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Computer vision grand challenge:
Video understanding

8 P King, running,
DI exit, car
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Role of image measurements, prior
knowledge and data association
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e Silhouette methods e Optical Flow e Discriminative models
FG/BG separation; general OF, parametric Boosted ST feature
Motion history images, dense OF models, models, realistic action
Human interfaces articulated models detection in movies

e Deformable models ® Space-time methods ® | ocal features
Active shape models, ST-OF models, ST Detectors, descriptors,
motion priors, particle correlation, ST self- matching, Bag of
filters, gesture similarity, irregular Features represen-

recognition behavior tations, recognition



Motivation |. Artistic Representation

Early studies were motivated by human representations in Arts

Da Vinci:

“it is indispensable for a painter, to become totally familiar with the
anatomy of nerves, bones, muscles, and sinews, such that he understands
for their various motions and stresses, which sinews or which muscle
causes a particular motion”

“| ask for the weight [pressure] of this man for every segment of motion
when climbing those stairs, and for the weight he places on b and on c.
Note the vertical line below the center of mass of this man.”

. “n.- s b . 1 ':tﬂ,: .'.- ‘

Leonardo da Vinci (1452-1519): A man going upstairs, or up a ladder.



Motivation Il: Biomechanics

* The emergence of biomechanics

e Borelli applied to biology the
analytical and geometrical methods,
developed by Galileo Galilei

* He was the first to understand that
bones serve as levers and muscles
function according to mathematical
principles

e His physiological studies included
muscle analysis and a mathematical
discussion of movements, such as
running or jumping

Giovanni Alfonso Borelli (1608—-1679)



Motivation lll: Study of motion

Etienne-Jules Marey:
(1830-1904) made
Chronophotographic
experiments influential
for the emerging field of
cinematography

—.

Eadweard Muybridge
(1830-1904) invented a
machine for displaying
the recorded series of
images. He pioneered
motion pictures and
applied his technique to
movement studies




Gunnar Johansson [1973] pioneered studies on the use of image
sequences for a programmed human motion analysis

“Moving Light Displays” (LED) enable identification of familiar people
and the gender and inspired many works in computer vision.

Gunnar Johansson, Perception and Psychophysics, 1973



Human actions: Historic review
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Modern applications: Animation

Motion Synthesis from Annotations
Okan Arikan, David A. Forsyth, James O'Brien, SIGGRAPH 2003



Modern applications: Animation

Crouch Run Run Run
Jump

Motion Synthesis from Annotations
Okan Arikan, David A. Forsyth, James O'Brien, SIGGRAPH 2003



Modern applications: Video editing

COufputfSequence

/e

Space-Time Video Completion
Y. Wexler, E. Shechtman and M. Irani, CVPR 2004



Modern applications: Video editing

Space-Time Video Completion
Y. Wexler, E. Shechtman and M. Irani, CVPR 2004



Modern applications: Video editing

Recognizing Action at a Distance
Alexei A. Efros, Alexander C. Berg, Greg Mori, Jitendra Malik, ICCV 2003



Recognizing Action at a Distance
Alexei A. Efros, Alexander C. Berg, Greg Mori, Jitendra Malik, ICCV 2003



Applications: Human-Machine Interfaces

A

http://vismod.media.mit.edu/vismod/demos/kidsroom/kidsroom.html



ctnn it} / Detection
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e.g. for surveillance

Detecting Irregularities in
Images and in Video

Boimana & Irani, ICCV 2005




Applications: Search & Indexing

e Video search

TV & Web: e.g. Home videos: e.g. Surveillance:
“Fight in a parlament” “My daughter climbing” suspicious behavior

Useful for TV production, entertainment, social studies, security,

e Video mining e Auto-scripting (videoZ2text)

e.g. Discover
age-smoking-gender
correlations now

vs. 20 years ago

JANE

| need a father who's a role model,
not some horny geek-boy who's gonna
spray his shorts whenever | bring a
girlfriend home from school.

