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P-CNN: Pose-based CNN Features for Action Recognition
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Goal

Recognize human actions in videos using body pose
and convolutional neural networks (CNN).
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* Concatenation to get static and dynamic

Right hand mmH H > video descriptors:
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M Otlvatl on extract CNN features (appearance and motion) per part and per frame (3 . . * Normalization of video descriptor:

* The structure and dynamics of body poses provide
strong cues for action recognition.

aggregate per-frame descriptors over time (max/min)
normalize aggregated descriptors

(1)
(2)
(3)
(4)
(9)
(6)
(7)

concatenate appearance and motion descriptors from all body parts

normalize by the average L2-norm of the
f’s from the training set ()

(4) (6)

P-CNN code available at:_http.//www.di.ens.fr/willow/research/p-cnn/

* Action recognition has been dominated by local

features especially dense trajectories (DT) [2]. Results Comparison to other methods
* Current video representations based on local Datasets: JHMDB [1]: 21 sport oriented human actions. MPII Cooking [5]: 64 fine-grained cooking actions. JHMDB MPII Cook.
features [2] and CNNs [3] lack explicit structure. Human poses: . automatic pose estimation using [4] / GT: manually annotated (ground truth) pose. Method GT
* [1] reports significant gains provided by dynamic Effect of body parts Automatic vs. GT pose Holistic + Pose[5] S 57.9
* [1] is sensitive to noise in pose estimation and Parts App OF  App+OF App OF  App+OF E?Eﬁ g‘f‘;‘g 2;'; g’?g
presents results for one dataset only. Hands 16.3  54.9 57.9 39.9  46.9 51.9 sub-JHMDB JHMDB 5. . .
Upper body 52.8  60.9 67.1 32.3  47.6 50.1 GT Diff GT Diff P-CNN + DT-FV (our) 79.5 72.2 71.4
Contribution Full imag isa o7  or0 e s s ' '
AR PG e 20 P-CNN 72.5 66.8 -5.7 74.6 61.1 -13.5 *P-CNN outperforms state-of-the-art DT-FV with manually
+ Propose a new CNN-based action descriptor human parts CNN features appearance/flow, max-aggregation. HLPF [1] 78.2 51.1 -27.1 77.8 25.3 -02.5  annotated human pose (G 1).

* P-CNN are significantly more robust to errors in the automatic FPose. * With G and

* HLPF [1] outperforms P-CNN in the case of GT pose.

. P-CNN and DT-FV are complementary

combining appearance and motion of body parts and improve state-of-the-art results on JHMDB and MPII

(P-CNN).

* Combination of parts improves action classification.
* Appearance and flow descriptors are complementary.

Cooking. 100 —

* Investigate alternative schemes for temporal Effect of aqgareagation .

aggregation of CNN features. 99rey MPIT Cooking
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+ P-CNN is complementary to DT [2], combination of Aggregation scheme App OF App+OF sub-MPII Cooking MPII Cooking

P-CNN with DT improves state of the art results on All (Stat, Max-aggr) 60.4 69.1 73.4 GT Diff

_ All (Stat, Max/Min-ager 60.6 68.9 73.1 0 N0 NOMNGDD

two datasets NI Do fggi) F O A ~ P-CNN 836 675  -16.1 62.3 SRS SIS SOV S S
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Ou_r experlme_n.ts confirm the importance of pose for All (Stat+Dyn, Max/Min-ager) 62.5 0.2 74 6  HLPF[1] 76.2 57 .4 -18.8 32.6 | @Qg;%%@g& a@l—é,&“}gg- S&FSe j‘*gf&g g@k

action recognition. SV W NS S S NG ST

* Max and Min aggregations combined with static and dynamic *P-CNN significantly outperforms HLPF [1] for automatic and <oy N o &S
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