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Abstract. Our everyday objects support various tasks and can be used
by people for different purposes. While object classification is a widely
studied topic in computer vision, recognition of object function, i.e., what
people can do with an object and how they do it, is rarely addressed.
In this paper we construct a functional object description with the aim
to recognize objects by the way people interact with them. We describe
scene objects (sofas, tables, chairs) by associated human poses and ob-
ject appearance. Our model is learned discriminatively from automat-
ically estimated body poses in many realistic scenes. In particular, we
make use of time-lapse videos from YouTube providing a rich source of
common human-object interactions and minimizing the effort of man-
ual object annotation. We show how the models learned from human
observations significantly improve object recognition and enable predic-
tion of characteristic human poses in new scenes. Results are shown on a
dataset of more than 400,000 frames obtained from 146 time-lapse videos
of challenging and realistic indoor scenes.

1 Introduction

What are people expected to do with a Christmas tree just set up in a living
room? Is it common to see a person sitting on a stove? Current computer vision
methods provide no answers to such questions. Meanwhile, resolving these and
many other questions by recognizing functional properties of objects and scenes
would be highly relevant for addressing the tasks of abnormal event detection
and predicting future events in image and video data.

Object functions can be derived from the known associations between object
categories and human actions (the mediated perception of function approach [1]),
for example chair→sittable, window→openable. Actions such as sitting, however,
can be realized in many different forms which can be characteristic for some
objects but not for others, as illustrated in Figure 1. Moreover, some objects
may not support the common function associated with their category: for exam-
ple, windows in airplanes are usually not openable. These and numerous other
examples suggest that the category-level association between objects and their
functions is not likely to scale well to the very rich variety of the types and forms
of person-object interactions. Instead, we argue that the functional descriptions
of objects should be learned directly from observations of visual data.
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Fig. 1. Different ways of using objects. While all people depicted on the left are sitting,
their sitting poses can be rather unambiguously associated with the objects on the right.
In this paper we build on this observation and learn object descriptions in terms of
characteristic body poses.

In this work we design object descriptions by learning associations between
objects and spatially co-occurring human poses. To capture the rich variety of
person-object interactions, we automatically detect people and estimate body
poses in long-term observations of realistic indoor scenes using the state-of-the-
art method of [2]. While reliable pose estimation is still a challenging problem,
we circumvent the noise in pose estimation by observing many person interac-
tions with the same instances of objects. For this purpose we use videos from
hours-lasting events (parties, house cleaning) recorded with a static camera and
summarized into time-lapses1. Static objects in time-lapses (e.g., sofas) can be
readily associated with hundreds of co-occurring human poses spanning the typ-
ical interactions of people with these objects (see Figures 2-4). Equipped with
this data, we construct statistical object descriptors which combine the signa-
tures of object-specific body poses as well as the object’s appearance. The model
is learned discriminatively from many time-lapse videos of variety of scenes.

To summarize our contributions, we propose a new statistical model de-
scribing objects in terms of distributions of associated human poses. Notably,
we do not require human poses to be annotated during training and learn the
rich variety of person-object interactions automatically from long-term observa-
tions of people. Our functional object description generalizes across realistic and
challenging scenes, provides significant improvements in object recognition and
supports prediction of human poses in new scenes.

Background. Semantic object labeling and segmentation has been mainly con-
sidered for outdoor scenes, e.g. [3, 4]. For indoor scenes the focus has been on
recovering spatial layout [5–7], possibly since many indoor objects are often bet-
ter defined by their function rather than appearance.

1 Time-lapse http://en.wikipedia.org/wiki/Time-lapse_photography is a common media type
used to summarize recordings of long events into short video clips by temporal sub-
sampling. We use time-lapses widely available on public video sharing web-sites such
as YouTube, which are typically sampled at one frame per 1-60 seconds.
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The interplay between people and objects has recently attracted significant
attention. Interactions between people and semantic objects has been studied in
still images with the focus on improving action recognition [8, 9], object local-
ization [8, 10, 11] and discovery [12] as well as pose estimation [13, 14]. In video,
constraints between human actions and objects (e.g., drinking from a coffee cup)
have been investigated in restricted laboratory setups [8, 15, 16] or ego-centric
scenarios [17]. In both still images and video the focus has been typically on small
objects manipulated by hands (e.g., coffee cups, footballs, tennis rackets) rather
than scene objects such as chairs, sofas or tables, which exhibit large intra-class
variability. In addition, manual annotation of action categories [8, 16] or human
poses [13] in the training data is often required and the models typically do not
allow predicting poses in new scenes without people.

