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Computer vision grand challenge: Computer vision grand challenge: 
Vid d t diVid d t diVideo understandingVideo understanding
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Class overviewClass overviewClass overviewClass overview
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Overview of methodsOverview of methods
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knowledge and data association

Methods I Methods II Methods III
Silhouette methods
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Motion history images, 

Optical Flow
general OF, parametric 
dense OF models, 

 Discriminative models
Boosted  ST feature 
models, realistic action 
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Human interfaces

Deformable models
Active shape models, 

articulated models

Space-time methods
ST-OF models, ST 



detection in movies

Local features
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p
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p
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Motivation I: Artistic RepresentationMotivation I: Artistic RepresentationMotivation I: Artistic RepresentationMotivation I: Artistic Representation
Early studies were motivated by human representations in Arts 

Da Vinci: “it is indispensable for a painter, to become totally familiar with the 
anatomy of nerves, bones, muscles, and sinews, such that he understands 
for their various motions and stresses, which sinews or which muscle 
causes a particular motion”

“I ask for the weight [pressure] of this man for every segment of motion 
when climbing those stairs, and for the weight he places on b and on c. 
Note the vertical line below the center of mass of this man.”

Leonardo da Vinci (1452–1519): A man going upstairs, or up a ladder.



Motivation II: BiomechanicsMotivation II: BiomechanicsMotivation II: BiomechanicsMotivation II: Biomechanics

The emergence of biomechanics

Borelli applied to biology the 




analytical and geometrical methods, 
developed by Galileo Galilei

He was the first to understand that 
bones serve as levers and muscles 
function according to mathematical 



principles

His physiological studies included 
muscle analysis and a mathematical 
discussion of movements, such as 
running or jumping

Giovanni Alfonso Borelli (1608–1679)

g j p g



Motivation III: Study of motionMotivation III: Study of motionMotivation III: Study of motionMotivation III: Study of motion
Etienne-Jules Marey: 
(1830 1904) d(1830–1904) made 
Chronophotographic 
experiments influential 
for the emerging field offor the emerging field of 
cinematography

Eadweard Muybridge 
(1830–1904) invented a 
machine for displaying 
the recorded series of 
images. He pioneered 
motion pictures and 
applied his technique toapplied his technique to 
movement studies



Motivation III: Study of motionMotivation III: Study of motion

Gunnar Johansson [1973] pioneered studies on the use of image

Motivation III: Study of motionMotivation III: Study of motion

Gunnar Johansson [1973] pioneered studies on the use of image 
sequences for a programmed human motion analysis



“Moving Light Displays” (LED) enable identification of familiar people  g g p y ( ) p p
and the gender and inspired many works in computer vision.

Gunnar Johansson, Perception and Psychophysics, 1973 



Human actions: Historic reviewHuman actions: Historic reviewHuman actions: Historic reviewHuman actions: Historic review
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Modern applicationsModern applications:: AnimationAnimationModern applicationsModern applications: : AnimationAnimation

Motion Synthesis from Annotations
Okan Arikan, David A. Forsyth, James O'Brien, SIGGRAPH 2003 
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Modern applications:Modern applications: Video editingVideo editingModern applications: Modern applications: Video editingVideo editing

Space-Time Video Completion
Y. Wexler, E. Shechtman and M. Irani, CVPR 2004 
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Space-Time Video Completion
Y. Wexler, E. Shechtman and M. Irani, CVPR 2004 



Modern applications:Modern applications: Video editingVideo editingModern applications: Modern applications: Video editingVideo editing

Recognizing Action at a Distance
Alexei A. Efros, Alexander C. Berg, Greg Mori, Jitendra Malik, ICCV 2003 



Modern applications:Modern applications: Video editingVideo editingModern applications: Modern applications: Video editingVideo editing

Recognizing Action at a Distance
Alexei A. Efros, Alexander C. Berg, Greg Mori, Jitendra Malik, ICCV 2003 



