

Reconnaissance d'objets et vision artificielle

Jean Ponce (ponce@di.ens.fr) http://www.di.ens.fr/~ponce

Equipe-projet WILLOW
ENS/INRIA/CNRS UMR 8548
Laboratoire d'Informatique
Ecole Normale Supérieure, Paris

Cordelia Schmid

http://lear.inrialpes.fr/~schmid/

Josef Sivic

http://www.di.ens.fr/~josef/

Outline

- What computer vision is about
- What this class is about
- A brief history of visual recognition
- Alignment methods

Images are brightness/color patterns drawn in a plane.

$\mathrm{E}=(\Pi / 4)\left[\left(\mathrm{d} / z^{2}\right)^{2} \cos ^{4} \alpha\right] \mathrm{L}$

Question : how do we see "in 3D"?

(First-order) answer: with our two eyes.

But there are other cues..

What is happening with the shadows?

Challenges or opportunities?

- Images are confusing, but they also reveal the structure of the world through numerous cues.
- Our job is to interpret the cues!

The goal of computer vision

To perceive the "world behind the picture", e.g.,

- as a metric measurement device
- as a device for measuring "semantic" information

The goal of computer vision

Abstract

To perceive the "world behind the picture", e.g.,

- as a metric measurement device
- as a device for "measuring" semantic information

Vision as metric measurement device: Furukawa \& Ponce (CVPR'07) (cf also Keriven's class "Vision et reconstruction 3D)

Full (312)
Ring (47)

0.47 mm (1st)
99.6\% (1 st)

SparseRing (15)

0.63 mm (3rd)
99.3\% (1st)

Visual scene analysis

(Courtesy Ivan Laptev, VISTA)

Visual scene analysis

(Courtesy Ivan Laptev, VISTA)

Outline

- What computer vision is about
- What this class is about
- A brief history of visual recognition
- Alignment methods

Specific object detection

(Lowe, 2004)

Image classification

Caltech 101 : http://www.vision.caltech.edu/Image_Datasets/Caltech101/

Object category detection

 (Courtesy Ivan Laptev)

Model = locally rigid assembly of parts Part = locally rigid assembly of features

Qualitative experiments on Pascal VOC'07 (Kushal, Schmid, Ponce, 2008)

Local ambiguity and global scene interpretation

Reconnaissance d'objets et vision artificielle

(Jean Ponce, Cordelia Schmid, Josef Sivic)

La reconnaissance automatique des objets -et de manière plus générale, l'interprétation de la scènefigurant dans une photographie ou une vidéo est le plus grand défi de la vision artificielle. Ce cours présente les modèles d'images, d'objets, et de scènes, ainsi que les méthodes et algorithmes utilisés aujourd'hui pour affronter ce défi.

Plan du cours :

- Caractéristiques visuelles : points d'intérêt, régions affines, invariants, descripteurs Sift.
- Détection d'objets et de classes spécifiques : alignement 2D et 3D, méthodes de votes, détection de visages et Adaboost.
- Classification d'images : sacs de caractéristiques visuelles et machines à vecteurs de support, grilles et pyramides, réseaux convolutionnels.
- Détection de catégories d'objets : constellations de caractéristiques visuelles, assemblages de fragments, méthodes de fenêtre glissantes, apprentissage faiblement supervisé de modèles.
- Aller plus loin : analyse de scène, analyse des activités dans les vidéos.

Bibliographie :

- D.A. Forsyth and J. Ponce, "Computer Vision: A Modern Approach", Prentice-Hall, 2003.
- J. Ponce, M. Hebert, C. Schmid, and A. Zisserman, "Toward Category-Level Object Recognition", Lecture Notes in Computer Science 4170, Springer-Verlag, 2007.

Other notable computer vision books

- O. Faugeras, Q.T. Luong, and T. Papadopoulo, "Geometry of Multiple Images," MIT Press, 2001.
- R. Hartley and A. Zisserman, "Multiple View Geometry in Computer Vision", Cambridge University Press, 2004.
- J. Koenderink, "Solid Shape", MIT Press, 1990.