Functional scene descriptions have been developed for surveillance setups,
e.g., [18–20], but the models are usually designed for specific scene instances and
use only coarse-level observations of object/person tracks [19, 20], or approximate
person segments obtained from background subtraction [18]. In contrast, our
method generalizes to new challenging scenes, and uses finer grain descriptors
of estimated body configuration enabling discrimination between object classes
such as sofas and chairs.

Recent attempts [21, 22] have inferred functions or affordances [23] from au-
tomatically obtained noisy 3D reconstructions of indoor scenes. These methods
infer affordance based on the geometry and physical properties of the space. For
example, they find places where a person can sit by fitting a 3D human skeleton
in a particular pose at a particular location in the scene. While people can sit
at many places, they tend to sit in sofas more often than on tables. Moreover,
they may sit on sofas in a different way than on a floor or on a chair. In this
work we aim to leverage these observations and focus on statistical affordances
by learning typical human poses associated with each object.

In a similar setup to ours, Fouhey et al. [7] have looked at people’s actions
as a cue for a coarse 3D box-like geometry of indoor scenes. Here we investigate
the interplay between object function and object semantics, rather than scene
geometry. In addition, in [7] the geometric person-scene relations are designed
manually. In this work, we learn semantic person-object interactions from data.

2 Method overview

In this section we give a brief overview of the proposed approach. Our main goal
is to learn functional object descriptions from realistic observations of person-
object interactions. To simplify the learning task, we assume input videos to
contain static objects with fixed locations in each frame of the video. Annota-
tion of such objects in the whole video can be simply done by outlining object
boundary in one video frame as illustrated in Figure 2. Moreover, person inter-
actions with static objects can be automatically recorded by detecting people in
the spatial proximity of annotated objects.

We start by over-segmenting input scenes into super-pixels, which will form
the candidate object regions (details given in Section 5). For each object region
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Fig. 2. Overview of the proposed person-based object description. Input scenes are over-
segmented into super-pixels; each super-pixel (denoted R here) is described by the
distribution of co-occurring human poses over time as well as by the appearance and
location of the super-pixel in the image.

R we construct a descriptor vector h(R) to be used for subsequent learning and
recognition. The particular novelty of our method is a new descriptor represent-
ing an object region by the temporal statistics hP (R) of co-occurring people
(Section 3). This descriptor contains a distribution of human body poses and
their relative location with respect to the object region. We also represent each
object region by appearance features, denoted hA(R), and the absolute location
in the frame, denoted hL(R), as described in Section 4.

Given descriptor vectors, one for each object region, containing statistics of
characteristic poses, appearance and image locations, a linear support vector ma-
chine (SVM) classifier is learnt for each object class from the labelled training
data in a discriminative manner. At test time, the same functional and appear-
ance representation is extracted from candidate object regions of the testing
video. Individual candidate object regions are then classified as belonging to one
of the semantic object classes.

3 Modeling long-term person-object interactions

This section presents our model of the relationship between objects and sur-
rounding people. We start by introducing a new representation describing an
object by the statistics of co-occurring human poses. We then explain the de-
tails of the extraction and quantization of human poses in time-lapses.

3.1 Describing an object by a distribution of poses

We wish to characterize objects by the typical locations and poses of surrounding
people. While 3D reasoning about people and scenes [22] has some advantages,
reliable estimation of scene geometry and human poses in 3D is still an open
problem. Moreover, deriving rich person-object co-occurrences from a single im-
age is difficult due to the typically limited number of people in the scene and the
noise of automatic human pose estimation. To circumvent these problems, we
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Fig. 3. Capturing person-object interactions. An object region R is described by a
distribution (histogram) over poses k (left), joints j (middle) and cells c (right). The
3×3 grid of cells c is placed around each joint to capture the relative position of an
object region R with respect to joint j. The pixel overlap between the grid cell c and
the object region R weights the contribution of the jth joint and the kth pose cluster.

take advantage of the spatial co-occurrence of objects and people in the image
plane. Moreover, we accumulate many human poses by observing scenes over an
extended period of time.

