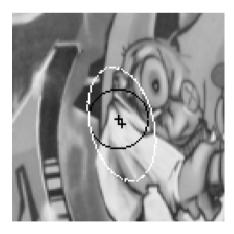
Harris-Affine versus Harris-Laplace





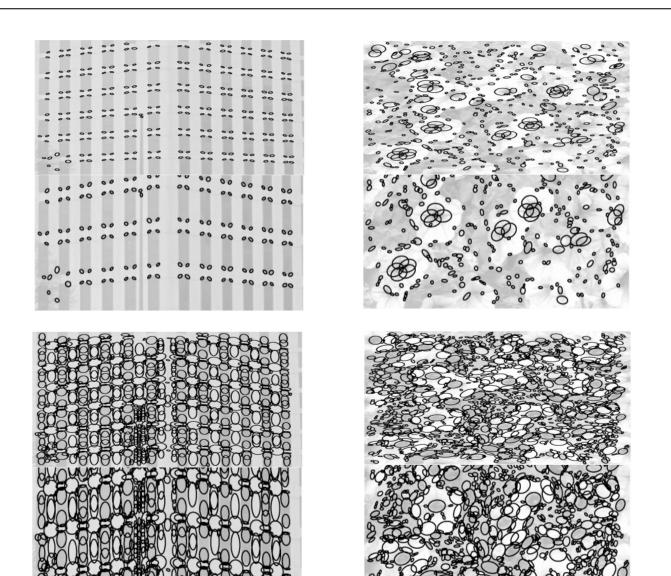
Harris-Affine





Harris-Laplace

Harris/Hessian-Affine



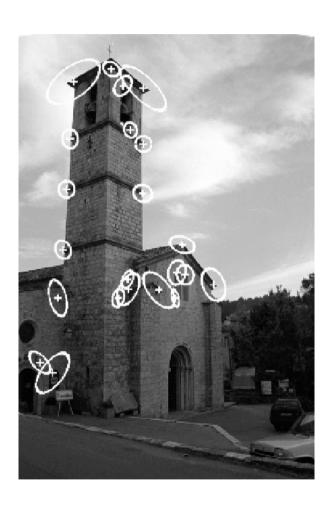
Harris-Affine

Hessian-Affine

Harris-Affine

Hessian-Affine

Matches



22 correct matches

Matches

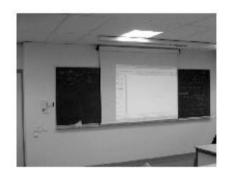
33 correct matches

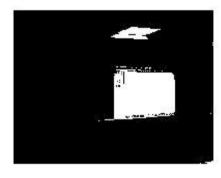
Maximally stable extremal regions (MSER) [Matas'02]

- Extremal regions: connected components in a thresholded image (all pixels above/below a threshold)
- Maximally stable: minimal change of the component (area) for a change of the threshold, i.e. region remains stable for a change of threshold
- Excellent results in a recent comparison

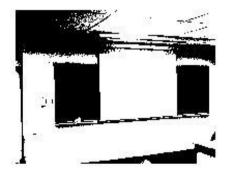
Maximally stable extremal regions (MSER)