Slides

After classes:
http://www.di.ens.fr/~ponce/recvis/lecture1.pp \dagger
http://www.di.ens.fr/~ponce/recvis/lecture1.pdf

Note: Much of the material used in this lecture is courtesy of Svetlana Lazebnik:, http://www.cs.unc.edu/~lazebnik/

Outline

- What computer vision is about
- What this class is about
- A brief history of visual recognition
- Alignment methods

Variability: Camera position
Illumination
Internal parameters Within-class variations

Variability:

Camera position Illumination Internal parameters

Roberts (1963); Lowe (1987); Faugeras \& Hebert (1986); Grimson \& Lozano-Perez (1986); Huttenlocher \& Ullman (1987)

Origins of computer vision

(a) Original picture.

L. G. Roberts, Machine Perception of Three Dimensional Solids, Ph.D. thesis, MIT Department of Electrical Engineering, 1963.

Huttenlocher \& Ullman (1987)

Variability
Invariance to:

Camera position Illumination Internal parameters

Duda \& Hart (1972); Weiss (1987): Mundy et al. (1992-94); Rothwell et al. (1992): Burns et al. (1993)

Example: affine invariants of coplanar points

Projective invariants (Rothwell et al., 1992):

BUT: True 3D objects do not admit monocular viewpoint invariants (Burns et al., 1993) !!

Empirical models of image variability: Appearance-based techniques

Turk \& Pentland (1991): Murase \& Nayar (1995); etc.

Eigenfaces (Turk \& Pentland, 1991)

Experimental	Correct/Unknown Recognition Percentage		
Condition	Lighting	Orientation	Scale
Forced classification	$96 / 0$	$85 / 0$	$64 / 0$
Forced 100\% accuracy	$100 / 19$	$100 / 39$	$100 / 60$
Forced 20\% unknown rate	$100 / 20$	$94 / 20$	$74 / 20$

Appearance manifolds
 (Murase \& Nayar, 1995)

Correlation-based template matching (60s)

Ballard \& Brown (1980, Fig. 3.3). Courtesy Bob Fisher and Ballard \& Brown on-line.

- Automated target recognition
- Industrial inspection
- Optical character recognition
- Stereo matching
- Pattern recognition

In the lates 1990s, a new approach emerges: Combining local appearance, spatial constraints, invariants, and classification techniques from machine learning.

Retrieved (10° off)

Schmid \& Mohr'97

Representing and recognizing objec \dagger categories is harder

ACRONYM (Brooks and Binford, 1981)
Binford (1971), Nevatia \& Binford (1972), Marr \& Nishihara (1978)

Parts and invariants

The Blum transform, 1967

Generalized cylinders (Binford, 1971)

Generalized cylinders
 (Binford, 1971; Marr \& Nishihara, 1978)

(Nevatia \& Binford, 1972)

Parts and invariants II

Zhu and Yuille (1996)

Ioffe and Forsyth (2000)

In the early 2000's, a new approach?

Fergus, Perona \& Zisserman (2003)

The "templates and springs" model (Fischler \& Elschlager, 1973)

Ballard \& Brown (1980, Fig. 11.5). Courtesy Bob Fisher and Ballard \& Brown on-line.

Color histograms (S\&B'91) Local jets (Florack'93) Spin images (J\&H'99) Sift (Lowe'99) Shape contexts (B\&M'95)

Texton histograms (L\&M'97) Gist (O\&T'05)
Spatial pyramids (LSP'06) Hog (D\&T'06)
Phog (B\&Z'07)
Convolutional nets (LC'90)

Felzwenszalb, McAllester, Ramanan (2007) [Wins on 6 of the Pascal'07 classes, see Chum \& Zisserman (2007) for the other big winner.]

Outline

- What computer vision is about
- What this class is about
- A brief history of visual recognition
- Alignment methods

Reconnaissance d'objets et vision artificielle

(Jean Ponce, Cordelia Schmid, Josef Sivic)

La reconnaissance automatique des objets -et de manière plus générale, l'interprétation de la scènefigurant dans une photographie ou une vidéo est le plus grand défi de la vision artificielle. Ce cours présente les modèles d'images, d'objets, et de scènes, ainsi que les méthodes et algorithmes utilisés aujourd'hui pour affronter ce défi.

Plan du cours :

Next time

- Caractéristiques visuelles : points d'intérêt, régions affines, invariants, descripteurs Sift.
- Détection d'objets et de classes spécifiques : alignement 2 D et 3 D , méthodes de votes, détection de visages et Adaboost.

