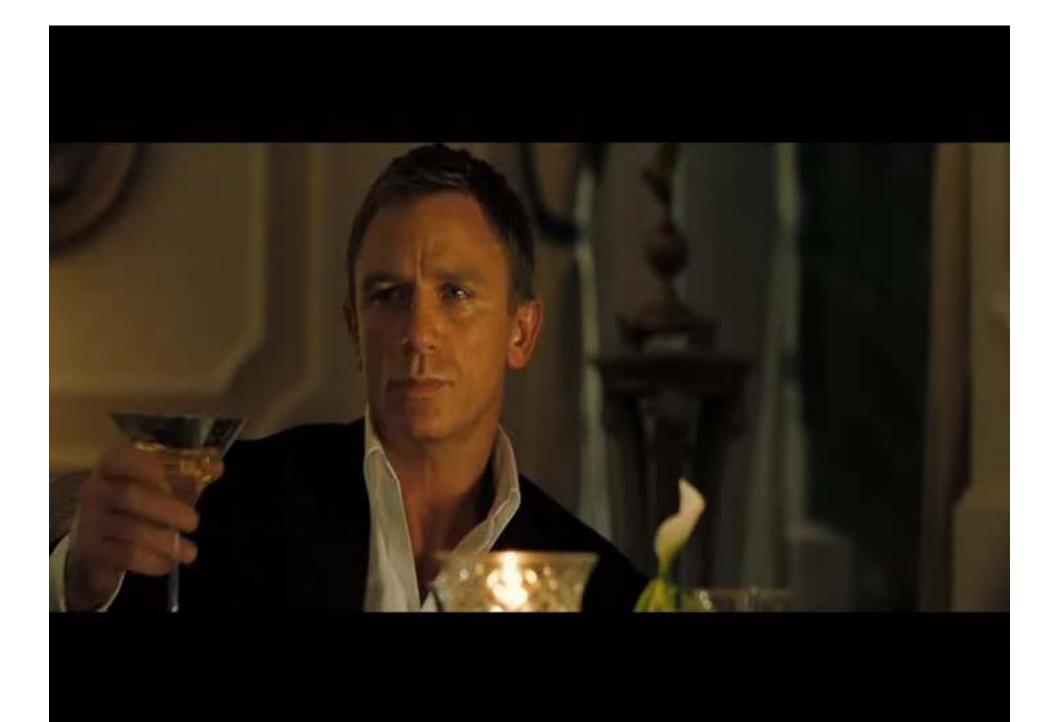


Object recognition and computer vision 2009/2010 Lecture 11, December 15

Motion and Human Actions

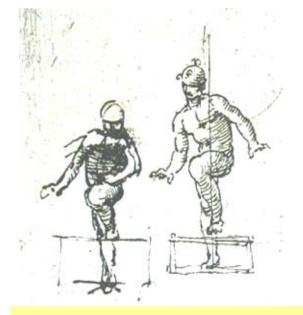
Ivan Laptev *ivan.laptev@ens.fr* Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d'Informatique, Ecole Normale Supérieure, Paris



Computer vision grand challenge: Video understanding



Class overview



Motivation

Historic review

Modern applications

Overview of methods

Role of image measurements, prior knowledge and data association

Methods I

• Silhouette methods

FG/BG separation; Motion history images, Human interfaces

• Deformable models

Active shape models, motion priors, particle filters, gesture recognition

Methods II

• Optical Flow

general OF, parametric dense OF models, articulated models

Space-time methods

ST-OF models, ST correlation, ST selfsimilarity, irregular behavior

Methods III

Discriminative models
 Boosted ST feature
 models, realistic action

detection in movies

Local features

Detectors, descriptors, matching, Bag of Features representations, recognition

Motivation I: Artistic Representation

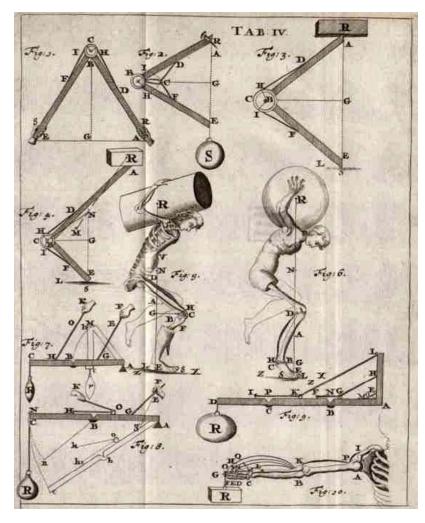
Early studies were motivated by human representations in Arts

Da Vinci: "it is indispensable for a painter, to become totally familiar with the anatomy of nerves, bones, muscles, and sinews, such that he understands for their various motions and stresses, which sinews or which muscle causes a particular motion"

"I ask for the weight [pressure] of this man for every segment of motion when climbing those stairs, and for the weight he places on *b* and on *c*. Note the vertical line below the center of mass of this man."

Leonardo da Vinci (1452–1519): A man going upstairs, or up a ladder.