(snorts)
What a lame-o0. Somebody really should
put him out of his misery.



Applications: Video Annotation
for video search, indexing, etc...

Learning realistic human actions from movies
Laptev, Marszalek, Schmid and Rozenfeld, CVPR 2008



How to recognize actions?



Action understanding: Key components

Image measurements

Foreground
segmentatlon

l gradlent

Optlcal flow

-9 '1 Local space-

(Semi-) Manual

training
annotation

Automatic

result

Prior knowledge

.
Deformable contour

models |
NyAVYRYY
\/ Q’”‘:‘?/

2D/3D body models

Motion priors
Background models
| Space-time templates

SVM classifiers
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Foreground regions segmentation

Image differencing: one of the simplest ways to measure motion/change

Better Background (BG) / Foreground (FG) separation methods are available:

e Modeling of color variation at each pixel with Gaussian Mixture Models
(GMMSs).

e Dominant motion estimation and compensation for sequences with moving
camera

e Motion layer separation for scenes with non-static backgrounds



Foreground regions segmentation

Pros:

+ Simple and fast

+ Gives acceptable results under restricted conditions

Cons:
- Often unreliable due to shadows, low image contrast, etc.

- Requires background model => not well suited for scenes
with dynamic BG and/or motion parallax



ldea: summarize motion in video in a
Motion History Image (MHI):

{ T if D(x,y,t) =1

H (z,y,t) =< max (0,H,(z,y,t —1)—1)

otherwise

The Recognition of Human Movement Using Temporal Templates
Aaron F. Bobick and James W. Davis, PAMI 2001



Temporal Templates of Bobick & Davis

e Compute MHI for each action
seguence

e Describe each sequence with the
translation and scale invariant
~ sit-down sit-down MHI vector of 7 Hu moments

d = (mog, m11, M2, M30, M21,M12,MQO3)

(B9 B
Mpg = / / 2Pylp(x, y)drdy
. [ S 0

e Nearest Neighbor action
classification with Mahalanobis

h distance between training and
test descriptors d.

arms-wave arms-wave MHI

crouch-down crouch-down MHI



Aerobics Dataset
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Temporal Templates: Summary

Pros:
+ Simple
+ Fast

Cons:
- Assumes static camera, static background

- Sensitive to segmentation errors

- Silhouettes do not capture interior motion/shape

Possible improvements:

e Not all shapes are valid E5» Restrict the space of
admissible shapes to overcome segmentation errors



Active Shape Models of Cootes et al.

Point Distribution Model

e Represent the shape of samples by a set
of corresponding points or landmarks

X = (1.0 T lee e Yn)

®* Assume each shape can be represented
by the linear combination of basis shapes

® = (p1|p2| ... |P1)

suchthat x ~x + ®b

1 5
for mean shape X = o E X
7 =1

and some parameters b



Active Shape Models of Cootes et al.

e Basis shapes can be found as the main modes of variation of
In the training data.

2D Example:
(each point can be
thought as a
shape in N-Dim
space)

Principle Component Analysis (PCA):

1 - - oy
— > (xi —x)(x; — %)’

1—1

Covariance matrix § —

Eigenvectors ® = (¢ |pa]| ... |Pr) eigenvalues \q, ..., \s



Active Shape Models of Cootes et al.

e Back-project from shape-space b toimage space x = X 4+ ®b

m=> Three main modes of lips-shape variation:

b= (y’)\l: Oa 07 )T b = (O,[J)\Q, ana )T b = (01 07 /J‘)‘31 07 07 )T

e ——— e —

06F
04
.oz-/ 4
|
0| g i
02} |
04 {

e i / :
p=-3,15,0,15,3

A small fraction of basis
shapes (eigenvecors)
accounts for the most of shape
variation (=> landmarks are
redundant)



Active Shape Models of Cootes et al.

e & is orthonormal basis, therefore =1 = § I

=) Given estimate of X we can recover shape parameters b
b=&'(x-X)
e Projection onto the shape-space serves as a regularization

X ‘ b:(I)T(X—}_{) ‘ Xreg:)_(_l_(bb




Active Shape Models of Cootes et al.