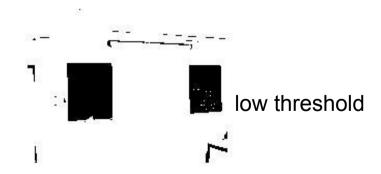
Examples of thresholded images



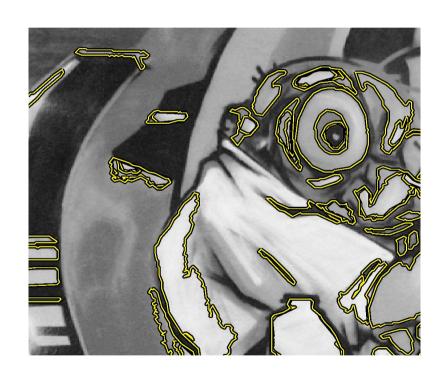


high threshold





MSER



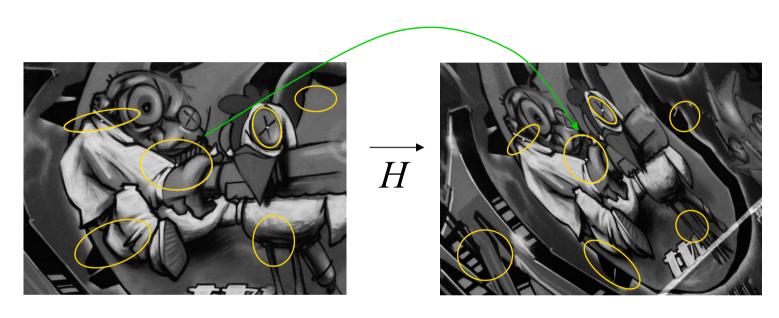
Overview

- Introduction to local features
- Harris interest points + SSD, ZNCC, SIFT
- Scale & affine invariant interest point detectors
- Evaluation and comparison of different detectors
- Region descriptors and their performance

Evaluation of interest points

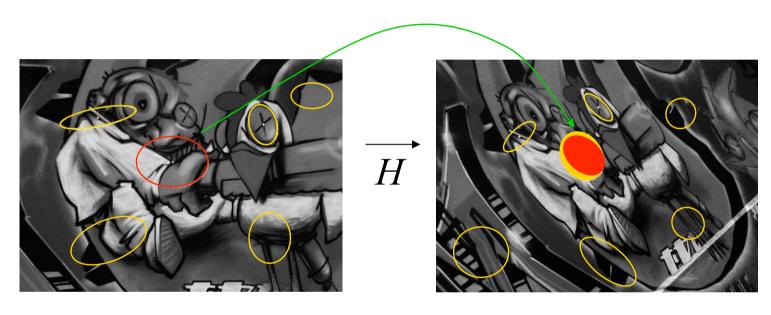
- Quantitative evaluation of interest point/region detectors
 - points / regions at the same relative location and area
- Repeatability rate: percentage of corresponding points
- Two points/regions are corresponding if
 - location error small
 - area intersection large
- [K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir & L. Van Gool '05]

Evaluation criterion



$$repeatability = \frac{\#corresponding\ regions}{\#detected\ regions} \cdot 100\%$$

Evaluation criterion



$$repeatability = \frac{\#corresponding\ regions}{\#detected\ regions} \cdot 100\%$$

$$overlap\ error = (1 - \frac{intersection}{union}) \cdot 100\%$$

10%

2%

20%

30%

40%

50%

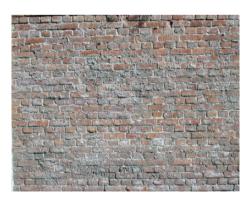
60%

Dataset

- Different types of transformation
 - Viewpoint change
 - Scale change
 - Image blur
 - JPEG compression
 - Light change
- Two scene types
 - Structured
 - Textured
- Transformations within the sequence (homographies)
 - Independent estimation

Viewpoint change (0-60 degrees)

structured scene



textured scene

Zoom + rotation (zoom of 1-4)

