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O tliOutline

• What computer vision is aboutp

Wh t thi  l  i  b t• What this class is about

• A brief history of visual recognition

• Alignment methodsAlignment methods



They are formed by the projection of
three-dimensional objects.three d mens onal objects.

Images are brightness/color patterns drawn in a plane.





E=(Π/4) [ (d/z’)2 cos4α ] L



Question : how do we see “in 3D” ?

(First-order) answer: with our two eyes.



But there are other cues..

Depth cues: Linear perspective



Depth cues: Aerial perspective



Shape and lighting cues: Shading

Source: J. Koenderink



Source: J. Koenderink



What is happening with the shadows?



Image source: F. Durand



Challenges or opportunities?

Image source: J. Koenderink

• Images are confusing, but they also reveal the
structure of the world through numerous cues

g

structure of the world through numerous cues.
• Our job is to interpret the cues!



The goal of computer visiong p

To perceive the “world behind the picture”, e.g.,
• as a metric measurement device
• as a device for measuring “semantic” information



The goal of computer visiong p

To perceive the “world behind the picture”, e.g.,
• as a metric measurement device
• as a device for “measuring” semantic information



Vision as metric measurement device: Furukawa & Ponce (CVPR’07)
(cf also Keriven’s class “Vision et reconstruction 3D)



Visual scene analysis
(Courtesy Ivan Laptev, VISTA)



Visual scene analysis
(Courtesy Ivan Laptev, VISTA)
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Specific object detectionSpecific object detection

(Lowe, 2004)



Image classificationg

Caltech 101 : http://www.vision.caltech.edu/Image_Datasets/Caltech101/



Object category detection
(Courtesy Ivan Laptev)(Courtesy Ivan Laptev)
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Model ≡ locally rigid assembly of parts
P t l ll  i id bl  f f tPart ≡ locally rigid assembly of features

Qualitative experiments on Pascal VOC’07 (Kushal, Schmid, Ponce, 2008)



Scene understanding

Photo courtesy A. Efros.



Local ambiguity and global scene interpretation

slide credit: Fei-Fei, Fergus & Torralba 





Other notable computer vision books

O  Fau eras  Q T  Lu n  and T  Papad p ul• O. Faugeras, Q.T. Luong, and T. Papadopoulo,
“Geometry of Multiple Images,” MIT Press, 2001.

• R. Hartley and A. Zisserman, “Multiple View 
Geometry in Computer Vision”  Cambridge Geometry in Computer Vision”, Cambridge 
University Press, 2004.

• J. Koenderink, “Solid Shape”, MIT Press, 1990.



Slides

After classes:

http://www.di.ens.fr/~ponce/recvis/lecture1.ppt

http://www.di.ens.fr/~ponce/recvis/lecture1.pdf

N t  M h f th  t i l d i  thi  l t  Note: Much of the material used in this lecture 
is courtesy of Svetlana Lazebnik:,
htt // d / l b ik/http://www.cs.unc.edu/~lazebnik/
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Variability: Camera positionp
Illumination
Internal parameters
Within-class variations



θ

Variability: Camera position
IlluminationIllumination
Internal parameters

Roberts (1963); Lowe (1987); Faugeras & Hebert (1986); Grimson & 
Lozano-Perez (1986); Huttenlocher & Ullman (1987)



Origins of computer visiong p

L G Roberts Machine PerceptionL. G. Roberts, Machine Perception 
of Three Dimensional Solids,
Ph.D. thesis, MIT Department of 
Electrical Engineering 1963Electrical Engineering, 1963.



Huttenlocher & Ullman (1987)( )



Variability Invariance to: Camera position
IlluminationIllumination
Internal parameters

Duda & Hart ( 1972); Weiss (1987); Mundy et al. (1992-94);
Rothwell et al. (1992); Burns et al. (1993)



Example: affine invariants of coplanar points

Projective invariants (Rothwell et al., 1992):j ( w ., 99 )

BUT  T  3D bj t  d  t d it l  BUT: True 3D objects do not admit monocular 
viewpoint invariants (Burns et al., 1993) !!



Empirical models of image variability:

Appearance-based techniques

Turk & Pentland (1991); Murase & Nayar (1995); etc.