In our setup we assume a static camera and consider larger objects such as
sofas and tables which are less likely to change locations over time. We describe
object region R in the image by the temporal statistics hP of co-occurring human
poses. Each person detection d is represented by the locations of J(= 14) body
joints, indexed by j, and the assignment qdk of d’s pose to a vocabulary of KP

discrete pose clusters; see Figure 3 and Sections 3.2-3.3 for details. To measure
the co-occurrence of people and objects, we define a spatial grid of 9 cells c around
each body joint j. We measure the overlap between the object region R and the

grid cell Bd
j,c by the normalized area of their intersection I(Bj,c, R) =

|Bj,c∩R|
|Bj,c| .

We then accumulate overlaps from all person detections D in a given video and
compute one entry hPk,j,c(R) of the histogram descriptor hP (R) for region R as

hPk,j,c(R) =
∑
d∈D

I(Bd
j,c, R)

1 + exp(−3sd)
qdk, (1)

where k, j, and c index pose clusters, body joints and grid cells, respectively. The
contribution of each person detection in (1) is weighted by the detection score
sd. The values of qdk indicate the similarity of the person detection d with a pose

cluster k. In the case of the hard assignment of d to the pose cluster k̃, qdk = 1

for k = k̃ and qdk = 0 otherwise. In our experiments we found that better results
can be obtained using soft pose assignment as described in the next section.
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Fig. 4. Pose cluster and detection examples. Left: example cluster means from our pose
vocabulary. Right: person detections in multiple frames of time-lapse videos assigned
to the pose clusters on the left.

3.2 Building a vocabulary of poses

We represent object-specific human actions by a distribution of quantized human
poses. To compute pose quantization, we build a vocabulary of poses from person
detections in the training set by unsupervised clustering.

In order to build the pose vocabulary, we first convert each detection d in
the training video into a 2J-dimensional pose vector xd by concatenating mid-
point coordinates of all detected body joints. We center and normalize all pose
vectors in the training videos and cluster them by fitting a Gaussian Mixture
Model (GMM) with KP components via expectation maximization (EM). The
components are initialized by the result of a K-means clustering and during
fitting we constrain the covariances to be diagonal. The resulting mean vectors
µk, diagonal covariance matrices Σk and weights πk for each pose cluster k =
1, · · · ,KP form our vocabulary of poses (see Figure 4). A pose vector xd for a
detection d can be described by a soft assignment to each of the µk by computing
the posterior probability vector qd, where

qdk =
p(xd|µk,Σk)πk∑KP

j=1 p(x
d|µj ,Σj)πj

. (2)
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3.3 Person detection and pose estimation

We focus on detecting people in three body configurations common in indoor
scenes: standing, sitting and reaching. We use the person detector from Yang and
Ramanan [2], which was shown to perform very well at both people detection and
pose estimation and train three separate models, one for each body configuration.
We found that training 3 separate models improved pose estimation performance
over using a single generic pose estimator (Section 7).

The three detectors are run separately on all frames of each time-lapse video
in a sliding window manner at multiple scales. As all our videos have fixed view-
point, we use background subtraction (Section 7) to remove some false positive
detections. Additional false positives can be removed via geometric filtering: we
use the vanishing point estimation method proposed in [24] to compute the hori-
zon height yh. We then assume a linear relationship hp(yp) = α(yp−yh) between
a person’s height hp and the feet y-coordinate yp in the image [25], and learn the
scaling coefficient α via RANSAC and robust least square fitting. We discard
detections for which the difference between the detected person height and the
expected person height is greater than a given threshold ε. Finally we normalize
the output of the detectors by making the mean and standard deviation of the
detection scores equal to 0 and 1 on training videos, respectively. The filtering
and normalization is performed separately for each detector.

