

Object recognition and computer vision 2009/2010 Lecture 11, December 15

Motion and Human Actions

Ivan Laptev *ivan.laptev@ens.fr* Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d'Informatique, Ecole Normale Supérieure, Paris

Shape versus Motion

• Shape in images depends on many factors: clothing, illumination contrast, image resolution, etc...

 Motion field (in theory) is invariant to shape and can be used directly to describe human actions

Gunnar Johansson, Moving Light Displays, 1973

Generic Optical Flow

- Classic problem of computer vision [Gibson 1955]
- Goal: estimate motion field How? We only have access to image pixels
 Estimate pixel-wise correspondence between frames = Optical Flow
- Brightness Change assumption: corresponding pixels preserve their intensity (color)

Useful assumption in many cases

Generic Optical Flow

• Brightness Change Constraint Equation (BCCE)

 $(\nabla I)^{\top} \mathbf{v} + I_t = 0$ $\mathbf{v} = (v_x, v_y)^{\top}$ Optical flow $\nabla I = (I_x, I_y)^{\top}$ Image gradient

One equation, two unknowns => cannot be solved directly

Integrate several measurements in the local neighborhood and obtain a *Least Squares Solution* [Lucas & Kanade 1981]

$$\langle \nabla I(\nabla I)^{\top} \rangle \mathbf{v} = - \langle \nabla II_t \rangle$$

$$\begin{pmatrix} \langle I_x^2 \rangle & \langle I_x I_y \rangle \\ \langle I_x I_y \rangle & \langle I_y^2 \rangle \end{pmatrix} \mathbf{v} = -\begin{pmatrix} \langle I_x I_t \rangle \\ \langle I_y I_t \rangle \end{pmatrix}$$

Second-moment matrix, the same one used to compute Harris interest points!

<.> Denotes integration over a spatial (or spatio-temporal) neighborhood of a point

Generic Optical Flow

- The solution of $\langle \nabla I(\nabla I)^{\top} \rangle \mathbf{v} = \langle \nabla II_t \rangle$ assumes
 - 1. Brightness change constraint holds in $< \cdot >$
 - 2. Sufficient variation of image gradient in $< \cdot >$
 - 3. Approximately constant motion in $< \cdot >$

Motion estimation becomes *inaccurate* if any of assumptions 1-3 is violated.

- Solutions:
 - (2) Insufficient gradient variation known as *aperture problem*
 - Increase integration neighborhood

(3) Non-constant motion in $< \cdot >$

Use more sophisticated motion model

- Constant velocity model: $\mathbf{v} = \begin{pmatrix} v_x \\ v_y \end{pmatrix}$
- Upgrade to affine motion model: $\mathbf{v} = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} v_x \\ v_y \end{pmatrix}$

Now motion depends on the position $(x, y)^{\top}$ inside the neighborhood

Examples of Affine motion models for different parameters:

• Can be formulated as Least Squares approach to estimate **v** as before!

- Another extension of the constant motion model is to compute PCA basis flow fields from training examples
 - Compute standard Optical Flow for many examples
 Put velocity components into one vector

$$\mathbf{w} = (v_x^1, v_y^1, v_x^2, v_y^2, ..., v_x^n, v_y^n)^\top$$

3. Do PCA on ${\bf w}$ and obtain most informative PCA flow basis vectors

Training samples

PCA flow bases

Learning Parameterized Models of Image Motion M.J. Black, Y. Yacoob, A.D. Jepson and D.J. Fleet, **CVPR 1997**

- Use PCA flow bases to *regularize* solution of motion estimation
- Motion estimation for test samples can be computed *without* explicit computation of optical flow!