Eigenfaces (Turk & Pentland, 1991)



Appearance manifolds
(M  & N  1995)(Murase & Nayar, 1995)



Correlation-based template matching (60s)

Ballard & Brown (1980, Fig. 3.3). Courtesy Bob Fisher
and Ballard & Brown on lineand Ballard & Brown on-line.

• Automated target recognition
 I d t i l i ti• Industrial inspection

• Optical character recognition
 St t hi• Stereo matching

• Pattern recognition



In the lates 1990s, a new approach emerges: 
Combining local appearance  spatial constraints  invariants  Combining local appearance, spatial constraints, invariants, 
and classification techniques from machine learning.

Lowe’02Query

Mahamud & Hebert’03Retrieved (10o off) Mahamud & Hebert 03Retrieved (10o off)

Schmid & Mohr’97



Representing and recognizing object 
categories is harder

ACRONYM (Brooks and Binford  1981)ACRONYM (Brooks and Binford, 1981)
Binford (1971), Nevatia & Binford (1972), Marr & Nishihara (1978)



Parts and invariants
The Blum transform, 1967

Generalized cylinders
( f d  )(Binford, 1971)



Generalized cylinders
(Binford, 1971; Marr & Nishihara, 1978)

(Nevatia & Binford  1972)(Nevatia & Binford, 1972)



Parts and invariants II

Ponce et al. (1989)

Zhu and Yuille (1996)
Ioffe and Forsyth (2000)



In the early 2000’s, a new approach ?

Fergus, Perona & Zisserman (2003)



The “templates and springs” modelp p g
(Fischler & Elschlager, 1973)

Ballard & Brown (1980, Fig. 11.5). Courtesy
Bob Fisher and Ballard & Brown on-line.



Color histograms (S&B’91)
Local jets (Florack’93)
Spin images (J&H’99)Spin images (J&H 99)
Sift (Lowe’99)
Shape contexts (B&M’95)p n ( &M 9 )

h  ( & ’ )Texton histograms (L&M’97)
Gist (O&T’05)
Spatial pyramids (LSP’06)Spatial pyramids (LSP 06)
Hog (D&T’06)
Phog (B&Z’07)g ( )
Convolutional nets (LC’90)



Locally orderless structure of images (K&vD’99)



Felzwenszalb, McAllester, Ramanan (2007)
[Wins on 6 of the Pascal’07 classes  see Chum[Wins on 6 of the Pascal 07 classes, see Chum
& Zisserman (2007) for the other big winner.]
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Next time

T dToday



Feature-based alignment outline



Feature-based alignment outline

Extract features
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• Hypothesize transformation T (small group of putative 
matches that are related by T)



Feature-based alignment outline

Extract features
Compute putative matches
Loop:

• Hypothesize transformation T (small group of putative 
matches that are related by T)

• Verify transformation (search for other matches consistentVerify transformation (search for other matches consistent 
with T)



Feature-based alignment outline

Extract features
Compute putative matches
Loop:

• Hypothesize transformation T (small group of putative 
matches that are related by T)

• Verify transformation (search for other matches consistentVerify transformation (search for other matches consistent 
with T)



2D transformation models

Similarity
(translation, 
scale rotation)scale, rotation)

Affine

Projective
(homography)



Let us start with affine transformations
• Simple fitting procedure (linear least squares)
• Approximates viewpoint changes for roughly planar pp p g g y p

objects and roughly orthographic cameras
• Can be used to initialize fitting for more complex 

models



Fitting an affine transformation
Assume we know the correspondences, how do we get 

the transformation?
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Fitting an affine transformation
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Linear system with six unknowns
Each match gives us two linearly independentEach match gives us two linearly independent 

equations: need at least three to solve for the 
transformation parameters



What if we don’t know the correspondences?

?



What if we don’t know the correspondences?

?

• It would help to be able to compare descriptors of 
local patches surrounding interest points (cf next
lecture).

• This is not strictly necessary. We will concentrate 
here on the geometry of the problem.



Dealing with outliers
The set of putative matches still contains a very high 

percentage of outliers

How do we fit a geometric transformation to a small 
subset of all possible matches?

