1. Proof

Proposition 1. $\Psi(x)$ is a surrogate function of $\psi(x)$.

Proof. A function $g(x)$ is said to be a surrogate function of $f(x)$ provided

$$
\begin{align*}
 f(x) &\leq g(x), \forall x, y \in [0, \infty) \\
 f(y) &\leq g(y), \forall y \in [0, \infty)
\end{align*}
$$

Let us consider the following function:

$$
 f(x) = \frac{1 - \exp(-\nu x)}{\nu}.
$$

Since $f''(x) < 0$, this function is strictly concave, $\forall x, y$,

$$
 f(x) \leq f(y) + (x - y)f'(y),
$$

with equality holding at $x = y$. Thus, the surrogate function $g(x)$ is

$$
 g(x) = f(y) + (x - y)f'(y),
$$

Let us substitute x and y with x^2 and y^2, respectively, then

$$
 \psi(x) = f(x^2) \\
 \leq g(x^2),
$$

and

$$

$$

\[\Box\]

*WILLOW project-team, Département d’Informatique de l’École Normale Supérieure, ENS/Inria/CNRS UMR 8548.
2. More Results

Table 1. Quantitative Evaluation of Upsampled Depth Maps on the Middlebury Test Bed [8]

<table>
<thead>
<tr>
<th>Method</th>
<th>Ω_{alt}</th>
<th>Ω_{disc}</th>
<th>Ω_{all}</th>
<th>Ω_{alt}</th>
<th>Ω_{disc}</th>
<th>Ω_{all}</th>
<th>Ω_{alt}</th>
<th>Ω_{disc}</th>
<th>Ω_{all}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilinear Int.</td>
<td>10.40</td>
<td>46.30</td>
<td>3.29</td>
<td>37.10</td>
<td>11.80</td>
<td>35.30</td>
<td>14.60</td>
<td>35.80</td>
<td>13.07</td>
</tr>
<tr>
<td>GF [3]</td>
<td>9.87</td>
<td>43.20</td>
<td>2.74</td>
<td>26.50</td>
<td>15.50</td>
<td>37.50</td>
<td>15.50</td>
<td>34.40</td>
<td>19.14</td>
</tr>
<tr>
<td>Park et al.</td>
<td>6.14</td>
<td>28.00</td>
<td>1.03</td>
<td>10.10</td>
<td>7.88</td>
<td>22.20</td>
<td>8.10</td>
<td>19.20</td>
<td>14.23</td>
</tr>
<tr>
<td>Ours</td>
<td>2.39</td>
<td>10.40</td>
<td>0.55</td>
<td>5.50</td>
<td>7.39</td>
<td>20.30</td>
<td>5.24</td>
<td>12.40</td>
<td>10.04</td>
</tr>
</tbody>
</table>

