Pictorial structures for object recognition

Josef Sivic
http://www.di.ens.fr/~josef
Equipe-projet WILLOW, ENS/INRIA/CNRS UMR 8548
Laboratoire d’Informatique, Ecole Normale Supérieure, Paris

With slides from: A. Zisserman,
M. Everingham and P. Felzenszwalb

Pictorial Structure

* Intuitive model of an object

 Model has two components ~27 o

1. parts (2D image fragments)

2. structure (configuration of parts)
« Dates back to Fischler & Elschlager 1973

MOUTH

Recall : Generative part-based models (Lecture 7)

R. Fergus, P. Perona and A. Zisserman,
Object Class Recognition by Unsupervised Scale-Invariant Learning, CVPR 2003

Recall: Discriminative part-based model (Lecture 9)

[Felsenszwalb et al. 2009]

Localize multi-part objects at arbitrary locations in an image
» Generic object models such as person or car
» Allow for articulated objects
« Simultaneous use of appearance and spatial information
* Provide efficient and practical algorithms

I

U
=

pres - :

:

To fit model to image: minimize an energy (or cost) function that reflects both
« Appearance: how well each part matches at given location
» Configuration: degree to which parts match 2D spatial layout

Example: cow layout

Example: cow layout

B (T

Graph G = (V,E)

Each vertex corresponds to a part - ‘Head’, ‘Torso’, ‘Legs’

Edges define a TREE

Assign a label to each vertex from H = {positions}

Example: cow layout

By 2 (T,

Graph G = (V,E)

Each vertex corresponds to a part - ‘Head’, ‘Torso’, ‘Legs’

Edges define a TREE

Assign a label to each vertex from H = {positions}

Example: cow layout
B (1,
(1) (12) (13) (10

Graph G = (V,E)

Each vertex corresponds to a part - ‘Head’, ‘Torso’, ‘Legs’

Edges define a TREE

Assign a label to each vertex from H = {positions}

Example: cow layout

By (T,

Graph G = (V,E)

Cost of a labellingL :V = H

Unary cost : How well does part match image patch?

Pairwise cost : Encourages valid configurations

Find best labelling L*

Example: cow layout

B 2 (T,

Graph G = (V,E)

Find best labelling L* by minimizing energy:

(vivj)ER

The General Problem

Graph G=(V, E)
Discrete label set H = {1,2,...,h}

Assign a label to each vertex
L:V=->H

Cost of a labelling E(L)

Unary Cost + n-nary cost (depends on the size of
maximal cliques of the graph)

Find L* = arg min E(L) [Bishop, 2006]

Computational Complexity

Fitting
[H|VI= h"

n parts

h positions

e.g. h = number of pixels (512x300) = 153600

Different graph structures

Can use dynamic programming

Fully connected Tree structure Star structure
O(hn) O(nh?) O(nh?)
n parts

h positions (e.g. every pixel for translation)

Brute force solutions intractable
« With n parts and h possible discrete locations per part, O(h")
« For a tree, using dynamic programming this reduces to O(nh?)

If model is a tree and has quadratic edge costs then complexity
reduces to O(nh) (using a distance transform)

Felzenszwalb & Huttenlocher, I[JCV, 2004

Distance transforms for DP

Special case of DP cost function

Distance transforms
« O(nh?) = O(nh) for DP cost functions

« Assume model is quadratic, i.e. ¢(xp_1,) =)\2(331@—1 — %)2

Recall that we need to compute

min{Sy_1(zx—1) + ¢(zr—1,71)}

Tk 1
e.g. for £ = 2, compute for each value of x5

min{my (1) + ¢(x1,22)}

Plot ming, {mi(x1) + ¢(x1,22)} as function of x5

Plot ming,{m1(xz1) + ¢(x1,x2)} as function of x5
¢(r1 = a,x2)
= \2(z5 — a)?
A2(z5 — b)?

