

INTRODUCTION

Goal & Contributions

- Predicting 3D human body pose and shape given a single RGB image as input.
- Demonstrating advantages of auxiliary body-related tasks in an end-to-end multi-task setting.

Motivation

- Volumetric representation of human bodies in the context of neural networks is not studied.
- Volumetric representation is flexible, e.g. can capture clothing.

BODYNET APPROACH

- The architecture benefits from the multi-task training of:
 - ► a volumetric 3D loss,
 - > a multi-view re-projection loss,
 - > intermediate supervision of 2D pose, 2D part segmentation, and 3D pose.

► We gradually increase the difficulty of the task to go from 2D to 3D:

http://www.di.ens.fr/willow/research/bodynet

BodyNet: Volumetric Inference of 3D Human Body Shapes Gül Varol¹, Duygu Ceylan², Bryan Russell², Jimei Yang², Ersin Yumer³, Ivan Laptev¹ and Cordelia Schmid¹ Inria

SMPL

EXTENDING TO 3D BODY PART SEGMENTATION

Last layer weights are duplicated as many times as the number of parts to initialize training for part voxels.

ARCHITECTURE STUDY

Effect of additional inputs

▷ 3D shape estimation on SURREAL

RESULTS: SURREAL dataset [Varol et al. CVPR 2017]

- Effect of end-to-end training

²Adobe Research

Argo AI

▷ 3D pose estimation (mm) SURREAL Human3.6M Input

mput	SOUCERE	Tramano.or
RGB	49.1	51.6
2D pose	55.9	57.0
Segm	48.1	58.9
2D pose + Segm	47.7	56.3
RGB + 2D pose + Segm	46.1	49.0

RESULTS: Unite the People dataset [Lassner et al. CVPR 2017]

Effect of the re-projection type

		2D metrics		S	3D metrics (mm)	
		Acc. (%)	IOU (F1	Landmark	s Surface
3D ground truth	(Lassner et al.)	92.17	-	0.88	0	0
Decision forests	(Lassner et al.)	86.60	-	0.80	-	_
HMR	(Kanazawa et al.)	91.30	-	0.86	-	-
ゴ SMPLify, UP-P91	(Lassner et al.)	90.99	-	0.86	-	-
SMPLify on DeepCut	(Bogo et al.)	91.89	-	0.88	_	-
BodyNet (SMPL projections)		92.75	0.73	0.84	83.3	102.5
BodyNet (manual segmentations)		94.67	0.80	0.89		
3D ground truth	(Lassner et al.)	95.00	0.82	-	0	0
Indirect learning	(Tan et al.)	95.00	0.83	-	190.0	-
[∼] Direct learning	(Tan et al.)	91.00	0.71	-	105.0	-
BodyNet (SMPL projections)		92.97	0.75	0.86	69.6	80.1
BodyNet (manual segmentation	ns)	95.11	0.82	0.90		

INTERMEDIATE TASKS

► All tasks improve with end-to-end training.

Independent single-task

Joint multi-task

Weight **balancing** is important.

CONCLUSIONS

- Volumetric representation is flexible and effective.
- Re-projection loss is critical to obtain confident body surface.
- Multi-task training of relevant tasks helps.

REFERENCES

- SMPLify: Bogo et al. ECCV 2016

- ► *HMR:* Kanazawa et al. CVPR 2018

ECCV2018European Conference **Or Computer Vision**

egmentation	2D pose	3D pose
parts IOU (%)	PCKh@0.5	mean joint distance (mm)
59.2	82.7	46.1
69.2	90.8	40.8

LIMITATIONS

Unite the People: Lassner et al. CVPR 2017 Indirect learning: Tan et al. BMVC 2017 Self-supervised learning: Tung et al. NIPS 2017

Code is available