Motivation II: Biomechanics

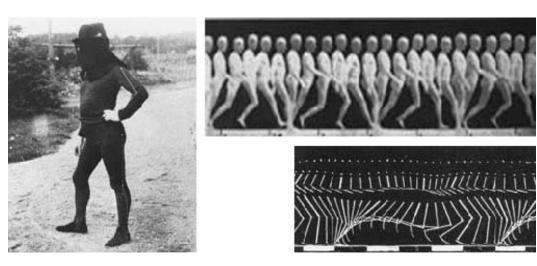


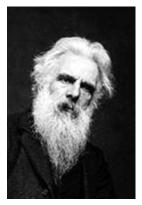
Giovanni Alfonso Borelli (1608–1679)

- The emergence of *biomechanics*
- Borelli applied to biology the analytical and geometrical methods, developed by Galileo Galilei
- He was the first to understand that bones serve as levers and muscles function according to mathematical principles
- His physiological studies included muscle analysis and a mathematical discussion of movements, such as running or jumping

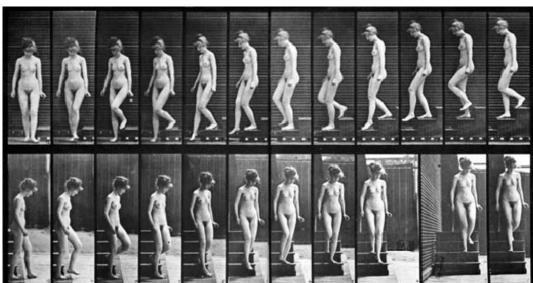
Motivation III: Study of motion

Etienne-Jules Marey: (1830–1904) made Chronophotographic experiments influential for the emerging field of cinematography



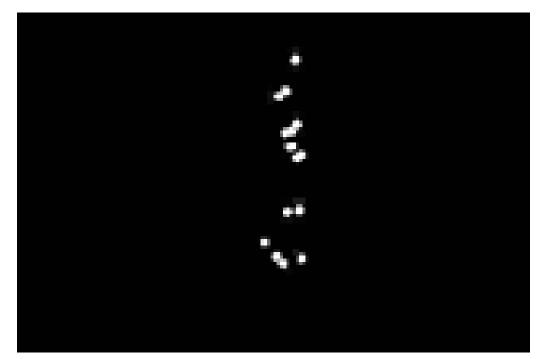


Eadweard Muybridge (1830–1904) invented a machine for displaying the recorded series of images. He pioneered motion pictures and applied his technique to movement studies



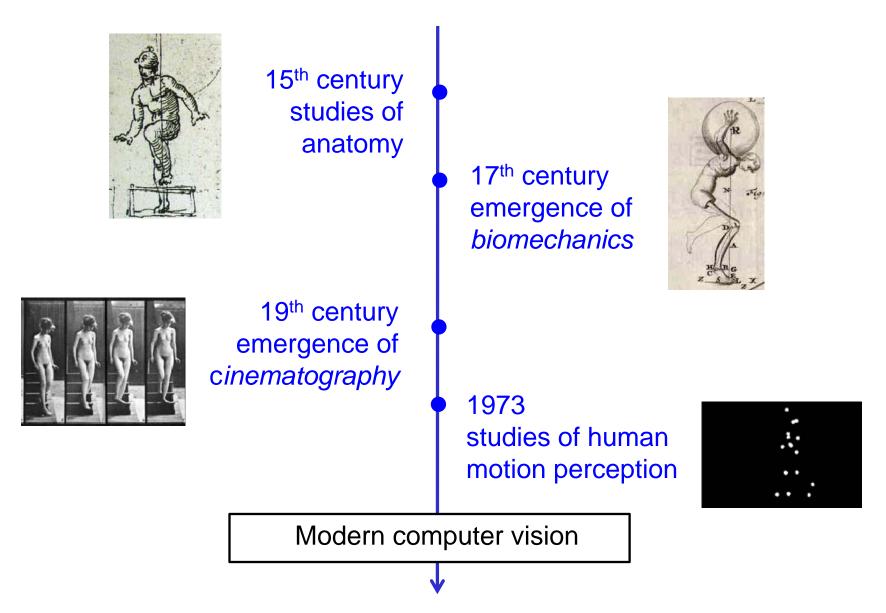
Motivation III: Study of motion

- Gunnar Johansson [1973] pioneered studies on the use of image sequences for a programmed human motion analysis
- "Moving Light Displays" (LED) enable identification of familiar people and the gender and inspired many works in computer vision.

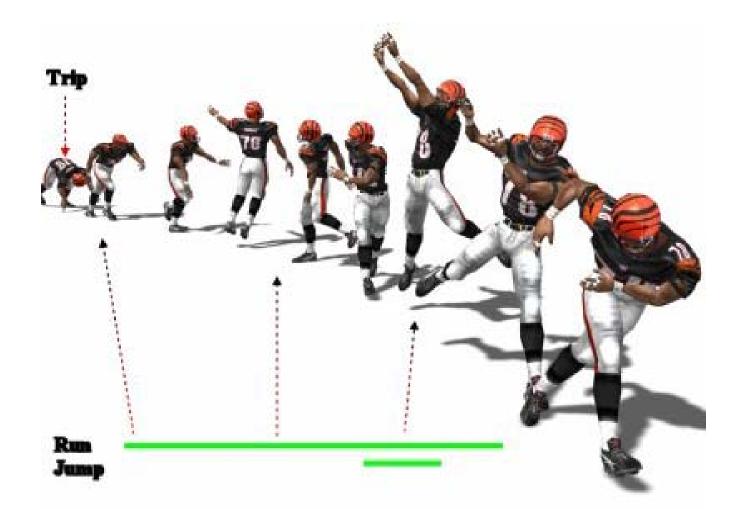


Gunnar Johansson, Perception and Psychophysics, 1973

Human actions: Historic review



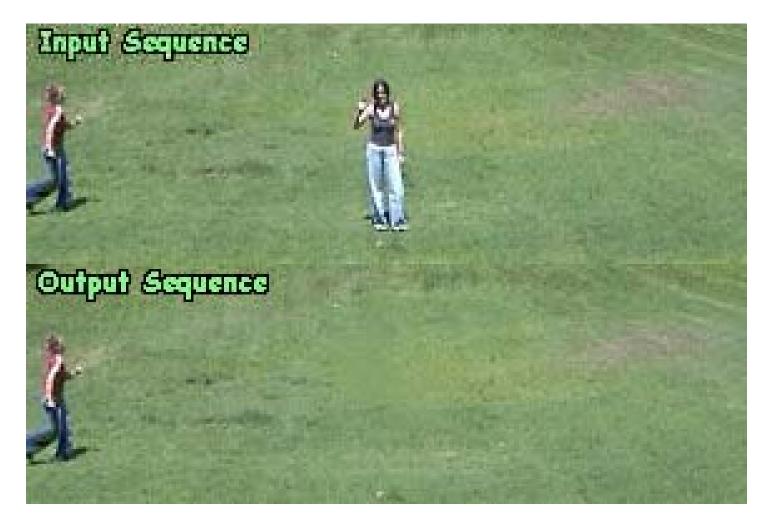
Modern applications: Animation



Motion Synthesis from Annotations Okan Arikan, David A. Forsyth, James O'Brien, **SIGGRAPH** 2003