Applications: HumanApplications: Human--Machine InterfacesMachine InterfacesApplications: HumanApplications: Human--Machine InterfacesMachine Interfaces

http://vismod.media.mit.edu/vismod/demos/kidsroom/kidsroom.html



Applications: Unusual Activity DetectionApplications: Unusual Activity DetectionApplications: Unusual Activity DetectionApplications: Unusual Activity Detection
e.g. for surveillancee.g. for surveillance

Detecting Irregularities in 
I d i VidImages and in Video

Boimana & Irani, ICCV 2005 



Applications: Applications: Search & IndexingSearch & Indexing
Video search

pppp gg

Home videos: e.g.
“My daughter climbing”

TV & Web: e.g. 
“Fight in a parlament”

Surveillance:
suspicious behavior

f f

 Video mining 

Useful for TV production, entertainment, social studies, security, 

Auto scripting (video2text) Video mining
e.g. Discover 
age-smoking-gender 
correlations now

 Auto-scripting (video2text) 
JANE

I need a father who's a role model, 
not some horny geek-boy who's gonna 
spray his shorts whenever I bring a 

correlations now
vs. 20 years ago

girlfriend home from school.
(snorts)

What a lame-o. Somebody really should 
put him out of his misery.



Applications: Video AnnotationApplications: Video Annotationpppp
for video search, for video search, indexing, indexing, etc…etc…

Learning realistic human actions from movies
Laptev, Marszalek, Schmid and Rozenfeld, CVPR 2008 



How to recognize actions?How to recognize actions?



Action understanding: Key componentsAction understanding: Key componentsAction understanding: Key componentsAction understanding: Key components

Image measurements Prior knowledge

Foreground 
segmentation Image

Image measurements Prior knowledge

Deformable contour 
modelsg Image 

gradient Association
models

Optical flow

2D/3D body models

Local space-
time features

Automatic(Semi-) Manual

Motion priors
Background models

Space-time templates

  
=

result
=

training 
annotation

SVM classifiers
  



Foreground regions segmentationForeground regions segmentationg g gg g g
Image differencing: one of the simplest ways to measure motion/change

- > C

Better Background (BG) / Foreground (FG) separation methods are available:

Modeling of  color variation at each pixel with Gaussian Mixture Models 
(GMMs). 
Dominant motion estimation and compensation for sequences with moving 
camera



Motion layer separation for scenes with non-static backgrounds



Foreground regions segmentationForeground regions segmentationg g gg g g

+ Simple and fast

Pros:

+ Gives acceptable results under restricted conditions

Cons:
- Often unreliable due to shadows, low image contrast, etc. 

- Requires background model => not well suited for scenes

Cons:

Requires background model  => not well suited for scenes
with dynamic BG and/or motion parallax



Temporal Templates of Temporal Templates of BobickBobick & Davis& Davisp pp p

Idea: summarize motion in video in a
Motion History Image (MHI):

The Recognition of Human Movement Using Temporal Templates 
Aaron F. Bobick  and James W. Davis, PAMI 2001 



Temporal Templates of Temporal Templates of BobickBobick & Davis& Davisp pp p

Compute MHI for each action 
sequence

Describe each sequence with the 
t l ti d l i i t


translation and scale invariant 
vector of 7 Hu moments

Nearest Neighbor action 
l ifi ti ith M h l bi


classification with Mahalanobis 
distance between training and 
test descriptors d.