Solution formulation e.g. in terms of Least Squares

Direct flow recovery:

Learning Parameterized Models of Image Motion M.J. Black, Y. Yacoob, A.D. Jepson and D.J. Fleet, **CVPR 1997**

 Estimated coefficients of PCA flow bases can be used as action descriptors

M.J. Black, Y. Yacoob, A.D. Jepson and D.J. Fleet, CVPR 1997

 Estimated coefficients of PCA flow bases can be used as action descriptors

Frame numbers

Optical flow seems to be an interesting descriptor for motion/action recognition

Spatial Motion Descriptor

Image frame

Optical flow $F_{x,y}$

Spatio-Temporal Motion Descriptor

Football Actions: matching

Input Sequence

Matched Frames

input

matched

Football Actions: classification

10 actions; 4500 total frames; 13-frame motion descriptor

Classifying Ballet Actions

16 Actions; 24800 total frames; 51-frame motion descriptor. Men used to classify women and vice versa.

Classifying Tennis Actions

6 actions; 4600 frames; 7-frame motion descriptor Woman player used as training, man as testing.

Classifying Tennis Actions

Red bars illustrate classification confidence for each action

What about 3D?

Motion and appearance descriptors are not invariant to view changes

Multi-view action recognition

Difficult to apply standard multi-view methods:

 Do not want to search for multiview point correspondence ---Non-rigid motion, cloth changes, ... --> It's Hard!

- Do not want to identify body parts. Current methods are not reliable enough.
- Yet, want to learn actions from one view and to recognize actions in different views

Temporal self-similarities

Ideas:

- *Cross-view* matching is hard but *cross-time* matching (tracking) is relatively easy.
- Measure self-(dis)similarities across time: $\mathcal{D}(t_1, t_2), t_1, t_2 \in (1, ..., T)$

Example: $\mathcal{D}(t_1, t_2) = ||P_1 - P_2||_2$

Temporal self-similarities: Multi-views

Cross-View Action Recognition from Temporal Self-Similarities I. Junejo, E. Dexter, I. Laptev, and P. Perez, **ECCV 2008**

Temporal self-similarities: MoCap

Temporal self-similarities: Video

Self-similarity descriptor

Properties of SSM:

- SPSD
- 0-valuaed diagonal
- uncertainty increases with the distance from the diagonal $\Delta t = t_2 t_1$
- Define a local histogram descriptor h_i for each point i on the diagonal.
- Sequence alignment: Dynamic Programming for two sequences of descriptors {*h_i*}, {*h_j*}

- Action recognition:
 - Visual vocabulary for h
 - BoF representation of {*h_i*}
 - SVM

Multi-view alignment

Multi-view action recognition: Video

SSM-based recognition

Alternative view-variant method (STIP)

Actions == Space-time objects?

Can we treat actions as space-time objects and apply object recognition methods used in static images?

Local approach: Bag of Visual Words (Lecture 5)

Airplanes	
Motorbikes	
Faces	
Wild Cats	
Leaves	
People	
Bikes	

Space-time local features

Space-Time Interest Points: Detection

What neighborhoods to consider?

Distinctive neighborhoods	Hig ⇒ variati ar	h image on in space nd time	⇒ c	Look listributi grac	at the on of t dient	the
Definitions:						
$f \colon \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}$	Original	image sequence	Э			
$g(x, y, t; \Sigma)$	Space-ti	me Gaussian wi	ith covaria	ance	$\Sigma\in S$	PSD(3)
$L_{\xi}(\cdot; \Sigma) = f(\cdot)$	$* g_{\xi}(\cdot; \Sigma)$	Gaussian der	rivative of	f		
$\nabla L = (L_x, L_y, L_t$) T Space-til	me gradient		(,,	
$\mu(\cdot; \Sigma) = \nabla L(\cdot;$	$\Sigma)(\nabla L(\cdot;$	$\Sigma))^T * g(\cdot;$	$s\Sigma) =$	$\left(\begin{array}{c} \mu_{xx} \\ \mu_{xy} \end{array}\right)$	$\mu_{xy} \ \mu_{yy}$	$\left \begin{array}{c} \mu_{xt} \\ \mu_{yt} \end{array} \right $
	Secon	d-moment matri	x	$\setminus \mu_{xt}$	μ_{yt}	μ_{tt} /