Modern applications: Animation

Motion Synthesis from Annotations Okan Arikan, David A. Forsyth, James O'Brien, **SIGGRAPH** 2003



Space-Time Video Completion Y. Wexler, E. Shechtman and M. Irani, **CVPR** 2004

Space-Time Video Completion Y. Wexler, E. Shechtman and M. Irani, **CVPR** 2004

Recognizing Action at a Distance Alexei A. Efros, Alexander C. Berg, Greg Mori, Jitendra Malik, **ICCV** 2003

Recognizing Action at a Distance Alexei A. Efros, Alexander C. Berg, Greg Mori, Jitendra Malik, **ICCV** 2003

Applications: Human-Machine Interfaces

http://vismod.media.mit.edu/vismod/demos/kidsroom/kidsroom.html

Applications: Unusual Activity Detection

e.g. for surveillance

Detecting Irregularities in Images and in Video Boimana & Irani, **ICCV** 2005

Applications: Search & Indexing

• Video search

TV & Web: e.g. *"Fight in a parlament"*

Home videos: e.g. *"My daughter climbing"*

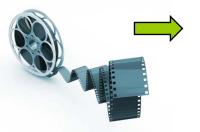
Surveillance: *suspicious behavior*

Useful for TV production, entertainment, social studies, security,

• Video mining

e.g. *Discover age-smoking-gender correlations now vs. 20 years ago*

Auto-scripting (video2text)



JANE

I need a father who's a role model, not some horny geek-boy who's gonna spray his shorts whenever I bring a girlfriend home from school. (snorts)

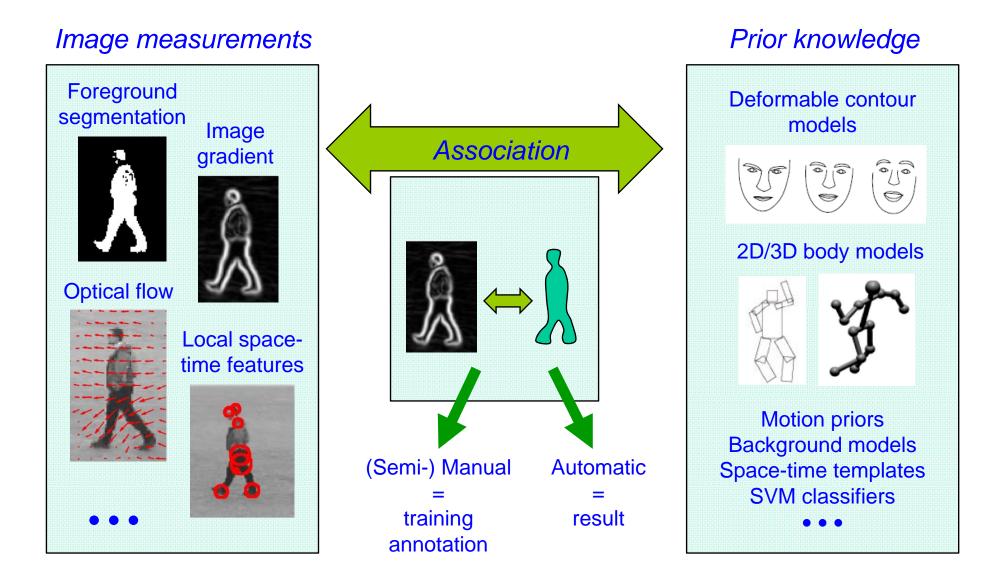
What a lame-o. Somebody really should put him out of his misery.

Applications: Video Annotation for video search, indexing, etc...

Learning realistic human actions from movies Laptev, Marszalek, Schmid and Rozenfeld, **CVPR** 2008

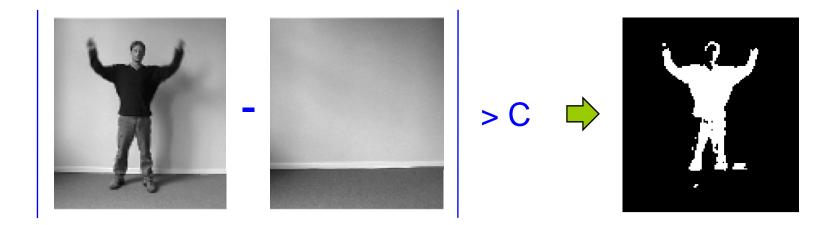
How to recognize actions?