Aerobics Datasete ob cs se



Temporal Templates: SummaryTemporal Templates: Summaryp p yp p y

Pros:

+ Simple

+ Fast

- Assumes static camera static background
Cons:

Assumes static camera, static background

- Sensitive to segmentation errors

- Silhouettes do not capture interior motion/shape- Silhouettes do not capture interior motion/shape

Possible improvements:

Not all shapes are valid           Restrict the space of 
admissible shapes to overcome segmentation errors





Active Shape Models of Active Shape Models of CootesCootes et al.et al.pp
Point Distribution Model

Represent the shape of samples by a set Represent the shape of samples by a set 
of corresponding points or landmarks



Assume each shape can be represented 
by the linear combination of basis shapes


by the linear combination of basis shapes 

such that

for mean shape 

and some parameters



Active Shape Models of Active Shape Models of CootesCootes et al.et al.pp
Basis shapes can be found as the main modes of variation of 
in the training data


in the training data.

2D Example:2D Example: 
(each point can be 
thought as a 
shape in N-Dim p
space)

Principle Component Analysis (PCA):

Covariance matrix 

Eigenvectors eigenvalues



Active Shape Models of Active Shape Models of CootesCootes et al.et al.pp

Back project from shape space to image space Back-project from shape-space       to image space 

Three main modes of lips-shape variation:

Distribution of eigenvalues:

A small fraction of basisA small fraction of basis 
shapes (eigenvecors) 
accounts for the most of shape 
variation (=> landmarks arevariation (=> landmarks are 
redundant)



Active Shape Models of Active Shape Models of CootesCootes et al.et al.pp

is orthonormal basis therefore is orthonormal basis, therefore 

Given estimate of      we can recover shape parameters     

Projection onto the shape-space serves as a regularization Projection onto the shape space serves as a regularization



Active Shape Models of Active Shape Models of CootesCootes et al.et al.
How to use Active Shape Models for shape estimation? 

pp

Given initial guess of model points      estimate new positions      
using local image search, e.g. locate the closest edge point



Re-estimate shape parameters Re-estimate shape parameters



Active Shape Models of Active Shape Models of CootesCootes et al.et al.

To handle translation, scale and rotation, it is useful to normalize   

pp

, ,
prior to shape estimation:

using similarity transformation 

A simple way to estimate       is to assign             and    to the 
iti d th t d d d i ti f i t imean position and the standard deviation of points in     

respectively and set            . For more sophisticated 
normalization techniques see: 

Note: model parameters           have to be computed using 

http://www.isbe.man.ac.uk/~bim/Models/app_model.ps.gz

normalized image point coordinates 



Active Shape Models of Active Shape Models of CootesCootes et al.et al.pp
Iterative ASM alignment algorithm

1 I iti li ith th bl f d1. Initialize with the reasonable guess of      and 
2. Estimate       from image measurements
3. Re-estimate

Example: face alignment Illustration of face shape space

4. Unless         converged, repeat from step 2

Example: face alignment Illustration of face shape space

Active Shape Models: Their Training and Application
T.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham, CVIU 1995 



Active Shape Model trackingActive Shape Model trackingp gp g
Aim: to track ASM of time-varying shapes, e.g. human silhouettes

 Impose time-continuity constraint on model parameters. 
For example, for shape parameters    :

Gaussian noise

For similarity transformation

Update model parameters at each time frame using e.g. 

More complex dynamical models possible


Kalman filter



Person TrackingPerson Trackinggg

Learning flexible models from image sequences
A. Baumberg and D. Hogg, ECCV 1994 



Person TrackingPerson Trackinggg

Learning flexible models from image sequences
A. Baumberg and D. Hogg, ECCV 1994 



Active Shape Models: SummaryActive Shape Models: Summaryp yp y

Pros:

+ Shape prior helps overcoming segmentation errors

+ Fast optimizationFast optimization

+ Can handle interior/exterior dynamics

- Optimization gets trapped in local minima
Cons:

- Re-initialization is problematic

Possible improvements:

Learn and apply specific motion priors for different 
actions





Motion priorsMotion priorspp

Accurate motion models can be used both to:

Help accurate tracking
Recognize actions   

Goal: formulate motion models for different types of actions
and use such models for action recognition

g


and use such models for action recognition  

Example:

line drawing

Drawing with 3 action          
modes

line drawing

scribbling

idlidle

From M. Isard and A. Blake, ICCV 1998 



Incorporating motion priorsIncorporating motion priorsIncorporating motion priorsIncorporating motion priors