__}_l%
+ 8
l—.\
T
T <
—

Plot ming,{m1(x1) + ¢(x1,x2)} as function of x5

IIIIIIIIIIIIIIIIIIIII=X2

For each x,
- Finding min over x, is equivalent finding minimum over set of offset parabolas
« Lower envelope computed in O(h) rather than O(h2) via distance transform

Felzenszwalb and Huttenlocher '05

Plot ming,{m1(x1) + ¢(x1,x2)} as function of x5

IIIIIIIIIIIIIIIIIIIII=X2

For each x,
- Finding min over x, is equivalent finding minimum over set of offset parabolas
« Lower envelope computed in O(h) rather than O(h2) via distance transform

Felzenszwalb and Huttenlocher '05

Plot ming,{m1(x1) + ¢(x1,x2)} as function of x5

||||=)(1

IIIIIIIIIIIIIIIIIIIII=X2

For each x,
- Finding min over x, is equivalent finding minimum over set of offset parabolas
« Lower envelope computed in O(h) rather than O(h2) via distance transform

Felzenszwalb and Huttenlocher '05

Generalized distance transform

Given a function f:G—R,

Dy(q) = min (llg = 2l + £ ()

— for each location ¢, find nearby location p with f(p) small.

— equals DT of points P if f is an indicator function.

f(p) = {O Tpe P.

~c otherwise

1D Examples

12
f(p)
8L
6
4L
ol
% 50 100 150 200 250 300
P, q
12 ,
Df(q) 10
gl
6L
41
ol
0 ! ! ! ! !
0 50 100 150 200 250 300

P, 9

1D Examples

f(p)
8L
6l
4L
ol
0 ! _ ! ! !
0 50 100 150 200 250 300
P, 9
12 ,
Df(q) 10
8L
6l
41
ol
% 50 100 150 200 250 300

P, 9

There is a simple geometric algorithm that computes Df(p) in
O(h) time for the 1D case.

— similar to Graham's scan convex hull algorithm.

— about 20 lines of C code.

The 2D case is “separable”, it can be solved by sequential 1D
transformations along rows and columns of the grid.

See Distance Transforms of Sampled Functions, Felzen-
szwalb and Huttenlocher.

Algorithm is non-examinable

“Lower Envelope” Algorithm

Add first Add second

v
v

Try adding third
Remove second

Try again and add

»
»

Algorithm for Lower Envelope

« Quadratics ordered left to right
« At step j consider adding j-th quadratic to LE of first j-1 quadratics

« Maintain two ordered lists
> Quadratics currently visible on LE
> |ntersections currently visible on LE

« Compute intersection of j-th quadratic and rightmost quadratic visible on LE

> If to right of rightmost visible intersection, add quadratic and
intersection to lists

> |If not, this quadratic hides at least rightmost quadratic, remove it and try
again

Code available online: http://people.cs.uchicago.edu/~pff/dt/

Running Time of LE Algorithm

Considers adding each of h quadratics just once
* Intersection and comparison constant time
« Adding to lists constant time
« Removing from lists constant time
> But then need to try again

Simple amortized analysis
« Total number of removals O(h)

> Each quadratic once removed never considered for removal again

Thus overall running time O(h)

Example: facial feature detection in images

F(x)

high spring cost

e Parts V= {v,, ... v,;}
» Connected by springs in star configuration to nose

 Quadratic cost for spring

> mi(v) + Y dii(vi,v4)

v, €V e;; €l

> mi(v;) + Zdl,j(vlavj)
7

v, eV

1 - NCC with Spring
appearance extension
template from v, tov,

Appearance templates and springs

E(x) = > mi(vi)‘l‘zdl,j(vla")j)
J

v;EV

X = (z1,y1,--

°9x47y4)T

Each |=(x,, y;) ranges over h (X,y) positions in the image

NCC=1—m;

100

120

140

o

Requires pair wise terms for correct detection

i5

o

0.5

izg,' .~ \ TIn.
- L Fes- .
-} tO‘ | B

Fitting the model to an image

Find the configuration with the lowest energy

E(x) = > mi(vi)‘l‘zdl,j(vlavg’)
]

v;EV

Fitting the model to an image

Find the configuration with the lowest energy

E(x) = > mi(vi)‘l‘zdl,j(vlavg’)
]

v;EV

Fitting the model to an image

Find the configuration with the lowest energy

E(x) = > mi(vi)‘l‘zdl,j(vlavg’)
]

v;EV

Notation

Model is represented by a graph G = (V, F).

— V ={vq,...,vn} are the parts.

— (v;,v;) € E indicates a connection between parts.

m;(l;) is the cost of placing part ¢ at location [;.

d;;(l;,1;) is a deformation cost.

Optimal location for object is given by L*

L* = argmin

)

> omi(l) 4+ >

1=1

(L‘j.L‘j)EE

= (Il7,....0}),

Simple face model

e Locations are positions in the image grid.

e Match cost m;(l;) for placing part i at [;.

e Central part vq - the nose.

e Each part has an ideal position p, relative to nose.