Action understanding: Key components



Foreground regions segmentation

Image differencing: one of the simplest ways to measure motion/change



Better Background (BG) / Foreground (FG) separation methods are available:

- Modeling of color variation at each pixel with Gaussian Mixture Models (GMMs).
- Dominant motion estimation and compensation for sequences with moving camera
- Motion layer separation for scenes with non-static backgrounds

Foreground regions segmentation

Pros:

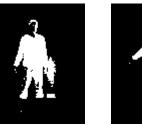
- + Simple and fast
- + Gives acceptable results under restricted conditions

Cons:

- Often unreliable due to shadows, low image contrast, etc.
- Requires background model => not well suited for scenes with dynamic BG and/or motion parallax

Temporal Templates of Bobick & Davis

 $D(x, y, t) \ t = 1, ..., T$



Idea: summarize motion in video in a *Motion History Image (MHI)*:

$$H_{\tau}(x, y, t) = \begin{cases} \tau & \text{if } D(x, y, t) = 1\\ \max & (0, H_{\tau}(x, y, t - 1) - 1)\\ \text{otherwise} \end{cases}$$

The Recognition of Human Movement Using Temporal Templates Aaron F. Bobick and James W. Davis, **PAMI** 2001

Temporal Templates of Bobick & Davis

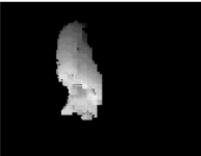
sit-down

arms-wave

crouch-down

sit-down MHI

arms-wave MHI



crouch-down MHI

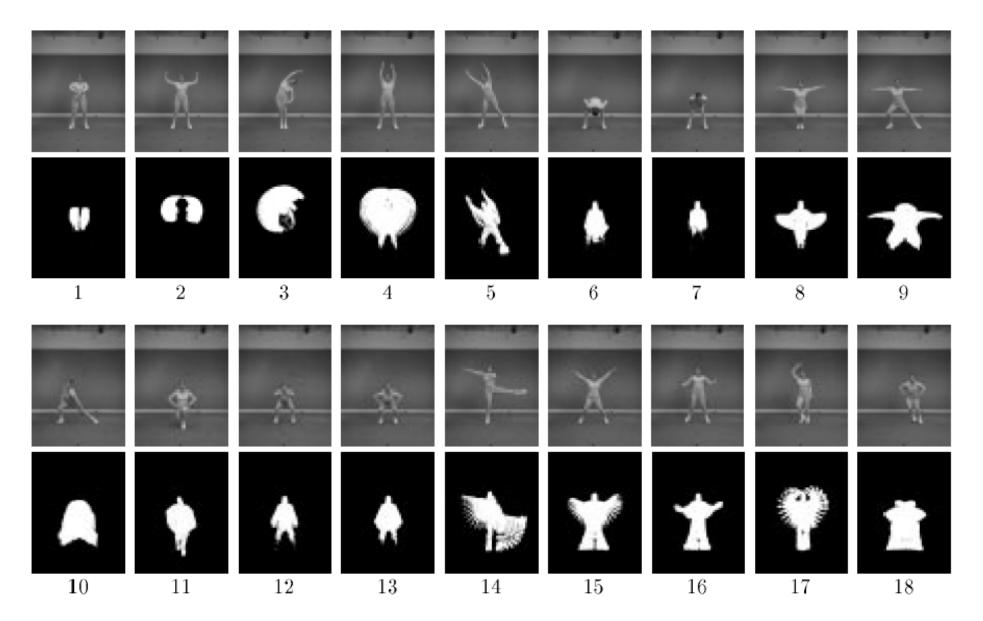
- Compute MHI for each action sequence
- Describe each sequence with the translation and scale invariant vector of 7 Hu moments

$$d = (m_{20}, m_{11}, m_{02}, m_{30}, m_{21}, m_{12}, m_{03})^{\top}$$

$$m_{pq} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^p y^q \rho(x, y) dx dy$$

• Nearest Neighbor action classification with Mahalanobis distance between training and test descriptors *d*.

Aerobics Dataset



Temporal Templates: Summary

Pros:

- + Simple
- + Fast

Cons:

- Assumes static camera, static background
- Sensitive to segmentation errors
- Silhouettes do not capture interior motion/shape

Possible improvements:

 Not all shapes are valid admissible shapes to overcome segmentation errors

Point Distribution Model

• Represent the shape of samples by a set of corresponding points or *landmarks*

$$\mathbf{x} = (x_1, \dots, x_n, y_1, \dots, y_n)^T$$

• Assume each shape can be represented by the linear combination of basis shapes

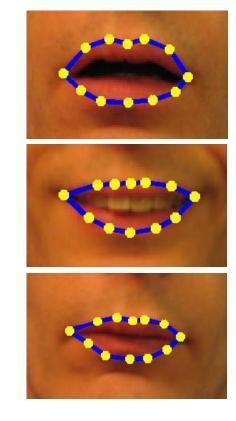
$$\mathbf{\Phi} = (\phi_1 | \phi_2 | \dots | \phi_t)$$

such that $\mathbf{x} pprox ar{\mathbf{x}} + \mathbf{\Phi} \mathbf{b}$

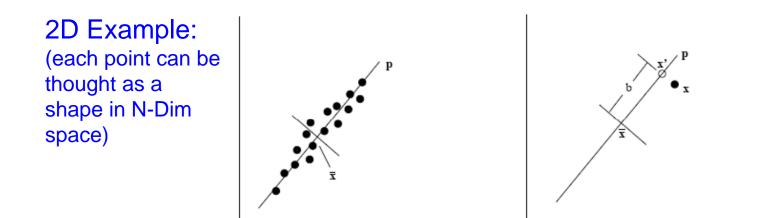
for mean shape $\bar{\mathbf{x}} = \frac{1}{s} \sum_{i=1}^{s} \mathbf{x}_{i}$

$$s_{\overline{i=}}$$

and some parameters \mathbf{b}



• Basis shapes can be found as the main modes of variation of in the training data.

