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Abstract. This paper introduces an anisotropic Laplace-Beltrami op-
erator for shape analysis. While keeping useful properties of the stan-
dard Laplace-Beltrami operator, it introduces variability in the directions
of principal curvature, giving rise to a more intuitive and semantically
meaningful diffusion process. Although the benefits of anisotropic diffu-
sion have already been noted in the area of mesh processing (e.g. surface
regularization), focusing on the Laplacian itself, rather than on the dif-
fusion process it induces, opens the possibility to effectively replace the
omnipresent Laplace-Beltrami operator in many shape analysis meth-
ods. After providing a mathematical formulation and analysis of this
new operator, we derive a practical implementation on discrete meshes.
Further, we demonstrate the effectiveness of our new operator when em-
ployed in conjunction with different methods for shape segmentation and
matching.

Keywords: shape analysis, anisotropic diffusion, curvature, non-rigid
matching, segmentation, Laplace-Beltrami operator

1 Introduction

Over the last decade, tools derived from harmonic analysis have been successfully
used in three-dimensional computer vision for numerous tasks such as shape
segmentation, classification, or matching.

The Laplace-Beltrami (LB) operator, or Laplacian, is the natural operator to
introduce when studying diffusion processes on shapes. The study of heat diffu-
sion led, for instance, to the definition of the Heat Kernel Signature (HKS) [24],
one of the most relevant shape signatures to date. Since the theoretical guaran-
tees of this signature come from the operator itself and its eigen-decomposition,
subsequent studies have tried to use the same analytical objects to model dif-
ferent physical phenomena. These include the definition of new signatures such
as the Wave Kernel Signature (WKS) [1], learning combinations of LB eigen-
functions to deal with more general classes of deformations [13], or directly em-
ploying the eigen-functions themselves for segmentation tasks [21]. However, all
these works rely on the notion of an isotropic LB operator.

On the other hand, anisotropic diffusion processes have provided interesting
results for shape regularization tasks by taking into account local details, but
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Fig. 1. Example of stable regions detected via consensus segmentation [21] using the
standard Laplacian (first row) and the proposed anisotropic operator (second row).
Notice how the local changes in curvature directly affect the detected regions in the
second case, giving rise to a more stable and semantically meaningful segmentation.
Corresponding regions are colored consistently for visualization purposes.

to the best of our knowledge, an anisotropic LB operator by itself has not been
used in three-dimensional shape analysis.

In this paper, we propose to study an anisotropic LB operator in the context
of shape segmentation and matching. More precisely, we change the diffusion
speed along the directions of principal curvature on the surface. Intuitively, this
anisotropy can lead to more semantically consistent shape segmentations, and
can improve the accuracy of point signatures.

1.1 Related Work

3D shape analysis: Sometimes called the “swiss army knife” of 3D shape anal-
ysis, the Laplacian is used for matching, segmentation and classification. Com-
puting the LB operator directly on meshes with approaches such as [18, 15, 20],
numerous works exploit the information contained in its eigen-decomposition to
build a new representation of a shape, either by explicit formulas [23, 24, 1] or by
learning [13, 22]. Based on these descriptors, several methods have been devel-
oped for segmentation purposes, for instance [14, 21]. Recently, Kovnatsky et al.
[12] modified the metric tensor of the manifold to take into account photometric
information: they build another isotropic LB operator upon it and subsequently
use the same techniques as presented above.

Anisotropic denoising and regularization : All the previously men-
tioned applications are based on the isotropic LB operator. On the other hand,
anisotropic phenomena, such as diffusion, have been analyzed in the fields of
image restoring and geometry processing. From the seminal work of Perona et
al. [16] to the ameliorations of Black et al. on 2D images [2], there have been
multiple extensions to three-dimensional smoothing and fairing, see e.g. [8, 6,
25]. In all cases, these methods do not compute an anisotropic Laplacian but
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rather solve the associated anisotropic heat equation.

Medical image analysis: Several approaches have also used anisotropic
diffusion either on textures or directly on the surface in order to analyze MRI
data [3, 9]. However, as for denoising and regularization, these methods focus
on computing the solutions of the associated anisotropic heat diffusion, without
computing the anisotropic LB operator per se.