Today

- Classification d'images : sacs de caractéristiques visuelles et machines à vecteurs de support, grilles et pyramides, réseaux convolutionnels.
- Détection de catégories d'objets : constellations de caractéristiques visuelles, assemblages de fragments, méthodes de fenêtre glissantes, apprentissage faiblement supervisé de modèles.
- Aller plus loin : analyse de scène, analyse des activités dans les vidéos.

Bibliographie :

- D.A. Forsyth and J. Ponce, "Computer Vision: A Modern Approach", Prentice-Hall, 2003.
- J. Ponce, M. Hebert, C. Schmid, and A. Zisserman, "Toward Category-Level Object Recognition", Lecture Notes in Computer Science 4170, Springer-Verlag, 2007.

Feature-based alignment outline

Feature-based alignment outline

Extract features

Feature-based alignment outline

Extract features

Compute putative matches

Feature-based alignment outline

Extract features
Compute putative matches
Loop:

- Hypothesize transformation T (small group of putative matches that are related by T)

Feature-based alignment outline

Extract features
Compute putative matches
Loop:

- Hypothesize transformation T (small group of putative matches that are related by T)
- Verify transformation (search for other matches consistent with T)

Feature-based alignment outline

Extract features
Compute putative matches
Loop:

- Hypothesize transformation T (small group of putative matches that are related by T)
- Verify transformation (search for other matches consistent with T)

2D transformation models

Similarity
(translation, scale, rotation)

Affine

Projective
(homography)

Let us start with affine transformations

- Simple fitting procedure (linear least squares)
- Approximates viewpoint changes for roughly planar objects and roughly orthographic cameras
- Can be used to initialize fitting for more complex models

Fitting an affine transformation

Assume we know the correspondences, how do we get the transformation?

Fitting an affine transformation

Linear system with six unknowns
Each match gives us two linearly independent equations: need at least three to solve for the transformation parameters

What if we don't know the correspondences?

What if we don't know the correspondences?

- It would help to be able to compare descriptors of local patches surrounding interest points (cf next lecture).
- This is not strictly necessary. We will concentrate here on the geometry of the problem.

Dealing with outliers

The set of putative matches still contains a very high percentage of outliers

How do we fit a geometric transformation to a small subset of all possible matches?

Possible strategies:

- RANSAC
- Incremental alignment
- Hough transform
- Hashing

Strategy 1: RANSAC

RANSAC loop (Fischler \& Bolles, 1981):

- Randomly select a seed group of matches
- Compute transformation from seed group
- Find inliers to this transformation
- If the number of inliers is sufficiently large, re-compute least-squares estimate of transformation on all of the inliers
- Keep the transformation with the largest number of inliers

RANSAC example: Translation

RANSAC example: Translation

RANSAC example: Translation

RANSAC example: Translation

Problem with RANSAC

In many practical situations, the percentage of outliers (incorrect putative matches) is very high (90\% or above)

Alternative strategy: restrict search space by using strong locality constraints on seed groups and inliers Incremental alignment

Strategy 2: Incremental alignment

Take advantage of strong locality constraints: only pick close-by matches to start with, and gradually add more matches in the same neighborhood

Approach introduced in [Ayache \& Faugeras, 1982; Hebert \& Faugeras, 1983; Gaston \& Lozano-Perez, 1984]

Illustrated here with the method from S. Lazebnik, C. Schmid and J. Ponce, "Semi-local affine parts for object recognition", BMVC 2004

Strategy 2: Incremental alignment

Take advantage of strong locality constraints: only pick close-by matches to start with, and gradually add more matches in the same neighborhood

Strategy 2: Incremental alignment

Take advantage of strong locality constraints: only pick close-by matches to start with, and gradually add more matches in the same neighborhood

Strategy 2: Incremental alignment

Take advantage of strong locality constraints: only pick close-by matches to start with, and gradually add more matches in the same neighborhood

Strategy 2: Incremental alignment

Take advantage of strong locality constraints: only pick close-by matches to start with, and gradually add more matches in the same neighborhood

Incremental alignment: Details

Generating seed groups:

- Identify triples of neighboring features (i, j, k) in first image
- Find all triples $\left(i^{\prime}, j^{\prime}, k^{\prime}\right)$ in the second image such that i^{\prime} (resp. j^{\prime}, k^{\prime}) is a putative match of i (resp. j, k), and j^{\prime}, k^{\prime} are neighbors of i^{\prime}