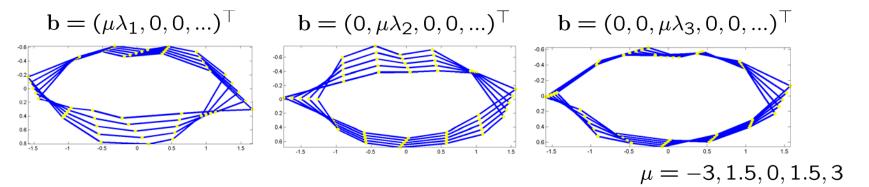


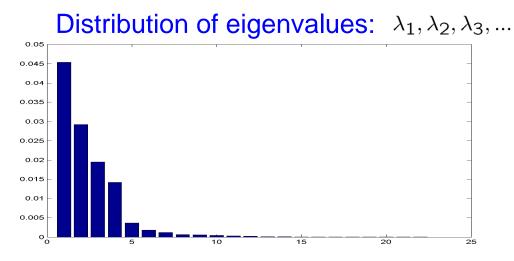
Principle Component Analysis (PCA):

Covariance matrix
$$\mathbf{S} = \frac{1}{s-1} \sum_{i=1}^{s} (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^T$$

Eigenvectors $\mathbf{\Phi} = (\phi_1 | \phi_2 | \dots | \phi_t)$ eigenvalues $\lambda_1, \dots, \lambda_t$

- Back-project from shape-space ${f b}$ to image space ${f x}={f x}+\Phi{f b}$
 - \Rightarrow Three main modes of lips-shape variation:





A small fraction of basis shapes (eigenvecors) accounts for the most of shape variation (=> landmarks are redundant)

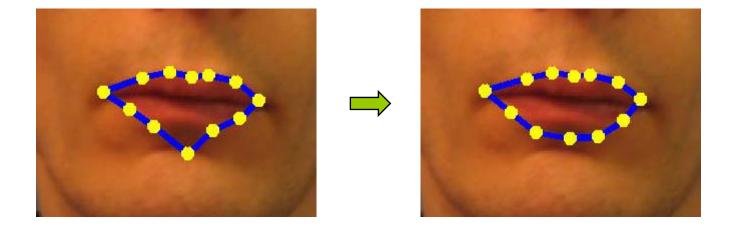
• Φ is orthonormal basis, therefore $\Phi^{-1}=\Phi^ op$

 \blacksquare Given estimate of x we can recover shape parameters b

$$\mathbf{b} = \Phi^{\top}(\mathbf{x} - \bar{\mathbf{x}})$$

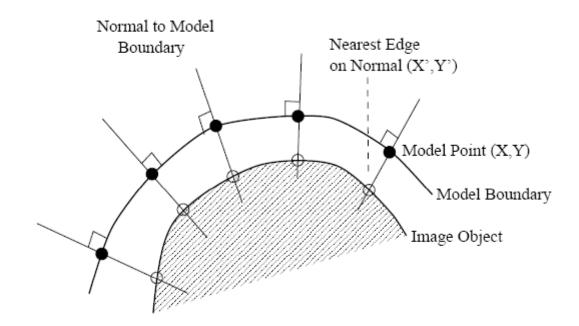
• Projection onto the shape-space serves as a *regularization*

$$\mathbf{x} \implies \mathbf{b} = \Phi^{\top}(\mathbf{x} - \bar{\mathbf{x}}) \implies \mathbf{x}_{reg} = \bar{\mathbf{x}} + \Phi \mathbf{b}$$



How to use Active Shape Models for shape estimation?

• Given initial guess of model points ${\bf x}$ estimate new positions ${\bf x}'$ using local image search, e.g. locate the closest edge point



• Re-estimate shape parameters

$$\mathbf{b}' = \Phi^{ op}(\mathbf{x}' - \bar{\mathbf{x}})$$

• To handle translation, scale and rotation, it is useful to normalize \mathbf{x} prior to shape estimation:

$$\mathbf{x} = \mathbf{T}(\bar{\mathbf{x}} + \Phi \mathbf{b})$$

using similarity transformation

$$\mathbf{T}(\mathbf{x}_{\text{norm}}) = \begin{pmatrix} a & c \\ -c & a \end{pmatrix} \mathbf{x} + \begin{pmatrix} t_x \\ t_y \end{pmatrix}$$

A simple way to estimate T is to assign (t_x, t_y) and a to the mean position and the standard deviation of points in X respectively and set c = 0. For more sophisticated normalization techniques see:

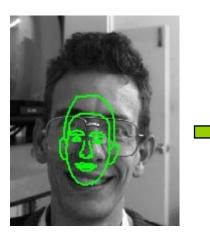
http://www.isbe.man.ac.uk/~bim/Models/app_model.ps.gz

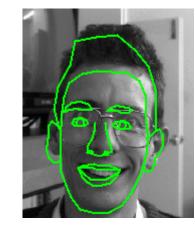
Note: model parameters $\bar{\mathbf{x}}$, Φ have to be computed using *normalized* image point coordinates $\mathbf{x}_{norm} = T^{-1}(\mathbf{x})$

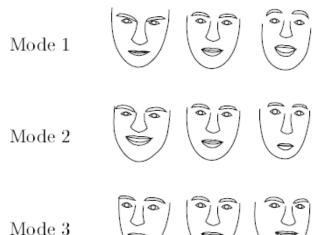
- Iterative ASM alignment algorithm
 - 1. Initialize with the reasonable guess of ${\bf T}$ and ${\bf b}={\bf 0}^{\top}$
 - 2. Estimate \mathbf{x}' from image measurements
 - $\textbf{3. Re-estimate } \mathbf{T}, \mathbf{b}$
 - 4. Unless \mathbf{T}, \mathbf{b} converged, repeat from step 2

Example: face alignment

Illustration of face shape space







Active Shape Models: Their Training and Application T.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham, **CVIU** 1995