— Let T1;(l1) =11 + p;,

n

T
E(ly.....Ln) = Y mil) + Y ||l — Tu(l)|?

Efficient minimization

argmln

ml(l) + Z ||l Tli([1)||2)

z--l

argmln (7711([1) -+ Z m; (L) + ||l — T1:({1)])
argmln (ml(ll) -+ Z mln(ml(l)+ ||l; — T15(11)||2))

arglﬂln m1(l1) + Z Dm,(le(ll)))

where Dy(a) = min (|la - pl* + ()

Visualization: Compute part matching cost (dense)

Visualization: Combine appearance with relative shape

Part matching cost m;(l;)

1. Nose -' 2.'Left éye 3. Right eye 4, Mouth

(Shifted) distance transform of m;({;) = D, (11;(11))

i = arglmin (ml(ll) + i ’Dmi(Tli(ll)))
1

=2

Combined matching cost

Visualization: Combine appearance with relative shape

Part matching cost m;(l;)

3. Right eye 4. Mouth

(Shifted) distance transform of m;({;) = D, (11;(11))

Combined matching cost The best part configuration

Combine appearance with relative shape

The distance transform can be computed separately for
rows and columns of the image (i.e. is “separable”), which
results in the O(hn) running time

Given the best location of the reference location (root),
locations of leafs can be found by “back-tracking” (here
only one level).

Simple part based face model demo code [Fei Fei, Fergus, Torralbal:
http://people.csail.mit.edu/torralba/shortCourseRLOC/

Example

Example of a model with 9 parts

The goal:
Localize facial features in faces output by face detector

Support parts-based face descriptors
Provide initialization for global face descriptors

Code available online: http://www.robots.ox.ac.uk/~vgg/research/nface/index.html

Example of a model with 9 parts

Classifier for each facial feature

- Linear combination of thresholded simple image filters
(Viola/Jones) trained discriminatively using AdaBoost

« Applied in “sliding window” fashion to patch around every pixel
« Similar to Viola&Jones face detector — see lecture 6

Ambiguity e.g. due to facial symmetry

Classifier

Resolve ambiguity using spatial model.

Results

Nine facial features, ~90% predicted positions within 2
pixels in 100x100 face image

p

SSARAHEIMUICH ELLE GELLAR

MiCH efflfe TRAGHTENBERG

Results

Example Il: Generic Person Model

Each part represented as rectangle

Fixed width, varying length, uniform colour

Learn average and variation
> Connections approximate revolute joints

Joint location, relative part position,
orientation, foreshortening - Gaussian H

Estimate average and variation

-~ y//

Learned 10 part model antia
« All parameters learned ﬁ* \‘i;*
> Including “joint locations” / }f \ \
L -

Shown at ideal configuration (mean locations)

Learning

Manual identification of
« rectangular parts in a set of
« training images hypotheses

« relative position (x & y),
* relative angle,
« relative foreshortening

Example: Recognizing People

NB: requires background subtraction

Variety of Poses

Variety of Poses

Example lll: Hand tracking for sign language
Interpretation

3

*

¥
L}
y
AEEEEEER
.
L
L]

Pose estimation for sign
language recognition

Signer 1

(5 min of an one hour sequence)

Distinctive frames are marked by a “D”
in the upper right corner

Buehler et al. BMVC’2008

Example results

Example IV: Part based models for object
detection (Recall from Lecture 9)

[Felsenszwalb et al. 2009]

® Each component has global template + deformable parts

® Fully trained from bounding boxes alone

Code available online: http://people.cs.uchicago.edu/~pff/latent/

Bicycle model

.

£ o

\[&\-:"\

St Sy
S LA THFHENNN

root filters part filters deformation
coarse resolution finer resolution models

Each component has a root filter Fy
and n part models (F;, vi, d;)

1 i Ll
- %m po: location of root
. tH P1,..., P - location of parts
-
Score 1s sum of filter
iii scores Minus
— deformation costs
Image pyramid HOG feature pyramid

Multiscale model captures features at two-resolutions

score(pg, - -

Score of a hypothesis

. apn) —

“data term” “spatial prior”

ZFz¢(Hap2)_Zd (dxzadyz

i=0 T 1=1 T d1sp1acements

filters deformation parameters

score(z) = 3 - V(H, z)

/N

concatenation filters and concatenation of HOG
deformation parameters features and part
displacement features

Matching

® Define an overall score for each root location

- Based on best placement of parts

score(pg) = max score(po,...,Pn).
plv--spn

® High scoring root locations define detections

- “sliding window approach”