References

Figure 1. Visual comparison of (×8) upsampled depth maps and point cloud reconstructions on books sequence in the Middlebury test bed [8].
Figure 2. Visual comparison of (×8) upsampled depth maps and point cloud reconstructions on moebius sequence in the Middlebury test bed [8].
Figure 3. Visual comparison of (×8) upsampled depth maps and point cloud reconstructions on *teddy* sequence in the Middlebury test bed [8].
Figure 4. Visual comparison of (×8) upsampled depth maps and point cloud reconstructions on laundry sequence in the Middlebury test bed [8].
Figure 5. Visual comparison of (×8) upsampled depth maps and point cloud reconstructions on art sequence in the Middlebury test bed [8].
Figure 6. Visual comparison of (×8) upsampled depth maps and point cloud reconstructions on reindeer sequence in the Middlebury test bed [8].
Figure 7. Visual comparison of (×8) upsampled depth maps and point cloud reconstructions on cones sequence in the Middlebury test bed [8].
Figure 8. Visual comparison of (×8) upsampled depth maps and point cloud reconstructions on *venus* sequence in the Middlebury test bed [8].
Figure 9. Visual comparison of upsampled depth maps on books sequence in the Graz data sets [2].
Figure 10. Visual comparison of upsampled depth maps on devil sequence in the Graz data sets [2].
Figure 11. Visual comparison of upsampled depth maps on shark sequence in the Graz data sets [2].
Figure 12. Examples of the scale space for (a) the input image, constructed by (b) WLS \([\mu = 40]\) [(from left to right) \(\lambda = 5 \times 10^3, 3 \times 10^4, 2 \times 10^5, \mu = 40\)], (c) WLS \([\mu = 5]\) [(from left to right) \(\lambda = 5 \times 10^3, 3 \times 10^4, 2 \times 10^5, \mu = 5\)], (d) RGF \([\sigma_s = 5, 10, 50, \sigma_r = 0.05, k = 5]\), (e) our model \([u^0 = u_1, \text{ (from left to right) } \lambda = 1 \times 10^3, 3 \times 10^3, 1 \times 10^4, \mu = 5, \nu = 40, k = 5]\).
Figure 13. Examples of the scale space for (a) the input image, constructed by (b) WLS \([\mu = 40]\) (from left to right) \(\lambda = 5 \times 10^3, 3 \times 10^4, 4 \times 10^5, \mu = 40\), (c) WLS \([\mu = 5]\) (from left to right) \(\lambda = 5 \times 10^3, 3 \times 10^4, 4 \times 10^5, \mu = 5\), (d) RGF \([11]\) (from left to right) \(\sigma_s = 5, 10, 100, \sigma_r = 0.05, k = 5\), (e) our model \([u^0 = u_{11}]\) (from left to right) \(\lambda = 3 \times 10^2, 1 \times 10^3, 4 \times 10^3, \mu = 5, \nu = 40, k = 5\).
Figure 14. Examples of the scale space for (a) the input image, constructed by (b) WLS [1] [(from left to right) $\lambda = 5 \times 10^3, 3 \times 10^4, 2 \times 10^5, \mu = 40$], (c) WLS [1] [(from left to right) $\lambda = 5 \times 10^1, 3 \times 10^2, 2 \times 10^3, \mu = 5$], (d) RGF [11] [(from left to right) $\sigma_s = 5, 10, 50, \sigma_r = 0.05, k = 5$], (e) our model $u^0 = u_{t1}$, (from left to right) $\lambda = 5 \times 10^1, 3 \times 10^2, 1 \times 10^3, \mu = 5, \nu = 40, k = 5$.
Figure 15. Examples of the scale space for (a) the input image, constructed by (b) WLS \[1\] (from left to right) $\lambda = 3 \times 10^2, 2 \times 10^3, 1 \times 10^6, \mu = 40$, (c) WLS \[1\] (from left to right) $\lambda = 3 \times 10^2, 2 \times 10^3, 1 \times 10^4, \mu = 5$, (d) RGF \[11\] (from left to right) $\sigma_s = 5, 10, 50, \sigma_r = 0.05, k = 5$, (e) our model $\mathbf{u}^0 = 1$, (from left to right) $\lambda = 3 \times 10^2, 2 \times 10^3, 1 \times 10^4, \mu = 5, \nu = 40, k = 5$.