To obtain the final set of detections, we perform standard non-maxima sup-
pression on the combined outputs of the three detectors in each frame: if bound-
ing boxes of several person detections overlap (i.e., have intersection over union
bigger than 0.3), the detection with the highest normalized response is kept.
This leads to a set Di of confident person detections for the ith video. Each
detection d ∈ Di is represented by an associated normalized score sd and an
estimated limb-configuration consisting of J bounding boxes Bd

j , j = 1, · · · , J
corresponding to J = 14 locations of body joints.

As our time-lapse videos are sparsely sampled in time, the reasoning about
temporal evolution of human poses is not straightforward. We therefore cur-
rently discard any temporal information about detected people. Nevertheless,
the temporal re-occurrence of characteristic body poses for particular objects is
a very powerful cue which we exploit to (i) reduce the noise in pose estimation
and (ii) to span the rich variety of person-object interactions.

4 Modeling appearance and location

In addition to the distribution of poses we also model the appearance and ab-
solute position of image regions. We build on the orderless bag-of-features rep-
resentation [26] and describe the appearance of image regions by a distribution
of visual words. We first densely extract SIFT descriptors [27] f ∈ Fk from
image patches Bf of multiple sizes sk for k = 1, · · · , S for all training videos
and quantize them into visual words by fitting a GMM with KA components.
Each feature f is then soft-assigned to this vocabulary in the same manner as
described in Eq. (2). This results in an assignment vector qf for each feature.
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The KA-dimensional appearance histogram hA(R) for region R is computed as
a weighted sum of assignment vectors qf

hA(R) =

S∑
k=1

∑
f∈Fk

s2kI(Bf , R) qf , (3)

where s2kI(Bf , R) is the number of pixels belonging to both object region R and
feature patch Bf .

Similar to [28], we also represent the absolute position of regions R within
the video frame. This is achieved by spatially discretizing the video into a grid of
m×n cells, resulting in a (m×n)-dimensional histogram hL(R) for each region
R. Here the ith bin of hL(R) is simply the proportion of pixels of the ith cell of
the grid falling into R.

5 Learning from long-term observations

We now detail how we obtain candidate object regions from multiple super-pixel
segmentations and learn the model of person-object interactions. We then show
how to recognize objects in testing videos and predict likely poses in new scenes.

Obtaining candidate object regions. As described in previous sections, we
represent objects by accumulating statistics of human poses, image appearance
and location at object regions R. Candidate object regions are obtained by over-
segmenting video frames into super-pixels using the method and on-line imple-
mentation of [29]. As individual video frames may contain many people occlud-
ing the objects in the scene, we represent each video using a single “background
frame” containing (almost) no people (Section 7). Rather than relying on a single
segmentation, we follow [28] and compute multiple overlapping segmentations
by varying the parameters of the segmentation algorithm.

Learning object model. We train a classifier for each object class in a one-
versus-all manner. The training data for each classifier is obtained by collecting
all (potentially overlapping) super-pixels, Ri for i = 1, · · · , N , from all training
videos. For each region, we extract their corresponding pose, appearance and
location histograms as described in Sections 3 and 4. The histograms are sepa-
rately L1-normalized and concatenated into a single K-dimensional feature vec-

tor xi = [h̃
P

(Ri), h̃
A

(Ri), h̃
L

(Ri)], where h̃ denotes L1-normalized histogram
h. An object label yi is then assigned to each super-pixel based on the sur-
face overlap with the provided ground truth object segmentation in the training
videos. Using the surface overlap threshold of 34%, each super-pixel can be as-
signed up to two ground truth object labels. Finally we train a binary support
vector machine (SVM) classifier with the Hellinger kernel for each object class
using the labelled super-pixels as training data. The Hellinger kernel is efficiently
implemented using the explicit feature map Φ(xi) =

√
xi/L1(xi) and a linear

classifier. Finally, the outputs of individual SVM classifiers are calibrated with
respect to each other by fitting a multinomial regression model from the clas-
sifiers output to the super-pixel labels [30]. The output of the learning stage is
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a K-dimensional weight vector wy of the (calibrated) linear classifier for each
object class y.

At test time, multiple super-pixel segmentations are extracted from the back-
ground frame of the test video and the individual classifiers are applied to each
super-pixel. This leads to a confidence measure for each label and super-pixel.
The confidence of a single image pixel is then the mean of the confidences of all
the super-pixels it belongs to.