Space-Time Interest Points: Detection

Properties of $\mu(\cdot; \Sigma)$

 $\begin{array}{ll} \mu(\cdot; \ \Sigma) \text{efines second order approximation for the local} \\ \text{distribution of} & \nabla \underline{\Gamma} \text{hin neighborhood} & \Sigma \\ \text{rank}(\mu) = 1 & \Rightarrow \text{ 1D space-time variation of } f \text{ e.g. moving bar} \\ \text{rank}(\mu) = 2 & \Rightarrow \text{ 2D space-time variation of } f \text{ e.g. moving ball} \\ \text{rank}(\mu) = 3 & \Rightarrow \text{ 3D space-time variation of } f \text{ e.g. jumping ball} \end{array}$

Large eigenvalues of μ can be detected by the local maxima of H over (x,y,t):

$$H(p; \Sigma) = \det(\mu(p; \Sigma)) + k \operatorname{trace}^{3}(\mu(p; \Sigma))$$
$$= \lambda_{1} \lambda_{2} \lambda_{3} - k(\lambda_{1} + \lambda_{2} + \lambda_{3})^{3}$$

(similar to Harris operator [Harris and Stephens, 1988])

Space-Time Interest Points: Examples

Motion event detection

Space-Time Interest Points: Examples

Motion event detection: complex background

Features from human actions

Features from human actions

Local space-time descriptors

A common choice for local descriptors is a local jet (Koenderink and van Doorn, 1987) computed from spatio-temporal Gaussian derivatives (here at interest points p_i)

$$d_i = (L_{x'}, L_{y'}, L_{t'}, L_{x'x'}, L_{x'y'}, L_{x't'}, ..., L_{t't't't'})$$

Visual Vocabulary: K-means clustering

- Group similar points in the space of image descriptors using K-means clustering
- Select significant clusters

Visual Vocabulary: K-means clustering

- Group similar points in the space of image descriptors using K-means clustering
- Select significant clusters

Local Space-time features: Matching

• Find similar events in pairs of video sequences

Action Classification: Overview

Bag of space-time features + multi-channel SVM

[Laptev'03, Schuldt'04, Niebles'06, Zhang'07]

Collection of space-time patches

Action recognition in KTH dataset

Figure: Sample frames from the KTH actions sequences, all six classes (columns) and scenarios (rows) are presented

Classification results on KTH dataset

Method	Schuldt	Niebles	Wong	Nowozin	ours
	et al.	et al.	et al.	et al.	
Accuracy	71.7%	81.5%	86.7%	87.0%	91.8%

Table: Average class accuracy on the KTH actions dataset

Table: Confusion matrix for the KTH actions

What are Human Actions?

Actions in recent datasets:

Is it just about kinematics?

Should actions be defined by the *purpose*?

Kinematics + Objects

What are Human Actions?

Actions in recent datasets:

Is it just about kinematics?

Should actions be defined by the *purpose?*

Kinematics + Objects + Scenes

Action recognition in realistic settings

Actions "In the Wild":

Learning Actions from Movies

- Realistic variation of human actions
- Many classes and many examples per class

Problems:

- Typically only a few class-samples per movie
- Manual annotation is very time consuming

Automatic video annotation with scripts

- Scripts available for >500 movies (no time synchronization) www.dailyscript.com, www.movie-page.com, www.weeklyscript.com ...
- Subtitles (with time info.) are available for the most of movies
- Can transfer time to scripts by text alignment

Text-based action retrieval

• Large variation of action expressions in text:

=> Supervised text classification approach

Movie actions dataset

- Learn vision-based classifier from automatic training set
- Compare performance to the manual training set

Action Classification: Overview

Bag of space-time features + multi-channel SVM

[Laptev'03, Schuldt'04, Niebles'06, Zhang'07]

Collection of space-time patches

Action classification (CVPR08)

Test episodes from movies "The Graduate", "It's a Wonderful Life", "Indiana Jones and the Last Crusade"

Actions in Context (CVPR 2009)

• Human actions are frequently correlated with particular scene classes Reasons: *physical properties* and *particular purposes* of scenes

Eating -- kitchen

Eating -- cafe

Running -- road

Running -- street

Mining scene captions

Mining scene captions

INT. TRENDY RESTAURANT - NIGHT INT. MARSELLUS WALLACE'S DINING ROOM MORNING EXT. STREETS BY DORA'S HOUSE - DAY. INT. MELVIN'S APARTMENT, BATHROOM – NIGHT EXT. NEW YORK CITY STREET NEAR CAROL'S RESTAURANT – DAY INT. CRAIG AND LOTTE'S BATHROOM - DAY