High dimensional data analysis : Spectral clustering based on the LB
operator is also a tool used for the analysis of high dimensional data, for in-
stance sets of images. Recently, Kim et al. [11] have extended these methods
by approximating an anisotropic LB operator in point clouds of high dimension
using graph reweighting.

1.2 Contributions

In this work, we propose to transfer the use of anisotropic LB operators to the
analysis of 3D shapes. The operator we introduce has a simple mathematical
formulation, it can be straightforwardly discretized and provides better results
in our experiments than existing alternatives. The key contributions of our work
can be summarized as follows:

– We introduce an anisotropic LB (ALB) operator for shape analysis: it pre-
serves the key properties of the isotropic Laplacian, while taking into account
extrinsic geometric information;

– We derive a discrete version of this operator for 3D meshes: it can be imple-
mented efficiently and boils down to a simple matrix multiplication;

– We perform an experimental evaluation of the impact of this operator for
several standard shape analysis methods.

2 Anisotropic Diffusion on Surfaces

In this section, we introduce the general framework of anisotropic LB operators
based on curvature for smooth surfaces, analyze their mathematical properties
and derive a discrete version of our selected ALB operator for a 3D mesh.

2.1 Continuous Formulation

We consider a smooth, closed surface S ⊂ R3. After briefly recalling some notions
of Riemannian geometry, we introduce an anisotropic LB operator on the surface
which takes into account its extrinsic curvature.

Mathematically, we model S as a Riemannian manifold of dimension 2. This
implies that locally around each point p ∈ S, the surface is very close to the
tangent plane at p, which we denote by TpS. The way in which S differs by
bending from TpS is encoded in the second fundamental form, represented by
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Fig. 2. Representation of the maximal principal curvature κM at each point of two
shapes from the TOSCA dataset. Blue parts correspond to regions of low maximal
curvature.

at 2 × 2 matrix. The eigenvalues of this matrix are called principal curvatures,
noted κm and κM where κm ≤ κM . The corresponding normalized eigenvectors
vm, vM are called directions of principal curvature, and form a basis of TpS.
Intuitively, in the direction vM the surface S bends the most around p, and
conversely for vm. See Figure 2 for a depiction of the maximal curvature κM on
two shapes. The quantities κm and κM are called extrinsic since they encode
the relationship between S and its embedding space R3. Moreover, since S looks
locally like a plane, we are able to import most of the calculus known in R2 onto
S; in particular, the gradient (∇) and divergence (div) operators carry the same
properties as in the Euclidean case.

Several important results and tools in the field of shape analysis are based
on the Laplace-Beltrami operator ∆, defined as:

∆f = div(∇f) . (1)

The Laplace-Beltrami operator is an intrinsic quantity of the surface, i.e. it is
invariant under isometric deformations of the manifold. It is also isotropic: the
corresponding diffusion process does not depend on the direction.

More generally, in this paper we are interested in anisotropic LB operators
of the form

∆Df = div(D (∇f)) , (2)

where D is a 2× 2 matrix acting on tangent vectors. We call D the anisotropic
tensor, since its deviation from the identity encodes deviation from the isotropic
case. In the case of a diffusion process, D controls both the direction and the
magnitude of the diffusion on the surface S, as shown in Figure 3.

Inspired by successful applications of curvature-aware anisotropic diffusion
to denoising of images and surfaces [16, 2, 8, 6, 25], and by recent advances in
the analysis of high-dimensional data [11], we attempt to incorporate extrinsic
information into the anisotropic tensor D for shape analysis purposes. We do so
by introducing the following generic linear operator, defined in the orthonormal
basis (vm, vM ):

Dα =

(
Ψmα (κm, κM ) 0

0 ΨMα (κM , κm)

)
. (3)
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Fig. 3. Solutions of the heat equation ∆u = ∂
∂t
u computed at time t = 3 · 10−3, with

a highly peaked Gaussian on the back of the horse as initial condition. We show the
isotropic case (middle), anisotropic case favoring high curvature (left), and deflecting
high curvature (right).