Inferring probable pose. Here we wish to predict the most likely pose within
a manually provided bounding box in an image, given an object layout (segmen-
tation) of the scene. This is achieved by choosing the pose cluster, for which the
sum of learnt object weights for all joints most agree with the given per-pixel
object labels in the image. More formally, denoting wy(k, j, c) the weight learnt

for label y, pose cluster k, joint j and grid cell c, we select the pose cluster k̂
that maximizes the sum of per-pixel weights under each joint grid cell Bk

j,c

k̂ = arg max
k

J∑
j=1

9∑
c=1

∑
pixels i∈Bk

j,c

wyi
(k, j, c), (4)

where yi is the label for pixel i.

6 Time-lapse dataset

We extend the dataset of [7] to 146 time-lapse videos containing a total of around
400,000 frames. Each video sequence shows human actors interacting with an
indoor scene over a period of time ranging from a few minutes to several hours.
The captured events include parties, working in an office, cooking or room-
cleaning. The videos were downloaded from YouTube by placing queries such as
”time-lapse party”. Search results were manually verified to contain only videos
captured with a stationary camera and showing an indoor scene. All videos are
sparsely sampled in time with limited temporal continuity between consecutive
frames. The dataset represents a challenging uncontrolled setup, where people
perform natural non-staged interactions with objects in a variety of real indoor
scenes.

We manually annotated each video with ground truth segmentation masks of
eight frequently occurring semantic object classes: ‘Bed’, ‘Sofa/Armchair’, ‘Cof-
fee Table’, ‘Chair’, ‘Table’, ‘Wardrobe/Cupboard’, ‘Christmas tree’ and ‘Other’.
Similar to [24], the ‘Other’ class contains various foreground room clutter such as
clothes on the floor, or objects (e.g., lamps, bottles, or dishes) on tables. In addi-
tion to objects we also annotated three room background classes: ‘Wall’, ‘Ceiling’
and ‘Floor’. As the camera and majority of the objects are static, we can collect
hundreds or even thousands of realistic person-object interactions throughout the
whole time-lapse sequence by providing a single object annotation per video. The
dataset is divided into 5 splits of around 30 videos with approximately the same
proportion of labels for different objects. The dataset including the annotations
is available at http://www.di.ens.fr/willow/research/scenesemantics/.



10 V. Delaitre, D. F. Fouhey, I. Laptev, J. Sivic, A. Gupta, A. A. Efros

7 Experiments

In this section we give the implementation details and then show results for (i)
pose estimation (ii) semantic labeling of objects in time-lapse videos and (iii)
predicting likely poses for new scenes.

Implementation details. The foreground/background segmentation in each
video frame is estimated using a pixel-wise adaptive mixture of Gaussian with
5 components [31] (with α = 0.01 and T = 0.2). We also compute a single
“background image” for each video that contains no people by taking the median
of background segments across all video frames. Person detections and human
pose estimates in each frame are obtained using the method and code of [2].
Detections in the background segments and with confidence smaller than -1.1
are removed. The threshold ε for the ground-plane based geometric filter [25] is
set to 30%. Super-pixels for each video are generated using the code of [29] with
parameters σ ∈ {0.2, 0.3}, k = 80 and min = 600. SIFT features are extracted
from patches of size s ∈ {8, 16, 32, 64} pixels, with 50% spatial overlap. To train
the proposed model, we use 3 splits of the dataset (see section 6) to cross-validate
the C parameter of the SVM and use the 4th split to calibrate the outputs of
the individual classifiers. The resulting model is tested on the 5th split. This is
repeated five times for the different test splits to obtain the mean and standard
deviation of the classification performance.

Pose estimation. To evaluate person detection and pose estimation perfor-
mance we have annotated poses of at least ten (randomly chosen) person occur-
rences in each video, resulting in 1606 pose annotations. Person (bounding box)
detection performance is measured using the standard average precision (AP)
and pose estimation performance is measured by the Percentage of Correct Parts
(PCP) score among the detected people as proposed in [32]. We first compare
our individually trained pose estimators for each action (see section 3.3) with a
single model trained on images from all 3 action classes. Both have a similar re-
call of around 52% but the individually trained models achieve an average PCP
of 50% compared to 47% for the single model. We then evaluate the effect of the
background subtraction and geometric filtering for person detection. The indi-
vidually trained models achieve an AP of 33%, which is significantly improved
by background subtraction (51%) and geometric filtering (56%).