- Maximize word frequency street, living room, bedroom, car
- Merge words with similar senses using WordNet:

taxi -> car, cafe -> restaurant

- · Measure correlation of words with actions (in scripts) and
- Re-sort words by the entropy $S = -k \sum P_i \ln P_i$ for P = p(action | word)

Co-occurrence of actions and scenes in scripts

Co-occurrence of actions and scenes in text vs. video

Automatic gathering of relevant scene classes and visual samples

	Auto-Train-Actions	Clean-Test-Actions	
AnswerPhone	59	64	
DriveCar	90	102	
Eat	44	33	
FightPerson	33	70	
GetOutCar	40	57	
HandShake	38	45	
HugPerson	27	66	
Kiss	125	103	
Run	187	141	
SitDown	87	108	
SitUp	26	37	
StandUp	133	146	
All Samples	810	884	

	Auto-Train-Scenes	Clean-Test-Scenes
EXT-house	81	140
EXT-road	81	114
INT-bedroom	67	69
INT-car	44	68
INT-hotel	59	37
INT-kitchen	38	24
INT-living-room	30	51
INT-office	114	110
INT-restaurant	44	36
INT-shop	47	28
All Samples	570	582

Source: 69 movies aligned with the scripts

Hollywood-2 dataset is on-line: http://www.irisa.fr/vista /actions/hollywood2

(a) Actions

(b) Scenes

Results: actions and scenes (separately)

EXT.House	0.503	0.363	0.491
EXT.Road	0.498	0.372	0.389
INT.Bedroom	0.445	0.362	0.462
INT.Car	0.444	0.759	0.773
INT.Hotel	0.141	0.220	0.250
INT.Kitchen	0.081	0.050	0.070
INT.LivingRoom	0.109	0.128	0.152
INT.Office	0.602	0.453	0.574
INT.Restaurant	0.112	0.103	0.108
INT.Shop	0.257	0.149	0.244
Scene average	0.319	0.296	0.351
Total average	0.259	0.310	0.339

			SIFT
		HoG	HoG
	SIFT	HoF	HoF
AnswerPhone	0.105	0.088	0.107
DriveCar	0.313	0.749	0.750
Eat	0.082	0.263	0.286
FightPerson	0.081	0.675	0.571
GetOutCar	0.191	0.090	0.116
HandShake	0.123	0.116	0.141
HugPerson	0.129	0.135	0.138
Kiss	0.348	0.496	0.556
Run	0.458	0.537	0.565
SitDown	0.161	0.316	0.278
SitUp	0.142	0.072	0.078
StandUp	0.262	0.350	0.325
Action average	0.200	0.324	0.326

Classification with the help of context

$$a'_i(\boldsymbol{x}) = a_i(\boldsymbol{x}) + \tau \sum_{j \in S} w_{ij} s_j(\boldsymbol{x})$$

- $a_i(\boldsymbol{x})$ Action classification score
- $s_j(\boldsymbol{x})$ Scene classification score
 - w_{ij} Weight, estimated from text: p(Scene|Action)
 - $a_i'({m x})$ New action score

Results: actions and scenes (jointly)

Weakly-Supervised Temporal Action Annotation (ICCV 2009)

• Answer questions: WHAT actions and WHEN they happened?

• Train visual action detectors and annotate actions with the minimal manual supervision

WHAT actions?

• Automatic discovery of action classes in text (movie scripts)

-- Text processing:

Part of Speech (POS) tagging; Named Entity Recognition (NER); WordNet pruning; Visual Noun filtering

-- Search action patterns

Person+Verb

3725 /PERSON .* is 2644 /PERSON .* looks 1300 /PERSON .* turns 916 /PERSON .* takes 840 /PERSON .* sits 829 /PERSON .* has 807 /PERSON .* walks 701 /PERSON .* stands 622 /PERSON .* goes 591 /PERSON .* starts 585 /PERSON .* does 569 /PERSON .* gets 552 /PERSON .* pulls 503 /PERSON .* comes 493 /PERSON .* sees 462 /PERSON .* are/VBP

Person+Verb+Prep.