How to use Active Shape Models for shape estimation?

® Given initial guess of model points X estimate new positions x/
using local image search, e.g. locate the closest edge point

Normal to Model
Boundary Nearest Edge
\ | on Normal (X" Y")

Model Pomt (X.Y)

""" Model Boundary

g Image Object

e Re-estimate shape parameters

b =& (x — %)



Active Shape Models of Cootes et al.

e To handle translation, scale and rotation, it is useful to normalize x
prior to shape estimation:

x = T(X + ®b)

using similarity transformation

a c tr
T(Xnorm): ( e a)X‘l‘(ty)

A simple way to estimate T is to assign (tz,ty) and a to the
mean position and the standard deviation of points in X
respectively and set ¢ = 0. For more sophisticated
normalization techniques see:

http://www.isbe.man.ac.uk/~bim/Models/app _model.ps.gz

Note: model parameters X, & have to be computed using
normalized image point coordinates xnorm = 7~ 1(x)



Active Shape Models of Cootes et al.

¢ |terative ASM alignment algorithm

1. Initialize with the reasonable guess of T and b =0T
2. Estimate x’ from image measurements

3. Re-estimate T, b

4. Unless T, b converged, repeat from step 2

Example: face alignment lllustration of face shape space

| = =5 e
Mode 1 I@/ |%jl;j %ﬁ
_E 9 |o e
Mode 2 % |éj 'éjl
F«U? |?U‘¢=a‘| II @6:51'

Mode 3 '\%_} j \ ’ﬁj K"—E"’

Active Shape Models: Their Training and Application
T.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham, CVIU 1995




Active Shape Model tracking

Aim: to track ASM of time-varying shapes, e.g. human silhouettes

e Impose time-continuity constraint on model parameters.
For example, for shape parameters b :

M = bi(k — 1) 4wl

w; ~ N(0, ;)  Gaussian noise

For similarity transformation T
atk) = a(k=1) 4 k=1 w, = N (0, 04)

(k) _ ,(k—1) (k—1) k—1 _
baly = taly  TValy T Waly 0 Waly = N(0, 0y))

More complex dynamical models possible

e Update model parameters at each time frame using e.g.
Kalman filter



Person Tracking

Learning flexible models from image sequences
A. Baumberg and D. Hogg, ECCV 1994



Person Tracking

T
ol

|
'

Learning flexible models from image sequences
A. Baumberg and D. Hogg, ECCV 1994



Active Shape Models: Summary

Pros:
+ Shape prior helps overcoming segmentation errors

+ Fast optimization

+ Can handle interior/exterior dynamics

Cons:
- Optimization gets trapped in local minima

- Re-initialization is problematic
Possible improvements:

* Learn and apply specific motion priors for different
actions



Motion priors

e Accurate motion models can be used both to:

Help accurate tracking
Recognize actions

e Goal: formulate motion models for different types of actions
and use such models for action recognition

Example: i

\

Drawing with 3 action
modes

- |ine drawing

scribbling

—dle

From M. Isard and A. Blake, ICCV 1998



Incorporating motion priors

Prior knowledge

Learning motion
models for
different actions

Image measurements Data Association

Foreground =
segmentation

Image gradient

Optical Flow




Bayesian Tracking

General framework: recognition by synthesis;
generative models;
finding best explanation of the data

Notation:

Z; image data at time ;
X; model parameters at time i (e.g. shape and its dynamics)
p(X;) prior density for X;
p(Z;|X;) likelihood of data for the given model configuration

We search posterior defined by the Bayes’ rule
p(X|Z) < p(Z|X)p(X)
For tracking the Markov assumption gives the prior p(X;|X;-1)