Possible strategies:
• RANSAC
• Incremental alignment
• Hough transform
• Hashing



Strategy 1: RANSAC
RANSAC loop (Fischler & Bolles, 1981):

• Randomly select a seed group of matches

• Compute transformation from seed group

Fi d i li t thi t f ti• Find inliers to this transformation

If the number of inliers is sufficiently large re compute• If the number of inliers is sufficiently large, re-compute 
least-squares estimate of transformation on all of the 
inliers

• Keep the transformation with the largest number of 
inliersinliers



RANSAC example: Translation

Putative matches



RANSAC example: Translation

Select one match, count inliers



RANSAC example: Translation

Select one match, count inliers



RANSAC example: Translation

Find “average” translation vector



Problem with RANSAC
In many practical situations, the percentage of outliers
(incorrect putative matches) is very high (90% or above)( p ) y g ( )

Alternative strategy: restrict search space by usingAlternative strategy: restrict search space by using 
strong locality constraints on seed groups and inliers

Incremental alignmentIncremental alignment



Strategy 2: Incremental alignment
Take advantage of strong locality constraints: only pick 

close-by matches to start with, and gradually add 
more matches in the same neighborhood

Approach introduced in [Ayache & Faugeras, 1982;
Hebert & Faugeras, 1983; Gaston & Lozano-Perez, 
1984]

Illustrated here with the method from S. Lazebnik, C. 
Schmid and J. Ponce, “Semi-local affine parts for 
object recognition” BMVC 2004object recognition , BMVC 2004
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more matches in the same neighborhood
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Strategy 2: Incremental alignment
Take advantage of strong locality constraints: only pick 

close-by matches to start with, and gradually add 
more matches in the same neighborhood

A



Incremental alignment: Details

Generating seed groups:
• Identify triples of neighboring features (i, j, k) in first imagey p g g ( , j, ) g
• Find all triples (i', j', k') in the second image such that i' (resp. 

j', k') is a putative match of i (resp. j, k), and j', k' are 
neighbors of i'neighbors of i



Incremental alignment: Details

A

Beginning with each seed triple repeat:Beginning with each seed triple, repeat:
• Estimate the aligning transformation between corresponding features 

in current group of matches
• Grow the group by adding other consistent matches in the 

neighborhood

U til th t f ti i l i t tUntil the transformation is no longer consistent 
or no more matches can be found



Incremental alignment: Details

A

Beginning with each seed triple repeat:Beginning with each seed triple, repeat:
• Estimate the aligning transformation between corresponding features 

in current group of matches
• Grow the group by adding other consistent matches in the 

neighborhood

U til th t f ti i l i t tUntil the transformation is no longer consistent 
or no more matches can be found



Incremental alignment: Details

A

Beginning with each seed triple repeat:Beginning with each seed triple, repeat:
• Estimate the aligning transformation between corresponding features 

in current group of matches
• Grow the group by adding other consistent matches in the 

neighborhood

U til th t f ti i l i t tUntil the transformation is no longer consistent 
or no more matches can be found



Incremental alignment: Details

A

Beginning with each seed triple repeat:Beginning with each seed triple, repeat:
• Estimate the aligning transformation between corresponding features 

in current group of matches
• Grow the group by adding other consistent matches in the 

neighborhood

U til th t f ti i l i t tUntil the transformation is no longer consistent 
or no more matches can be found



Strategy 3: Hough transform
Suppose our features are scale- and rotation-covariant

• Then a single feature match provides an alignment hypothesis 
(translation scale orientation)(translation, scale, orientation)

model

David G. Lowe. “Distinctive image features from scale-invariant keypoints”, 
IJCV 60 (2), pp. 91-110, 2004. 



Strategy 3: Hough transform
Suppose our features are scale- and rotation-covariant

• Then a single feature match provides an alignment hypothesis 
(translation scale orientation)(translation, scale, orientation)

• Of course, a hypothesis obtained from a single match is unreliable
• Solution: let each match vote for its hypothesis in a Hough space 

with very coarse bins

model

David G. Lowe. “Distinctive image features from scale-invariant keypoints”, 
IJCV 60 (2), pp. 91-110, 2004. 