Semantic labeling of objects. Semantic labeling performance is measured
by pixel-wise precision-recall curve and average precision (AP) for each object.
Table (1) shows the average precision for different object and room background
classes for different feature combinations of our method. Performance is com-
pared to two baselines: the method of [24], trained on our data with semantic
object annotations, and the deformable part model (DPM) of [33] trained over
manually defined bounding boxes for each class. At test time, the DPM bound-
ing boxes are converted to segmentation masks by assigning to each testing pixel
the maximum score of any overlapping detection. Note that combining the pro-
posed pose features with appearance (A+P) results in a significant improvement
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DPM [33] [24] (A+L) (P) (A+P) (A+L+P)

Wall — 75±3.9 76±1.6 76±1.7 82±1.2 81±1.3

Ceiling — 47±20 53±8.0 52±7.4 69±6.7 69±6.6

Floor — 59±3.1 64±5.5 65±3.6 76±3.2 76±2.9

Bed 31±20 12±7.2 14±5.0 21±5.8 27±13 26±13

Sofa/Armchair 26±9.4 26±10 34±3.3 32±6.5 44±5.4 43±5.8

Coffee Table 11±5.4 11±5.2 11±4.4 12±4.3 17±10 17±9.6

Chair 9.5±3.9 6.3±2.8 8.3±2.7 5.8±1.4 11±5.4 12±5.9

Table 15±6.4 18±3.8 17±3.9 16±7.1 22±6.2 22±6.4

Wardrobe/Cupboard 27±10 27±8.2 28±6.4 22±1.1 36±7.4 36±7.2

Christmas tree 50±3.3 55±12 72±1.8 20±6.0 76±6.2 77±5.5

Other Object 12±6.4 11±1.2 7.9±1.9 13±4.2 16±8.3 16±8.2

Average 23±1.8 31±2.0 35±2.4 30±1.7 43±4.4 43±4.3

Table 1. Average precision (AP) for baselines of Felzenszwalbet al. [33] and Hedauet
al. [24] compared to four different settings of our method: appearance and location
features only (A+L), person features only (P), appearance and person features (A+P),
appearance, location and person features combined (A+L+P).

in overall performance, but further adding location features (A+L+P) brings
little additional benefit, which suggests that spatial information in the scene is
largely captured by the spatial relation to the human pose. The proposed method
(A+L+P) also significantly outperforms both baselines. Example classification
results for the proposed method are shown in Figure 5. Finally, learnt weights
for different objects are visualized in Figure 6.

We have also evaluated our model on functional surface estimation. For train-
ing and testing, we have provided ground truth functional surface masks for the
dataset of [7]. Our model achieves AP of 76%, 25% and 44% for ‘Walkable’, ‘Sit-
table’ and ‘Reachable’ surfaces, respectively, averaging a gain of 13% compared
to [7], which could be attributed to the discriminative nature of our model.

Predicting poses in new scenes. Figure 7 shows qualitative results of pre-
dicting likely human poses in new scenes. Given a person bounding box and the
manually labelled object regions, the most likely pose is predicted using Eq. (4).
As can be seen, the automatically generated poses are consistent with object
classes as well as with the scene geometry despite no explicit 3D reasoning is
included in our model.

8 Discussion

We have proposed a statistical descriptor of person-object interactions and have
demonstrated its benefits for recognizing objects and predicting human body
poses in new scenes. Notably, our method requires very little annotation and
relies on long-term observations of people in time-lapse videos. Given the mutual
dependence of objects and human poses, the current method can be further
extended to perform joint pose estimation and object recognition.
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Original frame Ground truth annotation Mean inferred pixel labels

CoffeeTable SofaChair TableCupboardBed Christmas tree

Fig. 5. Object soft segmentation. Scene background with no people (left). Object
ground truth (middle). Mean probability map for inferred objects (right).
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