Incremental alignment: Details

Beginning with each seed triple, repeat:

- Estimate the aligning transformation between corresponding features in current group of matches
- Grow the group by adding other consistent matches in the neighborhood
Until the transformation is no longer consistent or no more matches can be found

Incremental alignment: Details

Beginning with each seed triple, repeat:

- Estimate the aligning transformation between corresponding features in current group of matches
- Grow the group by adding other consistent matches in the neighborhood
Until the transformation is no longer consistent or no more matches can be found

Incremental alignment: Details

Beginning with each seed triple, repeat:

- Estimate the aligning transformation between corresponding features in current group of matches
- Grow the group by adding other consistent matches in the neighborhood
Until the transformation is no longer consistent or no more matches can be found

Incremental alignment: Details

Beginning with each seed triple, repeat:

- Estimate the aligning transformation between corresponding features in current group of matches
- Grow the group by adding other consistent matches in the neighborhood
Until the transformation is no longer consistent or no more matches can be found

Strategy 3: Hough transform

Suppose our features are scale- and rotation-covariant

- Then a single feature match provides an alignment hypothesis (translation, scale, orientation)

David G. Lowe. "Distinctive image features from scale-invariant keypoints", IJCV 60 (2), pp. 91-110, 2004.

Strategy 3: Hough transform

Suppose our features are scale- and rotation-covariant

- Then a single feature match provides an alignment hypothesis (translation, scale, orientation)
- Of course, a hypothesis obtained from a single match is unreliable
- Solution: let each match vote for its hypothesis in a Hough space with very coarse bins

David G. Lowe. "Distinctive image features from scale-invariant keypoints", IJCV 60 (2), pp. 91-110, 2004.

Hough transform details (D. Lowe's system)

Training phase: For each model feature, record 2D location, scale, and orientation of model (relative to normalized feature frame)
Test phase: Let each match between a test and a model feature vote in a 4D Hough space

- Use broad bin sizes of 30 degrees for orientation, a factor of 2 for scale, and 0.25 times image size for location
- Vote for two closest bins in each dimension

Find all bins with at least three votes and perform geometric verification

- Estimate least squares affine transformation
- Use stricter thresholds on transformation residual
- Search for additional features that agree with the alignment

Strategy 4: Hashing

Make each invariant image feature into a low-dimensional "key" that indexes into a table of hypotheses

Strategy 4: Hashing

Make each invariant image feature into a low-dimensional "key" that indexes into a table of hypotheses
Given a new test image, compute the hash keys for all features found in that image, access the table, and look for consistent hypotheses

Strategy 4: Hashing

Make each invariant image feature into a low-dimensional "key" that indexes into a table of hypotheses
Given a new test image, compute the hash keys for all features found in that image, access the table, and look for consistent hypotheses
This can even work when we don't have any feature descriptors: we can take n-tuples of neighboring features and compute invariant hash codes from their geometric configurations

Beyond affine transformations

What is the transformation between two views of a planar surface?

What is the transformation between images from two cameras that share the same center?

Beyond affine transformations

Homography: plane projective transformation (transformation taking a quad to another arbitrary quad)

Fitting a homography

Recall: homogenenous coordinates
$(x, y) \Rightarrow\left[\begin{array}{l}x \\ y \\ 1\end{array}\right.$

Converting to homogenenous image coordinates
$\left[\begin{array}{c}x \\ y \\ w\end{array}\right] \Rightarrow(x / w, y / w)$

Converting from homogenenous image coordinates

Fitting a homography

Recall: homogenenous coordinates

Converting to homogenenous image coordinates
$\left[\begin{array}{c}x \\ y \\ w\end{array}\right] \Rightarrow(x / w, y / w)$

Converting from homogenenous image coordinates

Equation for homography:
$\lambda\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{lll}h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33}\end{array}\right]\left[\begin{array}{c}x \\ y \\ 1\end{array}\right]$

Fitting a homography

Equation for homography:

$\lambda\left[\begin{array}{c}x_{i}^{\prime} \\ y_{i}^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{lll}h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33}\end{array}\right]\left[\begin{array}{c}x_{i} \\ y_{i} \\ 1\end{array}\right]$
$\lambda \mathbf{x}_{i}^{\prime}=\mathbf{H} \mathbf{x}_{i}=\left[\begin{array}{l}\mathbf{h}_{1}^{T} \\ \mathbf{h}_{2}^{T} \\ \mathbf{h}_{3}^{T}\end{array}\right] \mathbf{x}_{i}$