Hough transform details (D. Lowe’s system)
Training phase: For each model feature, record 2D 

location, scale, and orientation of model (relative to 
normalized feature frame)

Test phase: Let each match between a test and a 
fmodel feature vote in a 4D Hough space

• Use broad bin sizes of 30 degrees for orientation, a factor of 
2 for scale and 0 25 times image size for location2 for scale, and 0.25 times image size for location

• Vote for two closest bins in each dimension

Find all bins with at least three votes and perform p
geometric verification 
• Estimate least squares affine transformation 
• Use stricter thresholds on transformation residual
• Search for additional features that agree with the alignment



Strategy 4: Hashing
Make each invariant image feature into a low-dimensional “key” 

that indexes into a table of  hypotheses

hash table

model



Strategy 4: Hashing
Make each invariant image feature into a low-dimensional “key” 

that indexes into a table of  hypotheses
Gi t t i t th h h k f ll f tGiven a new test image, compute the hash keys for all features 

found in that image, access the table, and look for consistent 
hypotheses

hash table

test image

model

g



Strategy 4: Hashing
Make each invariant image feature into a low-dimensional “key” 

that indexes into a table of  hypotheses
Gi t t i t th h h k f ll f tGiven a new test image, compute the hash keys for all features 

found in that image, access the table, and look for consistent 
hypotheses

This can even work when we don’t have any feature descriptors: 
we can take n-tuples of neighboring features and compute 
invariant hash codes from their geometric configurationsinvariant hash codes from their geometric configurations

C

B

C
D

A



Beyond affine transformations
What is the transformation between two views of a 

planar surface?

What is the transformation between images from two g
cameras that share the same center?



Beyond affine transformations
Homography: plane projective transformation 

(transformation taking a quad to another arbitrary 
quad)



Fitting a homography
Recall: homogenenous coordinates

Converting to homogenenous
image coordinates

Converting from homogenenous
image coordinates



Fitting a homography
Recall: homogenenous coordinates

Converting to homogenenous
image coordinates

Converting from homogenenous
image coordinates

Equation for homography:q g p y
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Fitting a homography
Equation for homography:
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Direct linear transform
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One match gives us two linearly independent equations
Four matches needed for a minimal solution (null space 

of 8x9 matrix)
M th f h l tMore than four: homogeneous least squares



Application: Panorama stitching

Images courtesy of A. Zisserman. 



Recognizing panoramas
Given contents of a camera memory card, automatically 

figure out which pictures go together and stitch them 
together into panoramas

M. Brown and D. Lowe,  “Recognizing panoramas”, ICCV 2003. 



1. Estimate homography (RANSAC)



1. Estimate homography (RANSAC)



1. Estimate homography (RANSAC)



2. Find connected sets of images



2. Find connected sets of images



2. Find connected sets of images



3. Stitch and blend the panoramas



Results



Issues in alignment-based applications

Choosing the geometric alignment model
• Tradeoff between “correctness” and robustness (also• Tradeoff between correctness  and robustness (also, 

efficiency)

Choosing the descriptorg p
• “Rich” imagery (natural images): high-dimensional patch-based 

descriptors (e.g., SIFT)
“I i h d” i ( t fi ld ) d t t• “Impoverished” imagery (e.g., star fields): need to create 
invariant geometric descriptors from k-tuples of point-based 
features

Strategy for finding putative matches
• Small number of images, one-time computation (e.g., panorama 

tit hi ) b t f hstitching): brute force search
• Large database of model images, frequent queries: indexing or 

hashingg
• Heuristics for feature-space pruning of putative matches



Issues in alignment-based applications

Choosing the geometric alignment model
Choosing the descriptorChoosing the descriptor
Strategy for finding putative matches
Hypothesis generation strategyHypothesis generation strategy

• Relatively large inlier ratio: RANSAC
• Small inlier ratio: locality constraints Hough transformSmall inlier ratio: locality constraints, Hough transform

Hypothesis verification strategy
• Size of consensus set, residual tolerance depend on inlier ratio , p

and expected accuracy of the model
• Possible refinement of geometric model

D ifi ti• Dense verification