By choosing appropriate functions Ψmα and ΨMα , it is possible to favor directions
of high curvature or directions of low curvature. In our experiments, we set
Ψmα (κm, κM ) = ψα(κM ) and ΨMα (κm, κM ) = ψα(κm), where ψα is defined as:

ψα(x) =
1

1 + α|x|
. (4)

In the equation above, α > 0 directly controls deviation from isotropy, whereas
α→ 0 leads to the common LB operator.

In general, operator Dα modifies both the direction and the norm of a given
input vector. This differentiates our approach from the anisotropic LB operator
∆̃D̃ introduced in [11], where the anisotropic factor D̃ only modifies the norm
of a given input vector, but not its direction (see Eq. (5) below).

2.2 Mathematical Analysis

In this section we state the general properties of the ALB operator ∆Dα . Es-
sentially, ∆Dα conserves the strong analytical properties of the conventional
Laplace-Beltrami operator ∆. This is in contrast with the previous proposal
of [11]; in the following, we will also provide a brief comparison of the two vari-
ants.

Our operator has all the key properties of the isotropic case: −∆Dα is linear,
symmetric, positive semi-definite and therefore has a discrete spectrum 0 = E0 ≤
E1 ≤ . . . ≤ Ek ≤ . . ., with associated eigenfunctions φ0, φ1, . . ., and Ek → +∞.
These properties simply stem from the divergence theorem and the symmetry of
Dα (3). However, our operator is not isometry-invariant. Indeed, although the
product of the principal curvatures, or Gaussian curvature, is preserved under
such deformations, it is not the case for each of the principal curvatures. Let us
imagine for instance a surface initially planar, and then folded across a line in an
isometric fashion: a non-zero principal curvature will appear along the folding
line, although the Gaussian curvature will remain equal to zero there. Since
our operator directly depends on these extrinsic quantities, it is not in general
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Fig. 4. The tenth eigenfunction of ∆ (shapes on the left) and ∆Dα (on the right, here
α = 10). We observe that while the LB operator is invariant under near-isometries, this
property is lost for the ALB operator: the eigenfunction is preserved more accurately
in the first case.

invariant under isometries. This phenomenon is reflected on the eigenfunctions
of ∆Dα , as showed in Figure 4.

It should be noted that the operator ∆̃D̃ as defined in [11] is also not invariant
to isometries, furthermore it loses other key properties of ∆. In particular, the
anisotropic factor D̃ has the form:

D̃(v) =

∥∥∥∥Q( v

‖v‖

)∥∥∥∥ v , (5)

where Q : TpS → TpS is a linear application acting on tangent vectors, also
depending on the second fundamental form in a similar manner as Dα.

We remark that if Dα itself is plugged into (5) as the matrix Q, it follows
that Dα and D̃ roughly have the same qualitative properties, apart from the fact
that D̃ does not modify the direction of input vectors. Nevertheless, D̃ is not
linear, hence the loss of linearity of ∆̃D̃. Moreover, in this case Green’s theorem
leads to the non-symmetric expression:

〈−∆̃D̃f, g〉 =

∫
S

∥∥∥∥Q( ∇f‖∇f‖
)∥∥∥∥∇f · ∇g 6= 〈f,−∆̃D̃g〉 . (6)

The difference between the mathematical properties of ∆Dα and ∆̃D̃ also be-
comes evident in our evaluation: in most of our experiments, ∆Dα performs
better than ∆̃D̃, although the effect of curvature on the diffusivity factors is the
same.

2.3 Numerical Implementation

In this part, we use a finite-element method to derive a numerical scheme for
∆D, where in all generality D is a symmetric matrix, allowing us to compute
this operator on triangulated meshes. While more sophisticated approaches using
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discrete exterior calculus may be employed for this step [10], finite elements are
a common tool to discretize differential operators, and have been applied with
success to anisotropic operators [6]. In the following, we first recall the basics
of finite elements, then provide the formula for our discretized operator in this
framework, and finally prove it.

Throughout this discretization, we consider a triangulated mesh consisting
of nodes (zi)1≤i≤N , seen as a sample of a surface S. Any scalar function f on S
can be represented by a vector f = (fi), where fi = f(zi). Our goal is to express
∆Df in terms of geometric values related to the mesh and the vector f . In other
words, by linearity, we need to find a matrix LD acting on f and representing
the anisotropic operator ∆D by the relation ∆Df = LDf .

