

group

LEAR research qroup

Recognize human actions in videos using body pose and convolutional neural networks (CNN).

shoot bow

open egg

Motivation

brush hair

- The structure and dynamics of **body** poses provide strong cues for action recognition.
- Action recognition has been dominated by local features especially dense trajectories (DT) [2].
- Current video representations based on local features [2] and CNNs [3] lack explicit structure.
- [1] reports significant gains provided by dynamic pose features (HLPF).
- [1] is sensitive to noise in pose estimation and presents results for one dataset only.

Contribution

- Propose a new CNN-based action descriptor combining appearance and motion of body parts (P-CNN).
- Investigate alternative schemes for temporal aggregation of CNN features.
- P-CNN is complementary to DT [2], combination of P-CNN with DT improves state of the art results on two datasets.
- Our experiments confirm the importance of pose for action recognition.

References

- [1] H. Jhuang, J. Gall, S. Zuffi, C. Schmid, and M. J. Black. Toward understanding action recognition. In ICCV, 2013.
- [2] H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV, 2013.
- [3] K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. In NIPS, 2014.
- [4] A. Cherian, J. Mairal, K. Alahari, and C. Schmid. Mixing body-part sequences for human pose estimation. In CVPR, 2014.
- [5] M. Rohrbach, S. Amin, M. Andriluka, and B. Schiele. A Database for Fine Grained Activity Detection of Cooking Activities. In CVPR, 2012.
- [6] Y. Zhou, B. Ni, S.Yan, P.Moulin, and Q.Tian. Pipelining localized semantic features for fine-grained action recognition. In ECCV, 2014.

Datasets: JHMDB [1]: 21 sport oriented human actions. MPII Cooking [5]: 64 fine-grained cooking actions. **Human poses:** Pose: automatic pose estimation using [4] / GT: manually annotated (ground truth) pose.

Par Har Up

 Combir Appear

> Agg _____ All All All All

• Max a

P-CNN: Pose-based CNN Features for Action Recognition

Guilhem Chéron^{1,2}, Ivan Laptev¹, Cordelia Schmid² ²INRIA, Grenoble Rhône-Alpes, France ¹INRIA, Paris, France

	Effe	ect o	f body pa	rts					Automat	ic vs. G	T pose		
	J	JHMDB-GT MPII Cooking-Pose			ting-Pose	<u>JHMDB</u>							
rts	App	OF	App + OF	App	OF	App + OF		s	sub-IHMD	B		IHMDB	
nds per body 1 body	$46.3 \\ 52.8 \\ 52.2$	$54.9 \\ 60.9 \\ 61.6$	$57.9 \\ 67.1 \\ 66.1$	$39.9 \\ 32.3$	$\begin{array}{c} 46.9\\ 47.6\end{array}$	$51.9 \\ 50.1$		GT	Pose	Diff	GT	Pose	Diff
l image	43.3 60.4	55.7 69.1	61.0 73.4	28.8 43.6	56.2 57.4	56.5 60.8	P-CNN	72.5	66.8	-5.7	74.6	61.1	-13.5
uman parts	s CNN fea	atures	appearance/f	flow, max	x-aggr	egation.		10.2	51.1	-2(.1	11.0	20.5	-52.5
Effect of aggregation							MP ub-MPII (II Cooking		IPII Cooki	ng		
(Stat Max	v_aggr)		60.4	60	· r .	73.4		<u>Ст</u>			r		
(Stat, Max	x-aggr) x/Min-ag	ggr)	60.4 60.6	68	8.9	73.4 73.1	D CNN		Pose		1 	co o	
(Stat+Dyr (Stat+Dyr	n, Max-a n, Max/N	ggr) ⁄Iin-aş	62.4 ggr) 62.5	70 70).6).2	74.1 74.6	HLPF [1] 76.2	$5 67.5 \\ 2 57.4$	-10. -18.	8	$\frac{62.5}{32.6}$	
nd Min a s improve	aggregat e action	tions class	combined sification.	with <mark>st</mark>	atic a	and <mark>dyna</mark> m	ic • P-CNN sig GT pose.	nificantly	y outperfor	ms HLPF	[1] for a	utomatic Po	se and

features improve action classification.

P-CNN code available at: <u>http://www.di.ens.fr/willow/research/p-cnn/</u>

Results

Method

Holistic Semanti P-CNN DT-FV P-CNN

×.

Per class accuracy on JHMDB-G

r: # : P-CNN ranking

Method details Compute temporal differences of CNN features \mathbf{f}_{t}^{p} : $\Delta \mathbf{f}_t^p = \mathbf{f}_{t+\Delta t}^p - \mathbf{f}_t^p$ with $\Delta t = 4$ frames. Aggregation (max and min) of frame descriptors: $\Delta m_i = \min_{1 \le t \le T} \Delta \mathbf{f}_t^p(i)$ $m_i = \min \mathbf{f}_t^p(i)$ $1 \le t \le T$ $M_i = \max \mathbf{f}_t^p(i)$ $\Delta M_i = \max \Delta \mathbf{f}_t^p(i)$ \mathbf{v}_{app} $1 \le t \le T$ • Concatenation to get static and dynamic video descriptors: \mathbf{v}_{st}^p

$$\mathbf{v}_{of}$$

$$_{tat} = [m_1, ..., m_k, M_1, ..., M_k]^{\top}$$

$$\boldsymbol{w}_{dyn}^p = \left[\Delta m_1,...,\Delta m_k,\Delta M_1,...,\Delta M_k
ight]^ op$$

 Normalization of video descriptor: normalize by the average L2-norm of the \mathbf{f}_t^p s from the training set (\boldsymbol{l}_p)

Comparison to other methods

	JHN	ADB	MPII Cook.		
l	GT	Pose	Pose		
+ Pose[5]	_	_	57.9		
c Features[6]	-	-	70.5		
	74.6	61.1	62.3		
	65.9	65.9	67.6		
+ DT-FV (our)	79.5	72.2	71.4		

• P-CNN outperforms state-of-the-art DT-FV with manually annotated human pose (GT).

worsen ranking

r: # : DT+FV[2] ranking