- **(a) Input image**
- **(b) WLS \[1\] (µ = 40)**
- **(c) WLS \[1\] (µ = 5)**
- **(d) RGF \[11\]**
- **(e) Ours**
Figure 16. Examples of the scale space for (a) the input image, constructed by (b) WLS $\mu = 40$, (c) WLS $\mu = 5$, (d) RGF $\sigma_s = 10, 20, 40$, $\sigma_r = 0.05, k = 5$, (e) our model $u^0 = u_1$, (from left to right) $\lambda = 3 \times 10^3, 1 \times 10^4, 5 \times 10^5$, $\mu = 40$, (c) WLS $\mu = 5$, (d) RGF $\sigma_s = 10, 20, 40$, $\sigma_r = 0.05, k = 5$, (e) our model $u^0 = u_1$, (from left to right) $\lambda = 1 \times 10^3, 4 \times 10^3, 1 \times 10^4, \mu = 5, \nu = 40, k = 5$.
Figure 17. Examples of the scale space for (a) the input image, constructed by (b) WLS [1] (from left to right) $\lambda = 5 \times 10^3, 2 \times 10^5, 5 \times 10^6$, $\mu = 40$, (c) WLS [1] (from left to right) $\lambda = 5 \times 10, 2 \times 10^3, 5 \times 10^4, \mu = 5$, (d) RGF [11] (from left to right) $\sigma_s = 10, 20, 40$, $\sigma_r = 0.05, k = 5$, (e) our model $u^0 = u_{i1}$, (from left to right) $\lambda = 3 \times 10^2, 4 \times 10^3, 1 \times 10^4, \mu = 5, \nu = 40, k = 5$.
Figure 18. Examples of the texture removal for regular textures. (a) Input image, (b) Cov. M1 [4] \(\sigma = 0.3, r = 10 \), (c) RTV [9] \(\lambda = 0.01, \sigma = 6 \), (d) RGF [11] \(\sigma_s = 5, \sigma_r = 0.05, k = 5 \), (e) ours \(\{u^0 = u_1\}, \lambda = 1000, \sigma = 2, \mu = 5, \nu = 40, k = 10 \).
Figure 19. Examples of the texture removal for regular textures. (a) Input image, (b) Cov. M1 [4] \(\sigma = 0.3, r = 10 \), (c) RTV [9] \(\lambda = 0.01, \sigma = 6 \), (d) RGF [11] \(\sigma_x = 5, \sigma_r = 0.1, k = 5 \), (e) ours \(u^0 = u_1, \lambda = 2000, \sigma = 2, \mu = 5, \nu = 40, k = 10 \).
Figure 20. Examples of the texture removal for regular textures. (a) Input image, (b) Cov. M1 \([\sigma = 0.3, r = 10]\), (c) RTV \([\lambda = 0.01, \sigma = 6]\), (d) RGF \([\sigma_s = 5, \sigma_r = 0.1, k = 5]\), (e) ours \([u^0 = u_0, \lambda = 2000, \sigma = 2, \mu = 5, \nu = 40, k = 10]\).
Figure 21. Examples of the texture removal for regular textures. (a) Input image, (b) Cov. M1 [4] [$\sigma = 0.3$, $r = 10$], (c) RTV [9] [$\lambda = 0.01$, $\sigma = 6$], (d) RGF [11] [$\sigma_s = 5$, $\sigma_r = 0.1$, $k = 5$], (e) ours [$u^0 = u_{11}$, $\lambda = 2000$, $\sigma = 2$, $\mu = 5$, $\nu = 40$, $k = 10$].
Figure 22. Examples of the texture removal for regular textures. (a) Input image, (b) Cov. M1 \[\sigma = 0.3, r = 10 \], (c) RTV [9] \[\lambda = 0.01, \sigma = 3 \], (d) RGF [11] \[\sigma_s = 3, \sigma_r = 0.05, k = 5 \], (e) ours \[\mathbf{u}^0 = \mathbf{u}_{i+}, \lambda = 2000, \sigma = 1, \mu = 5, \nu = 40, k = 10 \].
Figure 23. Examples of the texture removal for regular textures. (a) Input image, (b) Cov. M1 [4] \([\sigma = 0.3, r = 10] \), (c) RTV [9] \([\lambda = 0.01, \sigma = 3] \), (d) RGF [11] \([\sigma_s = 3, \sigma_r = 0.05, k = 5] \), (e) ours \([u^0 = u_{1,2}, \lambda = 500, \sigma = 1, \mu = 5, \nu = 40, k = 10] \).
Figure 24. Examples of the texture removal for irregular textures. (a) Input image, (b) Cov. M1 [4] $[\sigma = 0.3, r = 10]$, (c) RTV [9] $[\lambda = 0.01, \sigma = 6]$, (d) RGF [11] $[\sigma_s = 3, \sigma_r = 0.05, k = 5]$, (e) ours $[u^v = u_{ls}, \lambda = 50, \sigma = 1, \mu = 5, \nu = 40, k = 10]$.
Figure 25. Examples of the texture removal for irregular textures. (a) Input image, (b) Cov. M1 [4] $[\sigma = 0.3, r = 10]$, (c) RTV [9] $[\lambda = 0.01, \sigma = 6]$, (d) RGF [11] $[\sigma_s = 3, \sigma_r = 0.1, k = 5]$, (e) ours $[u^0 = u_{11}, \lambda = 2000, \sigma = 2, \mu = 5, \nu = 40, k = 10]$.
Figure 26. Examples of the texture removal for irregular textures. (a) Input image, (b) Cov. M1 [4] $[\sigma = 0.3, r = 10])$, (c) RTV [9] $[\lambda = 0.01, \sigma = 6]$, (d) RGF [11] $[\sigma_s = 5, \sigma_r = 0.05, k = 5]$, (e) ours $[\mu = 5, \nu = 40, k = 5]$.