For this purpose, we use finite elements of the first order : the approach con-
sists in approximating f by a piecewise affine version of it taking the same values
at the vertices zi. Formally, we define ”hat” functions Φi satisfying: Φi(zj) = δij ,
where Φi is affine on each triangle of the mesh, and write f ≈

∑
i fiΦi. Further,

we assume that D is constant on each triangle. The weak formulation of the
operator ∆D boils down by linearity to Cf = A

(
∆Df

)
where the symmetric

mass matrix A and stiffness matrix C are defined as:

Aij = 〈Φi, Φj〉 , Cij = −〈D(∇Φi),∇Φj〉 . (7)

Inverting A, our discretized operator LD finally reads:

LD = A−1C . (8)

We now state the following results:

Aij = AVor
i δij (9)

Cij =

{
1
2

(
Γij

cos(γij)
sin(αij)

+Ξij
cos(ξij)
sin(βij)

)
i 6= j

−
∑
T3zj I(T )j i = j

, (10)

where AVor
i denotes the Voronoi area around zi. Symbols Γij and γij are defined

as in Figure 5, and Ξij , ξij are their counterparts in the triangle (zi, zj , zp). For

all triangles T = (zk, zj , zi), we write I(T )j = 1
2
D⊥ej
‖ej‖ ·

ej
‖ej‖ (cot(αij) + cot(θjk))

with D⊥ defined in (12) and αij , θij as in Figure 5.
Note that whenever D ≡ Id, this scheme boils down to the popular cotangent

scheme [18, 8, 15]. Moreover, the matrices involved are sparse, which makes their
computation simple and efficient.

In order to express numerically the anisotropic tensor D, we computed at
each vertex of the mesh the principal curvatures and corresponding directions
using the method described in [7] as implemented in [17], and then averaged over
each triangle to obtain a constant operator.

In the remainder of this section, we derive the results stated in (9), (10). We
fix j and compute Cij , Aij for all i. Clearly, we have Cij , Aij = 0 if zi, zj are not
neighbors. We now assume that this is the case, with i 6= j, and decompose the
integral over the surface on the different triangles containing the edge (zi, zj).
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Fig. 5. Left: Adjacent edges and angles. Right: Voronoi area around zi, i.e. the area
of the set of points such that their closest point among the vertices of the mesh is zi.

Γij =
‖D⊥ei‖
‖ei‖

and γij = − arccos

(
D⊥ei·ej
‖D⊥ei‖·‖ej‖

)
.

Let us be given a triangle T = (zk, zj , zi), and let ei = −−→zkzj , ej = −−→zizk,
ek = −−→zjzi. We refer to the heights of the triangle to the points zp as hp.
Finally, let αij = ẑjzkzi. It is straightforward that ∇Φi = 1

hi‖ei‖R
π
2
ei and

∇Φj = 1
hj‖ej‖R

π
2
ej where Rπ

2
denotes the rotation of angle π

2 . Therefore:

D∇Φi · ∇Φj =
1

hi ‖ei‖
DRπ

2
ei ·

1

hj ‖ej‖
Rπ

2
ej =

1

4AT
2D
⊥ei · ej , (11)

where
D⊥ = RTπ

2
DRπ

2
. (12)

Furthermore, if i 6= j, we also know that the area AT of the triangle T satisfies
AT = 1

2 ‖ei‖ ‖ej‖ sin(αij) . Consequently, when integrating the constant value
D∇Φi · ∇Φj over the whole triangle T , we get:∫

T

D∇Φi · ∇ΦjdS =
1

4AT
D⊥ei · ej = −1

2
Γij

cos(γij)

sin(αij)
, (13)

where γij is the angle between the D⊥ei and −ej and Γij =
‖D⊥ei‖
‖ei‖ . Summing

up over the two triangles sharing the edge (zi, zj), we obtain

Cij = 〈D∇Φj ,∇Φi〉 = −1

2

(
Γij

cos(γij)

sin(αij)
+Ξij

cos(ξij)

sin(βij)

)
, (14)

where Ξij and ξij are the counterparts of Γij and γij on the other triangle
adjacent to the edge (zi, zj).