Active Shape Model tracking

Aim: to track ASM of time-varying shapes, e.g. human silhouettes

Impose time-continuity constraint on model parameters.
 For example, for shape parameters b :

$$b_i^{(k)} = b_i(k-1) + w_i^{k-1}$$

 $w_i \sim \mathcal{N}(0, \mu \lambda_i)$ Gaussian noise

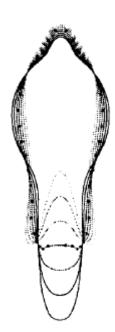
For similarity transformation T

$$a^{(k)} = a^{(k-1)} + w_a^{k-1}, \quad w_a = \mathcal{N}(0, \sigma_a)$$

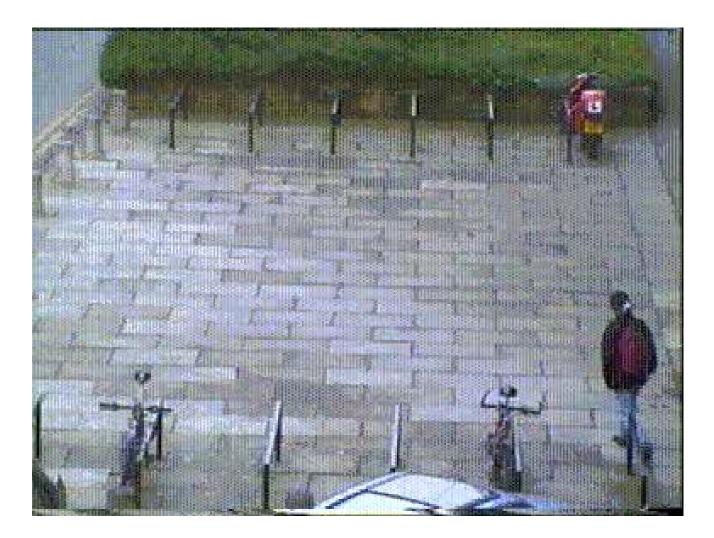
$$t_{x|y}^{(k)} = t_{x|y}^{(k-1)} + v_{x|y}^{(k-1)} + w_{x|y}^{k-1}, \quad w_{x|y} = \mathcal{N}(0, \sigma_{x|y})$$

More complex dynamical models possible

• Update model parameters at each time frame using e.g. Kalman filter



Person Tracking



Learning flexible models from image sequences A. Baumberg and D. Hogg, **ECCV** 1994

Person Tracking

Learning flexible models from image sequences A. Baumberg and D. Hogg, **ECCV** 1994

Active Shape Models: Summary

Pros:

- + Shape prior helps overcoming segmentation errors
- + Fast optimization
- + Can handle interior/exterior dynamics

Cons:

- Optimization gets trapped in local minima
- Re-initialization is problematic

Possible improvements:

• Learn and apply specific motion priors for different actions

Motion priors

• Accurate motion models can be used both to:

Help accurate tracking Recognize actions

• Goal: formulate motion models for different types of actions and use such models for action recognition

Example:

Drawing with 3 action modes

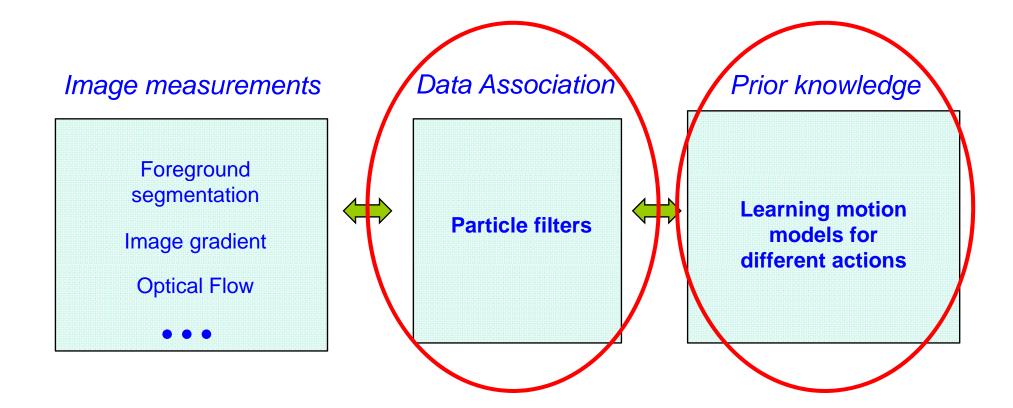
- line drawing
 - scribbling

idle



From M. Isard and A. Blake, ICCV 1998

Incorporating motion priors



Bayesian Tracking

General framework: recognition by synthesis; generative models; finding best explanation of the data

Notation:

- \mathbf{Z}_i image data at time *i*
- X_i model parameters at time *i* (e.g. shape and its dynamics)
- $p(\mathbf{X}_i)$ prior density for \mathbf{X}_i
- $p(\mathbf{Z}_i|\mathbf{X}_i)$ likelihood of data for the given model configuration

We search posterior defined by the Bayes' rule

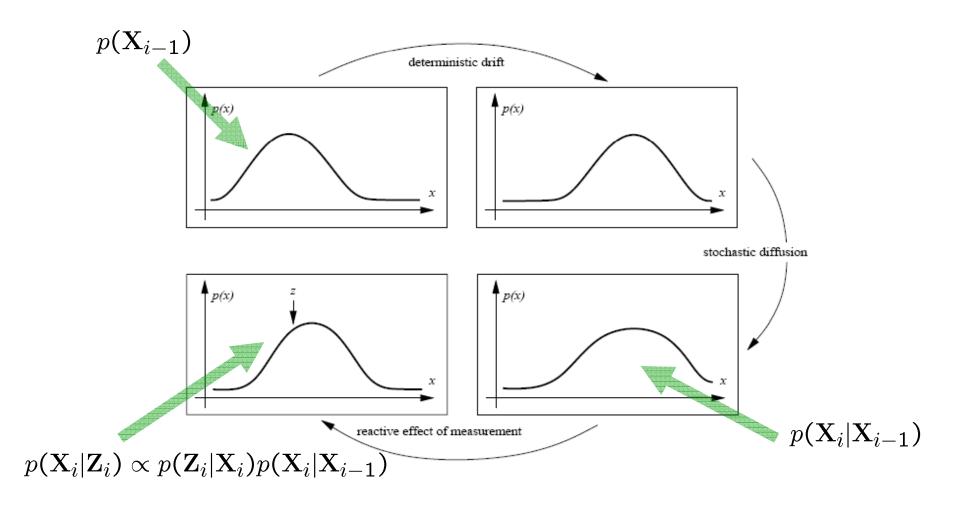
 $p(\mathbf{X}|\mathbf{Z}) \propto \mathbf{p}(\mathbf{Z}|\mathbf{X})\mathbf{p}(\mathbf{X})$