Figure 27. Examples of the texture removal for irregular textures. (a) Input image, (b) Cov. M1 [4] $[\sigma = 0.3, r = 10]$), (c) RTV [9] $[\lambda = 0.01, \sigma = 9]$, (d) RGF [11] $[\sigma_s = 5, \sigma_r = 0.05, k = 5]$, (e) ours $[\mu^0 = 1, \lambda = 100, \sigma = 2, \mu = 5, \nu = 40, k = 5]$.
Figure 28. Examples of the texture removal for irregular textures. (a) Input image, (b) Cov. M1 \([\sigma = 0.3, r = 10]\), (c) RTV \([\lambda = 0.01, \sigma = 3]\), (d) RGF \([\sigma_x = 3, \sigma_r = 0.05, k = 5]\), (e) ours \([u^1 = 1, \lambda = 50, \sigma = 1, \mu = 5, \nu = 40, k = 5]\).
Figure 29. Examples of the texture removal for irregular textures. (a) Input image, (b) Cov. M1 [4] \(\sigma = 0.3, r = 10\), (c) RTV [9] \(\lambda = 0.01, \sigma = 6\), (d) RGF [11] \(\sigma_s = 3, \sigma_r = 0.1, k = 5\), (e) ours \(u^0 = 1, \lambda = 50, \sigma = 2, \mu = 5, \nu = 40, k = 5\).
Figure 30. Examples of the texture removal for irregular textures. (a) Input image, (b) Cov. M1 [4] [$\sigma = 0.3, r = 10$], (c) RTV [9] [$\lambda = 0.05, \sigma = 3$], (d) RGF [11] [$\sigma_s = 9, \sigma_r = 0.1, k = 5$], (e) ours $[u^0 = \mathbb{1}, \lambda = 1000, \sigma = 1, \mu = 5, \nu = 40, k = 5]$.
Figure 31. RGB and flash NIR image restoration on *teapot* sequence [10]: (a) RGB image, (b) NIR image, (c) GF [3] \([r = 3, \varepsilon = 0.0004]\), (d) ours \([u^0 = 1, \lambda = 15, \mu = 60, \nu = 30, k = 5]\).
Figure 32. RGB and flash NIR image restoration on books sequence [10]: (a) RGB image, (b) NIR image, (c) GF [3] $[r = 3, \varepsilon = 0.0004]$, (d) ours $[u^0 = 1, \lambda = 15, \mu = 60, \nu = 30, k = 5]$.

(a) RGB image
(b) Flash NIR image
(c) GF [3]
(d) Ours
Figure 33. RGB and flash NIR image restoration on window sequence [10]: (a) RGB image, (b) NIR image, (c) GF [3] [$r = 3$, $\varepsilon = 0.0004$], (d) ours [$u^0 = 1$, $\lambda = 15$, $\mu = 60$, $\nu = 30$, $k = 5$].
Figure 34. RGB and flash NIR image restoration on bowls sequence [10]: (a) RGB image, (b) NIR image, (c) GF [3] $[r = 3, \varepsilon = 0.0004]$, (d) ours $[u^0 = 1, \lambda = 7, \mu = 30, \nu = 30, k = 5]$.
Figure 35. Flash and non-flash image restoration on cave sequence [7]. (a) Flash image, (b) non-flash image, (c) GF [3] \(r = 3, \varepsilon = 0.0004 \), (d) result of [10], and (f) ours \(u^0 = 1, \lambda = 15, \mu = 60, \nu = 30, k = 5 \). The results of (d) is obtained from the project webpage.