989 /PERSON .* looks .* at 384 /PERSON .* is .* in 363 /PERSON .* looks .* up 234 /PERSON .* is .* on 215 /PERSON .* picks .* up 196 /PERSON .* is .* at 139 /PERSON .* sits .* in 138 /PERSON * is * with 134 /PERSON .* stares .* at 129 /PERSON .* is .* by 126 /PERSON .* looks .* down 124 /PERSON .* sits .* on 122 /PERSON .* is .* of 114 /PERSON .* gets .* up 109 /PERSON .* sits .* at 107 /PERSON .* sits .* down

Person+Verb+Prep+Vis.Noun

41	/PERSON	.* sits .* in .* chair
37	/PERSON	.* sits .* at .* table
31	/PERSON	.* sits .* on .* bed
29	/PERSON	.* sits .* at .* desk
26	/PERSON	.* picks .* up .* phone
23	/PERSON	.* gets .* out .* car
23	/PERSON	.* looks .* out .* window
21	/PERSON	.* looks .* around .* room
18	/PERSON	.* is .* at .* desk
17	/PERSON	.* hangs .* up .* phone
17	/PERSON	.* is .* on .* phone
17	/PERSON	.* looks .* at .* watch
16	/PERSON	.* sits .* on .* couch
15	/PERSON	.* opens .* of .* door
15	/PERSON	.* walks .* into .* room
14	/PERSON	.* goes .* into .* room

WHEN: Video Data and Annotation

- Want to target realistic video data
- Want to avoid manual video annotation for training
 - Use movies + scripts for automatic annotation of training samples

Overview

Input:

- Action type, e.g. Person Opens Door
- Videos + aligned scripts

Automatic collection of training clips

- ... Jane jumps up and opens the door Carolyn opens the front door ...
 - ... Jane opens her bedroom door ...

Output:

Slidingwindow-style temporal action localization

Training classifier

Clustering of positive segments

Action clustering [Lihi Zelnik-Manor and Michal Irani CVPR 2001]

Spectral clustering

Ground truth

Action clustering Our data:

Standard clustering methods do not work on this data

Action clustering

Our view at the problem

Feature space

Video space

Negative samples!

Random video samples: lots of them, very low chance to be positives

Action clustering

Formulation

Clustering results Drinking actions in Coffee and Cigarettes

Detection results

Drinking actions in Coffee and Cigarettes

- Training Bag-of-Features classifier
- Temporal sliding window classification
- Non-maximum suppression

Detection results

Drinking actions in Coffee and Cigarettes

- Training Bag-of-Features classifier
- Temporal sliding window classification
- Non-maximum suppression

Detection trained on automatic clusters
Detection results

"Sit Down" and "Open Door" actions in ~5 hours of movies

Automatic Annotation of Human Actions in Video

ICCV 2009 DEMO

O.Duchenne, I.Laptev, J.Sivic, F.Bach and J.Ponce

Temporal detection of actions OpenDoor and SitDown in episodes of The Graduate, The Crying Game, Living in Oblivion

Temporal detection of "Sit Down" and "Open Door" actions in movies: The Graduate, The Crying Game, Living in Oblivion

Actions as Space-Time Objects II

Action Dataset and Annotation

Manual annotation of drinking actions in movies: "Coffee and Cigarettes"; "Sea of Love"

> "*Drinking*": 159 annotated samples "*Smoking*": 149 annotated samples

Temporal annotation

Spatial annotation

head rectangle

torso rectangle

"Drinking" action samples

training samples

test samples

Action learning

AdaBoost:

Efficient discriminative classifier [Freund&Schapire'97]
Good performance for face detection [Viola&Jones'01]

Keyframe priming

Training

Action Detection (ICCV 2007)

Test episodes from the movie "Coffee and cigarettes"

Video available at http://www.irisa.fr/vista/Equipe/People/Laptev/actiondetection.html