For tracking the Markov assumption gives the prior $p(\mathbf{X}_i | \mathbf{X}_{i-1})$

Temporal update rule: $p(\mathbf{X}_i | \mathbf{Z}_i) \propto p(\mathbf{Z}_i | \mathbf{X}_i) p(\mathbf{X}_i | \mathbf{X}_{i-1})$

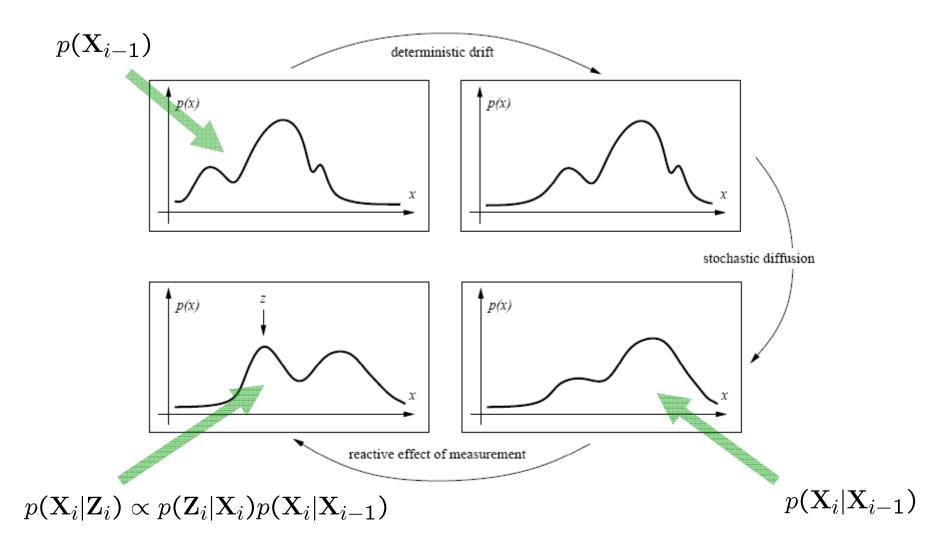
Kalman Filtering

If all probability densities are uni-modal, specifically Gussians, the posterior can be evaluated in the closed form



Particle Filtering

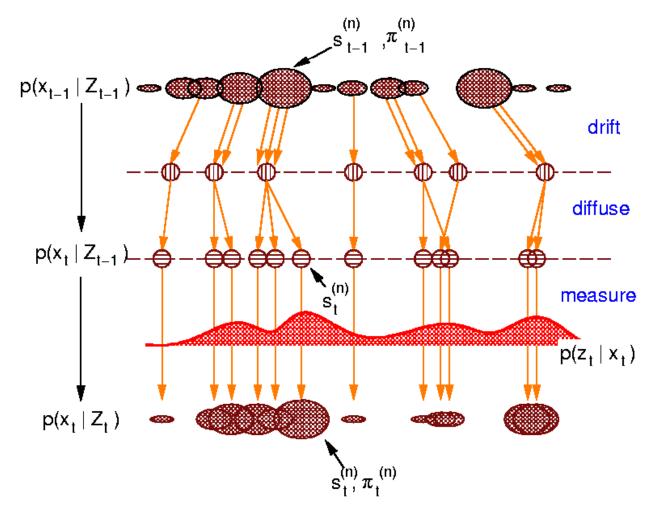
In reality probability densities are almost always multi-modal



Particle Filtering

In reality probability densities are almost always multi-modal

Approximate distributions with weighted particles



Particle Filtering

Tracking examples:

${\bf X}$ describes leave shape

${\bf X}\,$ describes head shape

CONDENSATION - conditional density propagation for visual tracking A. Blake and M. Isard IJCV 1998

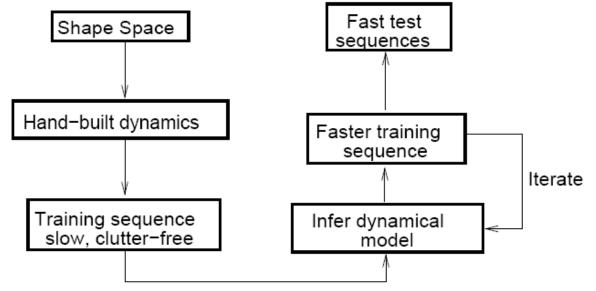
Learning dynamic prior

• Dynamic model: 2nd order Auto-Regressive Process

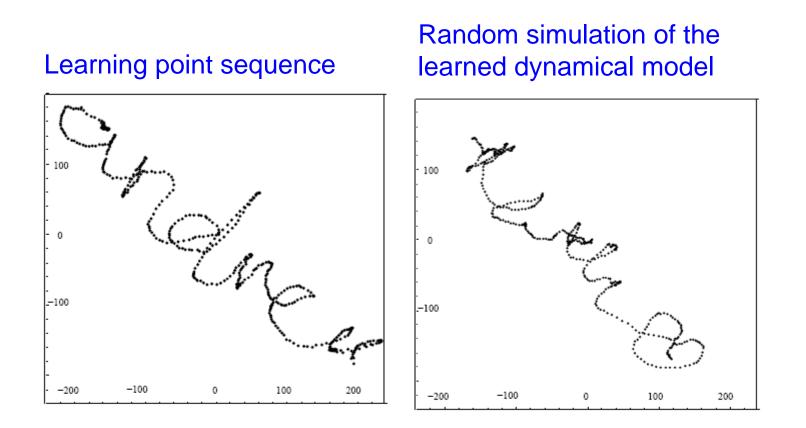
State
$$\mathcal{X}_{k} = \begin{pmatrix} \mathbf{X}_{k-1} \\ \mathbf{X}_{k} \end{pmatrix}$$