Temporal update rule: p(X;|Z;) x p(Z;|X;)p(X;]|X;-1)



Kalman Filtering

If all probability densities are uni-modal, specifically Gussians,
the posterior can be evaluated in the closed form

p(X;-1) T T

A

|
I|
stochastic diffusion

lprf‘u /

Wwe effect of measurement /
p(X;|Z;) o< p(Z;|X)p(X;1Xi—1)



Particle Filtering

In reality probability densities are almost always multi-modal

p (X’L— 1 ) // f__f-___dttennmistic drifr_qﬂ-qﬂ\

[ ) )
) pix)

|
|
|

1
stochastic diffusion

L
pix)

‘w{'e effect of meaauremenr/
3 o o

p(X;|Z;) p(Zi|Xi)p(X7j|Xz'—1)_ p(Xi[X; 1)



Particle Filtering

In reality probability densities are almost always multi-modal

==) Approximate distributions with weighted particles
M _m

/5 R
PXi_q £y ) = 2 G <
drift
| diffuse
P [ £y & — o
measure
plz, [ x;)
Y ¥ Y w ﬁﬂ'
P(Xi | 21 ) = o e &




Particle Filtering

Tracking examples:

X describes leave shape X describes head shape

CONDENSATION - conditional density propagation for visual tracking
A. Blake and M. Isard IJCV 1998



Learning dynamic prior
e Dynamic model: 2" order Auto-Regressive Process

State X, = ( Rk )

Update rule: X, — X = A(X, | — X) + Bwy

Model parameters: A = ( A, A, ) , &= (X) and B = (Bg )

Learning scheme:

Shape Space Fast test
sequences

|

Faster training

Hand-built dynamics

sequence
T lterate
Training sequence Infer dynamical
slow, clutter—free model




Learning dynamic prior

Learning point sequence
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Random simulation of the
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Clni ]
- ....h
M g ’ffq’“’
5t
100 200

- —I00 —100 ]

P
- 100 r"f
s
""H.._N““
ot P
L] : A
L ."‘;..“
Loy
. 1_‘_:#'
{
100 e, o,
S
-
T
A
- =200 —-100 0 100 200

Statistical models of visual shape and motion

A. Blake, B. Bascle, M. Isard and J. MacCormick, Phil.Trans.R.Soc. 1998




Learning dynamic prior

Random simulation of the learned gate dynamics




Dynamics with discrete states

Introduce “mixed” state X, = ( g = Continuous state

Yk space (as before)

Discrete variable
Transition probability matrix identifying dynamical
model yx = 1,2,...,n

Plyy = J|£/fs 1 = ?) — T«,{J,

or more generally (1. = j\yk | = 1, AL 1) — ﬂjj(‘;t,k: 1)

Incorporation of the mixed-state model into a particle filter is
straightforward, simply use X,j iInstead of A3, and the
corresponding update rules



Dynamics with discrete states

Example: Drawing

line idle scribbling
Transition 0.9800 0.0015 0.0185\ line
probability T = [ 0.0850 0.9000 0.0150 | dle
matrix 0.0050 0.0150 0.9800/ scribbling
Result: simultaneously ﬁﬂ

improved tracking and
gesture recognition

- |ine drawing

scribbling

=it

—dle

il
A mixed-state Condensation tracker with automatic model-switching
M. Isard and A. Blake, ICCV 1998



Dynamics with discrete states

. . . Startcug‘
Similar illustrated on -——§se \
gesture recognition in gsm 04 o

the context of a visual Clear

black-board interface p S

Quit
Print Save

A probabilistic framework for matching temporal trajectories:
CONDENSATION-based recognition of gestures and expressions
M.J. Black and A.D. Jepson, ECCV 1998



So far...

Image measurements Data Association Prior knowledge
r —l M —I
| Foreground | | | Background models |
segmentation Particle filters
Temporal templates
Hu moments and NN classifiers
Fourier descriptors | & e ol

models
Image edges

£ -

Motion priors