Image measurements Data Association Prior knowledge

Foreground

Image measurements Data Association Prior knowledge

Foreground 
segmentation

Image gradient
Learning motion 

models for 
different actions

Particle filters

  

different actions
Optical Flow



Bayesian TrackingBayesian TrackingBayesian TrackingBayesian Tracking
General framework: recognition by synthesis; 

generati e modelsgenerative models; 
finding best explanation of the data 

N t tiNotation:
image data at time
model parameters at time    (e.g. shape and its dynamics)ode pa a e e s a e (e g s ape a d s dy a cs)
prior density for  
likelihood of data for the given model configuration       

We search posterior defined by the Bayes’  rule 

For tracking the Markov assumption gives the prior 

Temporal update rule:



KalmanKalman FilteringFilteringKalmanKalman FilteringFiltering
If all probability densities are uni-modal, specifically Gussians, 
the posterior can be evaluated in the closed formthe posterior can be evaluated in the closed form



Particle FilteringParticle FilteringParticle FilteringParticle Filtering
In reality probability densities are almost always multi-modal



Particle FilteringParticle FilteringParticle FilteringParticle Filtering
In reality probability densities are almost always multi-modal

Approximate distributions with weighted particles 



Particle FilteringParticle FilteringParticle FilteringParticle Filtering

T ki lTracking examples:

describes leave shape describes head shapep p

CONDENSATION - conditional density propagation for visual tracking 
A. Blake and M. Isard IJCV 1998 



Learning dynamic priorLearning dynamic priorLearning dynamic priorLearning dynamic prior
Dynamic model: 2nd order Auto-Regressive Process

State

U d t lUpdate rule:

Model parameters:p

Learning scheme:



Learning dynamic priorLearning dynamic priorLearning dynamic priorLearning dynamic prior

Learning point sequence
Random simulation of the 
learned dynamical model

Statistical models of visual shape and motion 
A. Blake, B. Bascle, M. Isard and J. MacCormick, Phil.Trans.R.Soc. 1998



Learning dynamic priorLearning dynamic priorLearning dynamic priorLearning dynamic prior

Random simulation of the learned gate dynamics



Dynamics with discrete statesDynamics with discrete statesDynamics with discrete statesDynamics with discrete states

Introduce “mixed” state Continuous stateIntroduce mixed  state Continuous state 
space (as before)

Discrete variable 
identifying dynamical 
model

Transition probability matrix

or more generally

Incorporation of the mixed-state model into a particle filter is 
straightforward simply use instead of and thestraightforward, simply use         instead of       and the 
corresponding update rules



Dynamics with discrete statesDynamics with discrete statesDynamics with discrete statesDynamics with discrete states

Example: DrawingExample: Drawing
line idle

line

scribbling

Transition
idle
scribbling

Transition  
probability 
matrix

Result: simultaneously 
improved tracking and 

line drawing

gesture recognition  

scribbling

idle
A mixed-state Condensation tracker with automatic model-switching

M. Isard and A. Blake, ICCV 1998 



Dynamics with discrete statesDynamics with discrete statesDynamics with discrete statesDynamics with discrete states
Similar illustrated on 
gesture recognition in 
the context of a visual 
black-board interfaceblack board interface

A probabilistic framework for matching temporal trajectories:A probabilistic framework for matching temporal trajectories: 
CONDENSATION-based recognition of gestures and expressions

M.J. Black and A.D. Jepson, ECCV 1998 



So farSo farSo far…So far…

D t A i ti

Foreground 

Image measurements Data Association Prior knowledge

Background modelsg
segmentation

Deformable shape 

Temporal templates
Particle filters

Hu moments and 
Fourier descriptors

NN classifiers

Image edges

p
models

Motion priors

Fourier descriptors