structured scene



textured scene

Blur, compression, illumination

blur - structured scene

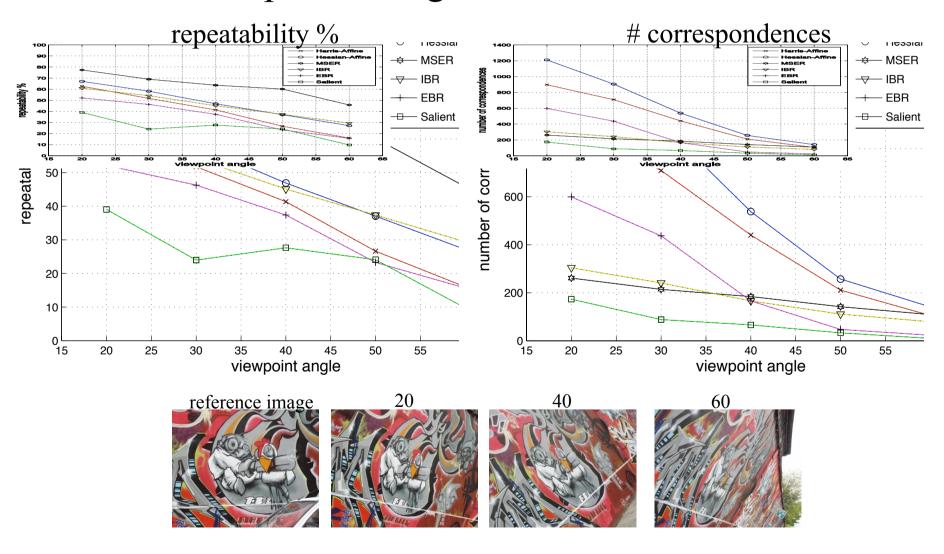
blur - textured scene

light change - structured scene

jpeg compression - structured scene

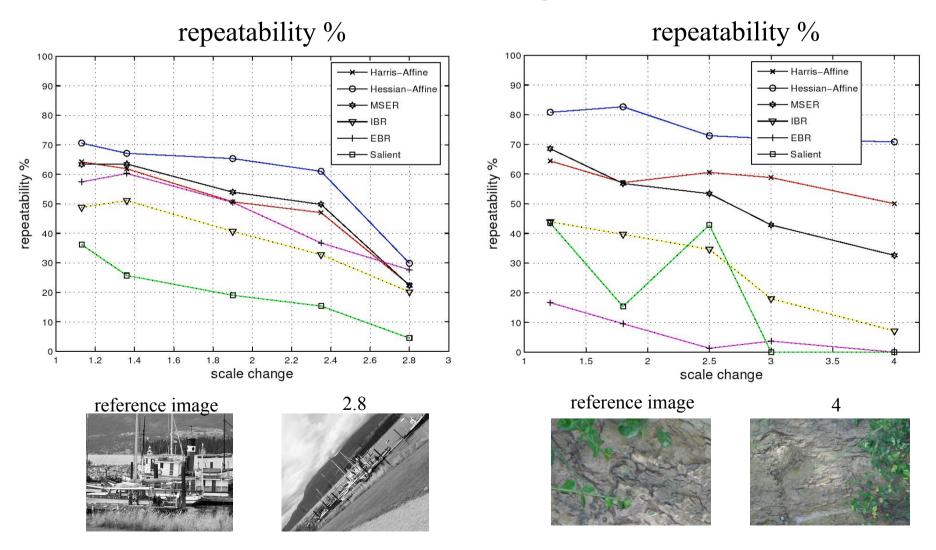
Comparison of affine invariant detectors

Viewpoint change - structured scene



Comparison of affine invariant detectors

Scale change



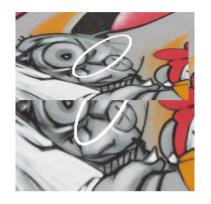
Conclusion - detectors

- Good performance for large viewpoint and scale changes
- Results depend on transformation and scene type, no one best detector
- Detectors are complementary
 - MSER adapted to structured scenes
 - Harris and Hessian adapted to textured scenes
- Performance of the different scale invariant detectors is very similar (Harris-Laplace, Hessian-Laplace, LoG and DOG)
- Scale-invariant detector sufficient up to 40 degrees of viewpoint change

Overview

- Introduction to local features
- Harris interest points + SSD, ZNCC, SIFT
- Scale & affine invariant interest point detectors
- Evaluation and comparison of different detectors
- Region descriptors and their performance

Region descriptors





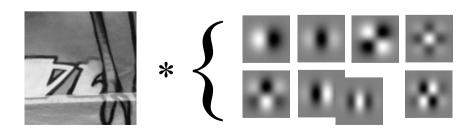
- Normalized regions are
 - invariant to geometric transformations except rotation
 - not invariant to photometric transformations

- Regions invariant to geometric transformations except rotation
 - rotation invariant descriptors
 - normalization with dominant gradient direction

- Regions not invariant to photometric transformations
 - invariance to affine photometric transformations
 - normalization with mean and standard deviation of the image patch

- Sampled image patch
 - descriptor dimension is 81

- Gaussian derivative-based descriptors
 - Differential invariants (Koenderink and van Doorn'87) (dim. 8)



- Gaussian derivative-based descriptors
 - Steerable filters (Freeman and Adelson'91)
 - "Steering the derivatives in the direction of an angle"