For the diagonal coefficient Cjj , when considering any triangle T = (zk, zj , zi)
containing zj , the same reasoning as above leads to:

I(T )j :=

∫
T

D∇Φj · ∇ΦjdS =
1

4AT
D⊥ej · ej =

1

2

D⊥ej
‖ej‖

· ej
‖ej‖

‖ej‖
hj

. (15)



Anisotropic Laplace-Beltrami Operators for Shape Analysis 9

Fig. 6. Maximally stable components detected on a horse shape equipped with our
linear anisotropic LB operator ∆Dα . From left to right, we use α = 0 (corresponding
to the standard LB operator), α = 5 and α = 10.

From the relation ‖ei‖hj = cot(αij)+cot(θjk) , where αij and θjk are the two base

angles corresponding to zj (see Figure 5), we get:

I(T )j =
1

2

D⊥ej
‖ej‖

· ej
‖ej‖

(cot(αij) + cot(θjk)) . (16)

When α = 0, we simply have D⊥ = Id, and once again we fall back to the cotan-
gent scheme.

Finally, 〈D∇Φj ,∇Φj〉 is nothing but the sum of (16) over all triangles T in-
volved in zj . Combining (7),(14) and (16), the result (10) comes easily. Regarding
the expression for the mass matrix A (9), we refer to [15, 20]. In practice, we used
the method described in [8] to compute the Voronoi areas.

3 Experiments

In this section we investigate the practical benefits of adopting the proposed
operator in two problems commonly arising in shape analysis, namely stable
region detection and matching of deformable shapes, using the datasets [5, 4].

3.1 Segmentation and Region Detection

Recent state-of-the-art approaches in deformable shape matching rely on the
ability to detect repeatable regions on the given shapes [19]. In these experi-
ments, we employ the anisotropic Laplacian within two different frameworks for
detecting region-based features.

The first approach follows the consensus segmentation technique of [21]. The
region detection process operates as follows. First, given a shape S, several seg-
mentations are produced by a clustering method (k-means) over an intrinsic em-
bedding of the shape points. Different segmentations are obtained by initializing
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Fig. 7. Left: Hit ratio for isotropic (red curve) and anisotropic HKS (α varying from
blue to green) on nearly-isometrically deformed shapes (michael class from the TOSCA
dataset). Middle: Repeatability curves of MSER detection [14] using our anisotropic
operator, for all deformations over the SHREC’10 dataset. Right: Repeatability av-
eraged over all deformations of the SHREC’10 dataset, for our anisotropic operator
(green), Kim et al.’s (red), and the standard Laplace-Beltrami operator (blue).

the clustering process with different randomized seeds. The intrinsic embedding
is provided by the simple mapping

p 7→
(
φ1(p)√
E1

,
φ2(p)√
E2

,
φ3(p)√
E3

, · · ·
)

(17)

for each p ∈ S, where φk are the eigenfunctions and Ek the corresponding
eigenvalues of the Laplace-Beltrami operator on S. The mapping above is com-
monly referred to as the Global Point Signature embedding of S [23]. Given this
initial collection of segmentations, the corresponding Fréchet mean (according
to an appropriate notion of distance among segmentations) is then solved for
in a robust manner (we refer to [21] for the technical details). Intuitively, this
process attempts to achieve an ”agreement” between the several segmentations
constituting the initial putative set; being based entirely on quantities directly
derived from the eigenfunctions of ∆ (17), regions produced by the consensus
approach tend to reflect the overall trend of the eigenfunctions themselves. As
such, apart from yielding a stable segmentation of the shape, this approach can
easily provide a visual clue on the general behavior of a given operator.

In Figure 1 we show the regions detected on two nearly-isometric shapes via
consensus segmentation, when the two manifolds are equipped with the standard
LB operator ∆ and our proposed anisotropic variant ∆Dα . Notice how, although
the regions resulting from the consensus process are repeatable across the two
operators, the outcome of the anisotropic case is more stable (two different poses
produce the same regions) and more semantically meaningful (no cross-regions
covering semantically different parts).