Update rule: $\mathcal{X}_{k} - \overline{\mathcal{X}} = A(\mathcal{X}_{k-1} - \overline{\mathcal{X}}) + B\mathbf{w}_{k}$
Model parameters: $A = \begin{pmatrix} 0 & I \\ A_{2} & A_{1} \end{pmatrix}, \quad \overline{\mathcal{X}} = \begin{pmatrix} \frac{\overline{\mathbf{X}}}{\overline{\mathbf{X}}} \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 \\ B_{0} \end{pmatrix}$

Learning scheme:



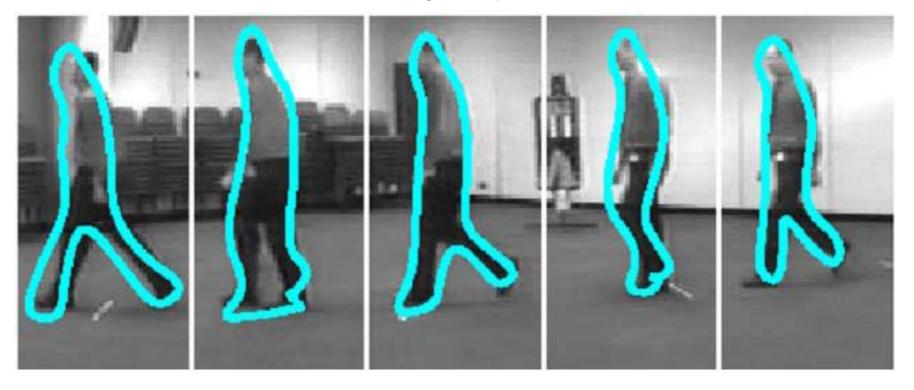
Learning dynamic prior



Statistical models of visual shape and motion A. Blake, B. Bascle, M. Isard and J. MacCormick, **Phil.Trans.R.Soc. 1998**

Learning dynamic prior

Random simulation of the learned gate dynamics



Dynamics with discrete states

Introduce "mixed" state $\mathcal{X}_k^+ = \begin{pmatrix} \mathcal{X}_k \\ y_k \end{pmatrix}$ Continuous state space (as before) Discrete variable identifying dynamical Transition probability matrix model $y_k = 1, 2, ..., n$

$$P(y_k = j | y_{k-1} = i) = T_{i,j},$$

or more generally
$$P(y_k = j | y_{k-1} = i, \mathcal{X}_{k-1}) = T_{i,j}(\mathcal{X}_{k-1})$$

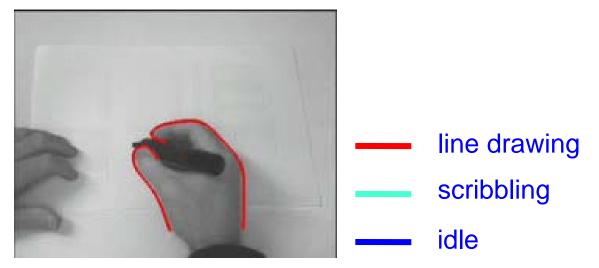
Incorporation of the mixed-state model into a particle filter is straightforward, simply use \mathcal{X}_k^+ instead of \mathcal{X}_k and the corresponding update rules

Dynamics with discrete states

Example: Drawing

		line	idle	scribbling	
Transition probability matrix	T =	$ \begin{pmatrix} 0.9800 \\ 0.0850 \\ 0.0050 \end{pmatrix} $	$\begin{array}{c} 0.0015 \\ 0.9000 \\ 0.0150 \end{array}$	$\begin{array}{c} 0.0185 \\ 0.0150 \\ 0.9800 \end{array} \right)$	line idle scribbling

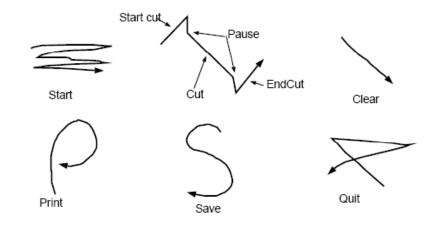
Result: simultaneously improved tracking and gesture recognition

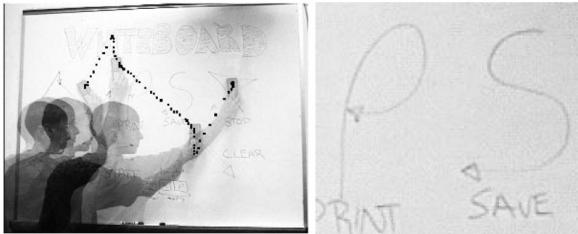


A mixed-state Condensation tracker with automatic model-switching M. Isard and A. Blake, **ICCV** 1998

Dynamics with discrete states

Similar illustrated on gesture recognition in the context of a visual black-board interface





A probabilistic framework for matching temporal trajectories: CONDENSATION-based recognition of gestures and expressions M.J. Black and A.D. Jepson, **ECCV** 1998

So far...