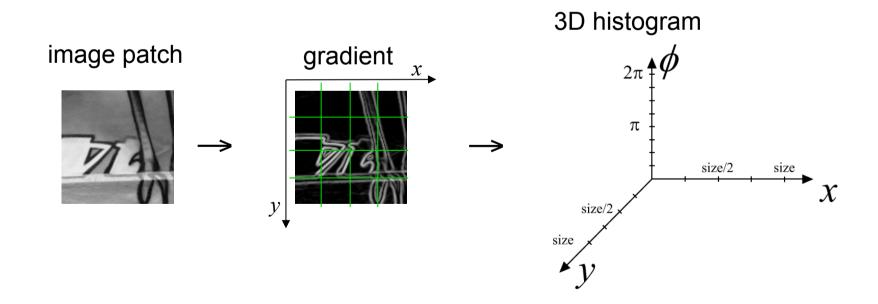
$$f'(\theta) = I_x \cos \theta + I_y \sin \theta$$

$$f''(\theta) = I_{xx} \cos^2 \theta + 2IxIy\sin \theta \cos \theta + I_{yy} \sin^2 \theta$$

$$\theta n, i = \theta g + i/(n+1) \prod_{i=0...n} i = 0...n$$

Dominant gradient direction is rotation invariant

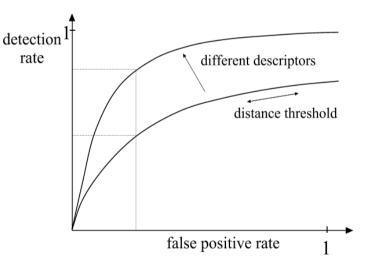
- SIFT [Lowe'99]
 - 8 orientations of the gradient (dim. 128)
 - 4x4 spatial grid
 - normalization of the descriptor to norm one



- Moment invariants [Van Gool et al.'96]
- Shape context [Belongie et al.'02]
- SIFT with PCA dimensionality reduction
- Gradient PCA [Ke and Sukthankar'04]

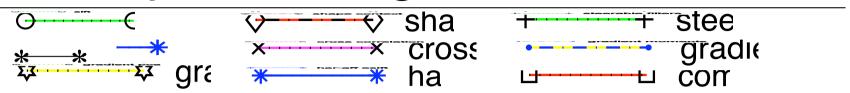
Comparison criterion

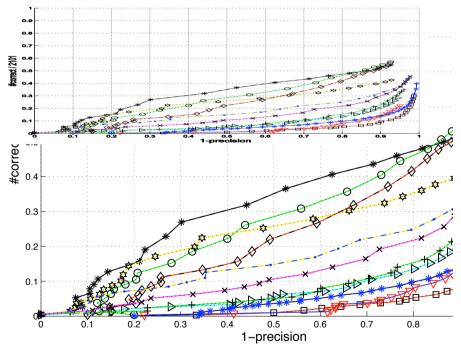
- Descriptors should be
 - Distinctive
 - Robust to changes on viewing conditions as well as to errors of the detector
- Detection rate (recall)
 - #correct matches / #correspondences
- False positive rate
 - #false matches / #all matches
- Variation of the distance threshold
 - distance (d1, d2) < threshold</p>



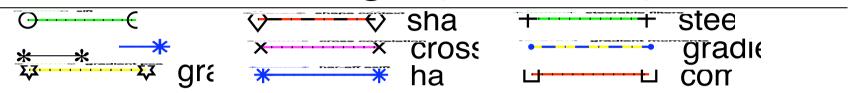
[K. Mikolajczyk & C. Schmid, PAMI'05]

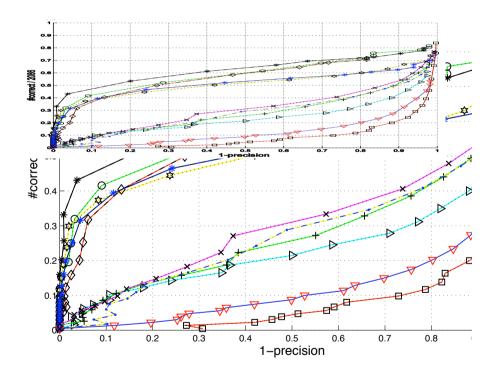
Viewpoint change (60 degrees)





Scale change (factor 2.8)





Conclusion - descriptors

- SIFT based descriptors perform best
- Significant difference between SIFT and low dimension descriptors as well as cross-correlation
- Robust region descriptors better than point-wise descriptors
- Performance of the descriptor is relatively independent of the detector

Available on the internet

http://lear.inrialpes.fr/software

- Binaries for detectors and descriptors
 - Building blocks for recognition systems
- Carefully designed test setup
 - Dataset with transformations
 - Evaluation code in matlab
 - Benchmark for new detectors and descriptors