The second experiment is aimed at providing a quantitative comparison be-
tween the segmentations produced when employing the two operators ∆ and
∆Dα . For these comparisons we adopted a different region detection technique,
namely the Maximally Stable Extremal Regions (MSER) approach of [14]. Note
that, differently from the consensus approach, the MSER technique is based on
the diffusion process induced by the different operators rather than their simple



Anisotropic Laplace-Beltrami Operators for Shape Analysis 11

eigen-decomposition. Thus, this experiment is aimed at evaluating our operator
from a diffusion-geometric perspective, when put in comparison to the standard
Laplacian within a common segmentation pipeline.

The comparisons were performed on the SHREC’10 benchmark. The dataset
consists of three different shape classes (dog, horse, man) undergoing 9 different
types of deformation (including e.g., topological changes, downsampling, and lo-
cal changes in scale), each at 5 intensity levels. To measure the stability of a given
segmentation, we evaluated its repeatability curve across the whole dataset [14].
In particular, letM0 be a ”null” (i.e., in a canonical pose) andM be a deformed
shape respectively. Given the ground-truth correspondence g :M0 →M, we can
compute the overlap between two regions A0 ⊂ M0 and B ⊂ M as the area
ratio:

O(B,A0) =

∣∣g−1(B) ∩ A0

∣∣
|g−1(B) ∪ A0|

, (18)

where | · | denotes the surface area. Note that

0 ≤ O(B,A0) ≤ 1 , (19)

the last inequality being attained if and only if g−1(B) = A0. For a fixed overlap
value ν, the repeatability at ν is defined as the percentage of regions inM having
an overlap greater than ν with regions in M0. For any given segmentation, the
repeatability at overlap 0 is 100%, and the more stable the segmentation is, the
higher the repeatability remains as ν increases.

In Figure 7 (last two columns) we show the repeatability curves obtained
by MSER detection using our linear anisotropic operator ∆D (green curve),
the non-linear variant ∆̃D̃ (red curve), and the standard LB operator ∆α (blue
curve). Both anisotropic operators (here computed with α = 10) outperform
the standard Laplacian by a large margin, while there is only a minor differ-
ence in performance between them. This result directly confirms the observation
(Section 2.2) that the two operators carry similar qualitative properties, with
our linear proposal demonstrating overall better behaviour on the dataset con-
sidered. Finally, in Figure 6 we show some examples of MSER segmentations
produced with our operator for different values of α.

3.2 Shape Matching

As observed in Section 2.2, the proposed anisotropic Laplacian is not an isom-
etry invariant; hence, its direct application in the computation of intrinsic de-
scriptors [1, 13] may not lead to an increase of performance in typical non-rigid
matching scenarios.

Quantitative comparisons among the matching results obtained with a stan-
dard HKS implementation [24] and its anisotropic variant are shown in Figure 7
(left). In this experiment, we first performed a (Euclidean) farthest point sam-
pling of a shape in the standard ”null” pose; we computed a descriptor for each
of the sampled points, and then looked for its closest matches (in descriptor
space) on several nearly-isometric deformations of the shape. We did this for
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the standard HKS descriptor (red curve), and for the anisotropic HKS with α
ranging uniformly between 1 (blue) and 20 (green). Each curve depicts the per-
centage of points in the null shape having their exact correspondence in the first
0− 1% of all shape points, sorted according to descriptor similarity.

As it can be seen from the plot, the advantage brought by the direct adop-
tion of anisotropic diffusion for shape matching is only minimal. This is to be
expected, since as shown in Figure 3, solutions to the heat equation will tend
to evolve differently along regions of different curvature. However, as seen in the
previous section, when used in conjunction with appropriate stability criteria,
this property can become very useful for tasks of segmentation of deformable
shapes.

4 Conclusions

In this paper we introduced the use of an anisotropic Laplace-Beltrami operator
for shape analysis, and we derived a numerical scheme that allows to compute it
easily for a triangulated mesh. In extensive evaluations, we showed that the pro-
posed operator can improve either quantitatively or qualitatively several shape
analysis methods initially developed with the standard Laplace-Beltrami opera-
tor in mind. These include the definition of shape signatures and the detection
of stable regions following different approaches. Based on these promising re-
sults, we believe that the adoption of anisotropic Laplace-Beltrami operators for
three-dimensional shape analysis constitutes a valid future direction of research.
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