9 entries, 8 degrees of freechom (scale is arbitrary)
$\mathbf{x}_{i}^{\prime} \times \mathbf{H} \mathbf{x}_{i}=0$

$$
\mathbf{x}_{i}^{\prime} \times \mathbf{H} \mathbf{x}_{i}=\left[\begin{array}{c}
y_{i}^{\prime} \mathbf{h}_{3}^{T} \mathbf{x}_{i}-\mathbf{h}_{2}^{T} \mathbf{x}_{i} \\
\mathbf{h}_{1}^{T} \mathbf{x}_{i}-x_{i}^{\prime} \mathbf{h}_{3}^{T} \mathbf{x}_{i} \\
x_{i}^{\prime} \mathbf{h}_{2}^{T} \mathbf{x}_{i}-y_{i}^{\prime} \mathbf{h}_{1}^{T} \mathbf{x}_{i}
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
0^{T} & -\mathbf{x}_{i}^{T} & y_{i}^{\prime} \mathbf{x}_{i}^{T} \\
\mathbf{x}_{i}^{T} & 0^{T} & -x_{i}^{\prime} \mathbf{x}_{i}^{T} \\
-y_{i}^{\prime} \mathbf{x}_{i}^{T} & x_{i}^{\prime} \mathbf{x}_{i}^{T} & 0^{T}
\end{array}\right]\left(\begin{array}{l}
\mathbf{h}_{1} \\
\mathbf{h}_{2} \\
\mathbf{h}_{3}
\end{array}\right)=0
$$

3 equations, only 2 linearly independent

Direct linear transform

$$
\left[\begin{array}{ccc}
0^{T} & \mathbf{x}_{1}^{T} & -y_{1}^{\prime} \mathbf{x}_{1}^{T} \\
\mathbf{x}_{1}^{T} & 0^{T} & -x_{1}^{\prime} \mathbf{x}_{1}^{T} \\
\cdots & \cdots & \cdots \\
0^{T} & \mathbf{x}_{n}^{T} & -y_{n}^{\prime} \mathbf{x}_{n}^{T} \\
\mathbf{x}_{n}^{T} & 0^{T} & -x_{n}^{\prime} \mathbf{x}_{n}^{T}
\end{array}\right]\left(\begin{array}{l}
\mathbf{h}_{1} \\
\mathbf{h}_{2} \\
\mathbf{h}_{3}
\end{array}\right]=0 \quad \mathbf{A h}=0
$$

H has 8 degrees of freedom (9 parameters, but scale is arbitrary)
One match gives us two linearly independent equations Four matches needed for a minimal solution (null space of 8×9 matrix)
More than four: homogeneous least squares

Application: Panorama stitching

Images courtesy of A. Zisserman.

Recognizing panoramas

Given contents of a camera memory card, automatically figure out which pictures go together and stitch them together into panoramas

M. Brown and D. Lowe, "Recognizing panoramas", ICCV 2003.

1. Estimate homography (RANSAC)

1. Estimate homography (RANSAC)

1. Estimate homography (RANSAC)

2. Find connected sets of images

2. Find connected sets of images

2. Find connected sets of images

3. Stitch and blend the panoramas

Results

Issues in alignment-based applications

Choosing the geometric alignment model

- Tradeoff between "correctness" and robustness (also, efficiency)
Choosing the descriptor
- "Rich" imagery (natural images): high-dimensional patch-based descriptors (e.g., SIFT)
- "Impoverished" imagery (e.g., star fields): need to create invariant geometric descriptors from k-tuples of point-based features
Strategy for finding putative matches
- Small number of images, one-time computation (e.g., panorama stitching): brute force search
- Large database of model images, frequent queries: indexing or hashing
- Heuristics for feature-space pruning of putative matches

Issues in alignment-based applications

Choosing the geometric alignment model
Choosing the descriptor
Strategy for finding putative matches
Hypothesis generation strategy

- Relatively large inlier ratio: RANSAC
- Small inlier ratio: locality constraints, Hough transform

Hypothesis verification strategy

- Size of consensus set, residual tolerance depend on inlier ratio and expected accuracy of the model
- Possible refinement of geometric model
- Dense verification

